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a b s t r a c t 

The enormous social and economic cost of Alzheimer’s disease (AD) has driven a number of neuroimag- 

ing investigations for early detection and diagnosis. Towards this end, various computational approaches 

have been applied to longitudinal imaging data in subjects with Mild Cognitive Impairment (MCI), as se- 

rial brain imaging could increase sensitivity for detecting changes from baseline, and potentially serve as 

a diagnostic biomarker for AD. However, current state-of-the-art brain imaging diagnostic methods have 

limited utility in clinical practice due to the lack of robust predictive power. To address this limitation, 

we propose a flexible spatial-temporal solution to predict the risk of MCI conversion to AD prior to the 

onset of clinical symptoms by sequentially recognizing abnormal structural changes from longitudinal 

magnetic resonance (MR) image sequences. Firstly, our model is trained to sequentially recognize differ- 

ent length partial MR image sequences from different stages of AD. Secondly, our method is leveraged 

by the inexorably progressive nature of AD. To that end, a Temporally Structured Support Vector Machine 

(TS-SVM) model is proposed to constrain the partial MR image sequence’s detection score to increase 

monotonically with AD progression. Furthermore, in order to select the best morphological features for 

enabling classifiers, we propose a joint feature selection and classification framework. We demonstrate 

that our early diagnosis method using only two follow-up MR scans is able to predict conversion to AD 

12 months ahead of an AD clinical diagnosis with 81.75% accuracy. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) is often primed by isolated mem- 

ry dysfunction referred to as Mild Cognitive Impairment (MCI), 

ollowed by progressive decline in general cognitive abilities, al- 

ered behavior, loss of functional independence, and eventually 

eath ( Grimmer et al., 2009 ; Lam et al., 2013 ; Loewenstein et al.,

006 ). Although AD cannot be stopped or cured, the most 

ffective way to treat AD patients is to slow AD progres- 

ion in the early stage ( Chetelat & Baron, 2003 ; Filley, 1995 ;

authier, 2005 ). Therefore, detecting the early onset of AD 

ymptom is critically important for the success of AD treat- 

ents in clinical practice. The structural and functional loss in- 
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olved in AD are known to have dynamically evolving mor- 

hological patterns ( Duchesne et al., 2008 ; Jack et al., 2003 ; 

löppel et al., 2008 ; Vemuri et al., 2009 ; Whitwell et al., 2008 ).

hese dynamic brain structural changes can be captured by non- 

nvasive longitudinal MR imaging data. Therefore, early AD diag- 

osis using longitudinal imaging has been documented in previ- 

us work with special attention to MCI ( Cummings et al., 2007 ; 

anguli et al., 2010 ; Ganguli et al., 2004 ; Johnson et al., 2009 ;

i et al., 2012 ; Petersen, 20 0 0 ; Reisberg et al., 2008 ; Winblad et al.,

004 ). MCI entails noticeable and measurable cognitive changes 

hat are not severe enough to interfere with daily life or indepen- 

ent function, and carries an increased risk of developing AD or 

ther type of dementia. 

A growing body of research has set focus on attempting to 

redict if and when MCI patients will convert to AD. For exam- 

le, tensor-based morphometry ( Hua et al., 2011 ; Hua et al., 2010 )

s used to identify brain atrophy patterns in 91 AD patients and 

https://doi.org/10.1016/j.media.2020.101825
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101825&domain=pdf
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89 MCI subjects scanned at baseline, 6, 12, 18, and 24 months. 

ince the hippocampus is a primary locus of early AD pathologic 

hanges, many studies have investigated structural changes involv- 

ng the hippocampal region. For example, Lee and colleagues em- 

loyed a linear regression model to predict MCI conversion us- 

ng hippocampus surface morphology and several clinical indices 

 Lee et al., 2015 ). Examining longitudinal changes in hippocampal 

olume ( Chincarini et al., 2016 ) and cortical thickness ( Li et al.,

012 ) are other approaches that have been used in an attempt to 

dentify predictor variables of MCI conversion to AD. 

A major general limitation of computer-assisted longitudinal AD 

iagnostic methods is the scanning protocol used with respect to 

he timing and number of scans obtained. For example, many lon- 

itudinal approaches assume the number of time points is equal, 

lbeit implicitly. In clinical practice, however, patients will have a 

ariable number of scans, often fewer than are obtained in longi- 

udinal studies, and typically not done more frequently than an- 

ually. Moreover, each subject recruited in the Li and colleagues 

tudy ( Li et al., 2012 ) should have at least 5 time-points at 6-

onth intervals, and should develop AD at least 12 months af- 

er the baseline scan. Hence, existing methods typically require 

 large number of MRI scans in order to be robust. Regarding 

he time window prior to the onset of AD clinical symptoms, 

onventional methods can only support predictive modeling over 

 relatively short time frame, even when a number of longitu- 

inal scans are available. For instance, the imaging classification 

ethod used by Li and colleagues ( Li et al., 2012 ) accurately pre-

icted MCI to AD conversion only 6 months before the clinical ex- 

ression of AD symptoms. Although the short-term prediction re- 

ult seems promising, signaling conversion to AD only 6 months 

efore the clinical syndrome appears would have limited impact 

n clinical practice based on convergent evidence that early and 

ontinuous treatment confers a therapeutic advantage relative to 

atients for whom treatment initiation is delayed for disrupted 

 Gauthier, 2005 ). 

Several works utilizing computer vision have shown promise in 

arly activity detection ( Hoai et al., 2011 ; Hoai and Torre, 2014 ;

uang et al., 2014 ). Early activity detection in these works involves 

rst training detectors to specifically recognize any small partial 

ctivities from the complete activities. The detection score of those 

artial activities are then constrained to increase monotonically 

long with time since those partial activities are conducted contin- 

ously. Inspired by the success of early activity detection in com- 

uter vision, we propose a long-range AD early detection approach 

hat requires only a few MR scans. 

The goal of our approach is to detect AD associated brain 

hanges before the clinical diagnosis of AD. Accordingly, we re- 

ard the problem of AD early diagnosis as a binary classification 

ask between MCI converters (MCI-C for short) who convert from 

CI to AD and MCI non-converters (MCI-NC for short) who do not 

rogress to AD. We leverage the following facts to achieve long 

ange early diagnosis with only a few longitudinal MR scans: (1) 

D progression is irreversible ( Filley, 1995 ), and (2) the disparity of 

orphological patterns between MCI-C and MCI-NC become more 

anifest with AD progression ( Hua et al., 2011 ; Thompson et al., 

007 ). In light of this, we will provide a principled mechanism to 

chieve this monotonicity in AD early diagnosis, which is not ob- 

ained by any existing diagnostic approaches. The assumption of 

onotonicity on AD conversion score is based on AD progression 

odel in Zhang et al. (2001) , which shows that the AD progression 

egins at a stimulating time point where the brain structure start 

o changes from normal to abnormal monotonically follows a sig- 

oid shape curve. Moreover, the study in Zhang et al. (2001) also 

eveal that the brain structure changes measured by structural 

RI is an earlier biomarker than clinical scores test. This finding 

uggests that longitudinal MRI data are better early AD diagnosis 
2 
iomarker than clinical score based AD diagnosis. Therefore, we 

resent to study the longitudinal MRI imaging data using a Tem- 

orally Structured SVM (TS-SVM) to capture the brain structural 

hanges during AD progression. Our model is trained based on 

 set of partial MR image sequences at variable intervals, drawn 

rom the complete longitudinal imaging data. Note, partial image 

equencing not only augments the set of training samples but also 

arnesses the inclusion relationship within partial sequences to re- 

ect the inexorably progressive nature of AD by requiring the risk 

f AD conversion to monotonically increase as AD progresses. Com- 

ared with conventional SVM, our TS-SVM has three major im- 

rovements to achieve long-range early AD detection with high ac- 

uracy: 

(1) The classifier is trained to recognize all partial MR image 

sequences and is therefore not restricted by the number of 

available MR images or AD progression stage. 

(2) We require the AD conversion score to monotonically in- 

crease within each AD-converting MCI subject as more 

follow-up images are inspected. Thus, our early diagnosis 

method can avoid inconsistent prediction results 

(3) We balance the early prediction accuracy and prediction 

range of AD conversion. Since the monotonicity makes the 

risk of future AD conversion more predictable, we have 

greater confidence to signal the future conversion of AD 

much earlier than the onset of clinical symptoms. Another 

benefit is that we can reduce number of MR scans, which is 

very important for translation to routine clinic practice. 

(4) We further present a joint feature selection and classifica- 

tion framework in order to select suitable features that are 

in line with the learned TS-SVM and also improve early de- 

tection performance. 

In the application stage, we can apply our learned TS-SVM right 

fter the first follow-up scan. Given the longitudinal image se- 

uence of new subjects with arbitrary time points, we sequentially 

xamine the imaging patterns from the baseline scan and signal 

he AD conversion early as the detection of abnormal change is of 

igh confidence in TS-SVM. Thus, our proposed AD early detection 

ethod is not dependent on a specific number of scans. We have 

valuated the performance of AD early detection on more than 

50 longitudinal subjects from the ADNI dataset. Promising results 

ave been achieved where our method can alarm the conversion 

f AD 12 months prior to the clinical diagnosis, with 81.75% ac- 

uracy, using only two follow-up MR scans. The rest of this pa- 

er is organized as follows. We present our Temporal Structured- 

VM with joint feature selection in Section 2 . Then, we present ex- 

erimental results in Section 3 . Finally, we present conclusions in 

ection 5. 

. Methods 

In this paper, the goal of classification is to determine (1) 

hether we can predict the conversion of AD on the new testing 

ubject based on its MR image sequence Z = [ Z 1 , Z 2 , · · · , Z T z ] up 

o the current time point T z ; and (2) whether we can predict the 

nset of AD symptom as early as possible, i.e., make T z as close to

aseline as possible. Thus, we regard the early detection of AD as a 

inary classification problem between MCI-NC and MCI-C subjects. 

ithout loss of generality, we assign MCI-C with positive label and 

CI-NC with negative label. Since MR image is non-invasive and 

idely used in routine clinic practice, we present a novel tempo- 

ally structured-SVM on longitudinal MR image sequences. Note, 

onsidering the cost of healthcare and the availability of imaging 

ardware, our early diagnosis method is designed to use only MR 

mages. 
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.1. Prepare the dataset 

.1.1. Morphological features in each cross-sectional brain image 

Suppose we have N training subjects. Each subject n has a MR 

mage sequences I n = { I n t t = 1 , · · · , T n } ( n = 1 , · · · , N ) with totally 

 n longitudinal scans. For each volumetric image I n t , we first regis- 

er the AAL template image, which has 90 manually labeled ROIs 

Regions Of Interest), to the underlying image I n t . Then we ex- 

ract seven morphological features in each ROI where the first 

our features include tissue percentage of White Matter (WM), 

ray Matter (GM), Cerebral-Spinal Fluid (CSF), and Background, 

nd the last three features include the averaged voxel-wise Jaco- 

ian determinants in WM, and GM and CSF regions ( Shen and Da- 

atzikos, 2003 ). Therefore, the image feature f n t for each volumetric 

mage I n t is a 90 × 7 = 630 dimension column vector in this paper.

.1.2. Construct spatial-temporal feature in partial image sequence 

In order to train a classifier which is able to recognize different 

umber of MR images collected at different AD progression stage, 

e will extract different length partial sequences to cover differ- 

nt AD progression stage for each subject. We can decompose the 

omplete longitudinal image sequence I n into T n − 1 of partial im- 

ge sequences X 

n 
b 
, b = 2 , · · · , T n where each X 

n 
b 

= { I n t , t = 1 , · · · , b }
s the partial image sequence with b −1 time points from baseline 

o b −th follow-up as shown in Fig. 1 . (a). Of note, all partial im-

ge sequences extracted from the same complete sequence use the 

ame label. For each X 

n 
b , 

we further extract longitudinal feature 

epresentations as �(X 

n 
b 
) . For each X 

n 
b , 

we further extract longi- 

udinal feature representations as �(X 

n 
b 
) = [ 

∑ b 
t=1 X 

n 
t /b, ( X 

n 
1 

− X 

n 
b 
)] , 

here the first column vector is are the average of morphologi- 

al features from baseline to last time point and the second col- 

mn vector measures the longitudinal difference of morphologi- 
ig. 1. Prepare the training dataset. (a) We extract partial sequences of different 

ength (from baseline to b-th follow-ups, b = 2 , 3 , •••) for each subject. (b) We 

lign the extracted partial MR image sequences of each subject based on the AD 

rogression stage τ before training TS-SVM. 
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3 
al features from baseline to the last follow-up inside the partial 

mage sequence. It is apparent that each feature representation 

(X 

n 
b 
) describes both the spatial and temporal morphological pat- 

erns. As we will explain in Section 3.4 , feature selection is of ne- 

essity to remove data redundancy from such high dimensionality 

 d = 1260). It is worth noting that the partial sequence refers to 

ariable number of consecutive follow up MRIs and did not con- 

ider necessarily missing MRIs or variable time sampling of the 

ollow up MRIs. In our experiment, we only selected all subjects 

ollow up MRI scans every 6 months from ADNI dataset. 

.2. Train Partial Sequences Using Classic SVM Model 

We divide all morphological features extracted from the partial 

mage sequences into two groups: positive sample set for MCI-C 

ubjects and negative sample set for MCI-NC subjects. To recognize 

he longitudinal patterns involved in AD conversion, the naive way 

s to train a SVM by: 

rg min 

w , c , ∈ 
1 
2 ‖ 

w ‖ 

2 
2 + 

η
2 

∑ 

n 

∑ 

b 

∈ 

2 , 

. t. ∀ n, b, 

⎧ ⎨ 

⎩ 

f 

(
�

(
X 

n 
b 

)+ ) ≥ 1 − ∈ 

f 

(
�

(
X 

n 
b 

)−)
≤ −1+ ∈ 

, 
(1) 

here f ( �( X 

n 
b 
) ) = w 

T �( X 

n 
b 
) + c is a linear detection score func- 

ion, w is the support weight vector for separating MCI-C group 

nd MCI-NC group, c is the bias term to normalize the data distri- 

ution to zero mean, η is a scalar balancing the regularization term 

nd loss term, ∈ > 0 is the slack variable which compensates 

or the classification errors. The intuition behind two constraints 

n Eq. (1) is that the detection score f ( �( X 

n 
b 
) ) for morphological 

attern from each MCI-C subject is encouraged to be greater than 

 while the detection score f ( �( X 

n 
b 
) ) for morphological pattern 

rom MCI-NC subject is smaller than −1. Therefore, the MCI-C and 

CI-NC groups are separated with a minimal margin of 2 
| | w | | . In 

rder to make the optimization adaptive to data distribution, we 

o one step further to jointly estimate the support vector w , slack 

ariable ∈ , and the bias term c . 

.3. Long range early diagnosis by temporal structured SVM 

It is clear that there are strong temporal structural correlations 

long partial image sequences in each subject. However, the naive 

VM solution shown in Eq. (1) treats each partial sequence equally 

nd completely ignores the structural correlations. Thus, it is in- 

vitable to have unrealistic inconsistent detection scores for MCI-C 

ubject in the AD progression, although the structural change and 

D progression are normally regarded as nonreversible. To alleviate 

his problem in the classic SVM method, we propose the following 

emporal structured-SVM method to achieve long range early di- 

gnosis by leveraging the monotonicity of AD conversion risk, as 

escribed below. 

.3.1. Align spatial-temporal feature representations based on AD 

rogression stage 

The partial image sequences extracted from each MCI-C sub- 

ect cover different periods of AD progression which have different 

mpact in recognizing the onset of AD symptom. To that end, we 

onsider such impact is related with the AD progression stage τ n 

or subject n . Specifically, τ n is defined by (1) determining the ac- 

ual time point of AD conversion in each MCI-C subject (the first 

ime point that the MCI-C subject has been clinically diagnosed as 

D, shown by the red line in Fig. 1 (b) tracing backward or for- 

ard to the last time point in each partial image sequence such 

hat the time offset toward the time point of AD conversion indi- 

ates the progression stage τ n . Specifically, τn = 0 represents the 
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Fig. 2. Comparison of classic SVM and our temporal structured-SVM. The classic 

SVM treats each partial image sequences equally, even from the same subject. Since 

no temporal constraint is used in training classic SVM, the detection scores of clas- 

sical SVM for MR image sequence are inconsistent along time as shown in (a). Our 

TS-SVM measures the impact of each partial image sequence based on the AD pro- 

gression stage. Since our TS-SVM fully utilizes temporal consistency heuristics, the 

detection score of TS-SVM for MR image sequence is much more consistent than 

classic SVM as shown in (b). 
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xact time point diagnosed as AD. Negative stage degree denotes 

he time period prior to AD conversion and the positive stage value 

epresents the time period after AD converting. We treat all partial 

equences from MCI-NC subjects equally in the training stage just 

s conventional SVM method since the actual AD converting time 

s unknown yet. 

.3.2. Temporally structured support vector machine 

After we associate the positive training samples with AD pro- 

ression stage and align them based on subject-specific AD convert 

ime, the energy function of our TS-SVM is defined as: 

rg mi n w , c , ∈ 1 2 ‖ w ‖ 2 2 + 

η
2 

∑ 

n 

∑ 

b 

∑ 

a 
∈ 

2 

. t. ∀ n, b, a, 

×

⎧ ⎨ 

⎩ 

f 

(
�

(
X 

n 
b 

)+ ) ≥ 1 − ∈ & f 

(
�

(
X 

n 
b 

)+ ) ≥ f 
(
�( X 

n 
a ) 

+ ) + �
(
τ n 

a , τ
n 
b 

)

f 

(
�

(
X 

n 
b 

)−)
≤ −1+ ∈ 

(2) 

here τ n 
a , τ

n 
b 

are the AD progression stage parameters for partial 

equences X 

n 
a and X 

n 
b 

from subject n . �( τ n 
a , τ

n 
b 
) denotes the mar- 

in parameter which reflect detection score temporal changes be- 

ween different partial sequences X 

n 
a and X 

n 
b 
. �(.) can be any ar- 

itrary non-negative function, and in general, it should be a non- 

ecreasing function in (0 , 1]. For simplicity, we use the following 

inear function: 

(
τ n 

a , τ
n 
b 

)
= 

(
τ n 

a − τ n 
b 

)
max ( τ ) − min ( τ ) 

, (3) 

here max ( τ ) is the maximum value of τ in all training data and

in ( τ )is the minimum value of τ in all training data. Compared to 

he classic SVM in Eq. (1) , our TS-SVM treats the partial sequences 

 

n 
b 

and X 

n 
a ( a < b ) adaptive to the AD progression. The detection

core f ( �( X 

n 
b 
) + ) is constrained to be higher than f ( �( X 

n 
b 
) + ) by a 

argin �( τ n 
a , τ

n 
b 
) . As a result, the detection score is constrained to 

ncrease monotonically with the AD progression stage for each sub- 

ect as shown in Fig. 1 (b). We treat partial image sequences from 

CI-C and MCI-NC groups differently in training stage. Specifically, 

e keep using the same set of morphological features of MCI-NC 

roup as negative training samples. However, we did not apply the 

emporal consistency constraints on the MCI-NC subjects since we 

o not have enough information on the AD progression of those 

CI-NC subjects. Therefore, we treat those partial sequences from 

CI-NC subjects equally just as classic SVM. It is worth noting that 

uch monotonicity constraint is only used in the training stage to 

eek for the more reasonable hyperplanes in support vector ma- 

hine. In the testing stage, we apply the same TS-SVM to unseen 

mage sequences and predict the risk of AD conversion. 

The benefit of our TS-SVM in AD early detection is illustrated in 

ig. 2 . Given the morphological features extracted from the partial 

mage sequences, classic SVM trains the partial sequences at differ- 

nt AD progression stage equally, which leads to inconsistent de- 

ection score along with the AD progression as shown in Fig. 2 (a). 

n the contrary, our TS-SVM can leverage a sequence of mono- 

onically increasing detection scores on positive samples to guide 

he optimization detection score function f ( �( X 

n 
b 
) + ) such that the 

etection scores with each MCI-C subject can consistently increase 

s AD pathology progresses as shown in Fig. 2 (b). As an additional 

euristics, the monotonicity constraint eventually enhance the ca- 

ability of early AD detection. Our TS-SVM is able to find a better 

yper-plane which assign higher detection score for MCI convert- 

rs at early stage. Therefore, our method is more sensitive to early 

D onset. 
4 
.4. Joint Feature Selection for Early AD Diagnosis 

Since the morphological features are in high dimension, feature 

election is a standard procedure to remove the data redundancy 

 Zhu et al., 2020 ; Zhu et al., 2017 ; Zhu et al., 2014 ; Zhu et al., 2016 ;

hu et al., 2019 ). Usually feature selection is independently applied 

rior to train the classifiers. In order to make the selected best fea- 

ures eventually optimal for using TS-SVM, we proposed to jointly 

elect best features and train the classifiers by further introducing 

 L 2 , 1 norm for group-wise sparsity on the classification vector w : 

rgmi n w , c , ∈ 1 2 ‖ w ‖ 2 , 1 + 

η
2 

∑ 

n 

∑ 

b 

∑ 

a 
∈ 

2 , 

. t. ∀ n, b, a, 

×

⎧ ⎨ 

⎩ 

f 

(
�

(
X 

n 
b 

)+ ) ≥ 1 − ∈ & f 

(
�

(
X 

n 
b 

)+ ) ≥ f 
(
�( X 

n 
a ) 

+ ) + �
(
τ n 

a , τ
n 
b 

)

f 

(
�

(
X 

n 
b 

)−)
≤ −1+ ∈ 

(4) 

here the group-wise sparsity constraint on w selects a small 

umber of features which are effective to suppress noisy patterns 

nd reduce redundancy. Here the group sparsity strategy con- 

trains that each ROI is either selected or discarded for all feature 

easurements (GM, WM, CSF, Background and Jacobian value). The 

earned w can be regarded as both a classifier for classification and 

 coefficient matrix for supervised feature selection because, first, 

 2 , 1 norm minimizes the energy for w , so that the classification 

argin 

2 
| | w | | is maximized; secondly, L 2 , 1 norm selects discrimina- 

ive ROIs separating MCI-C and MCI-NC groups to remove the re- 

undant features. Therefore, our TS-SVM model turns into a simul- 

aneous supervised feature selection and classification scenario. 

.5. Optimization 

Although Eq. (4) is a convex problem, it is hard to optimize 

t directly due to a large number of linear inequality constraints. 

o solve this problem efficiently, we reformulate it as an uncon- 
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trained problem which falls into the framework of Alternating 

irection Method of Multipliers (ADMM) ( Boyd et al., 2011a , b ; 

ie et al., 2014 ). 

.6. Long range early detection of ad on longitudinal image sequence 

In the application stage, we assume subjects keep taking the 

ongitudinal MR image scans. For each subject, we can apply the 

earned TS-SVM after the first follow-up scan. At each time point, 

ur AD detection/prediction process consists of two main steps, (1) 

stimate the AD conversion score using currently all available lon- 

itudinal information, and (2) analyze the risk of AD based on the 

istorical prediction scores. The detail of each step is given below. 

• Step 1. Estimate the AD convert score. Suppose that the lon- 

gitudinal image sequence Z = [ Z 1 , Z 2 , · · · , Z T z ] currently has T z 
longitudinal scans so far. The estimation of AD convert score 

consists of two steps: (1.a) Extract the longitudinal features 

�( Z ) from longitudinal image sequence Z ; (1.b) Compute the 

AD convert score by letting f ( w 

T �( Z )) . 
• Step 2. Analyze AD risk and early alarm of AD conversion. 

There are two criteria to trigger the alarm of AD convert: (1) 

the AD convert score γT z is higher than 1, i.e., γT z > 1 ; and 

(2) the increase of from previous AD convert score γT z −1 (us- 

ing [ Z 1 , Z 2 , · · · , Z T z −1 ] ) to current AD convert score γT z is greater 

than another threshold h , i.e., γT z − γT z −1 > h (h > 0) . We la-

bel the test subject as MCI-C cohort only if the trajectory of 

AD convert scores matches both two above criteria. Otherwise, 

we record the current AD convert score γT z and wait for the 

future MR scan. It is worth noting that the threshold h can 

be learned on a validation fold (completely separate from both 

training and testing dataset) by exhaustive search. 

. Experiments 

.1. Subject information 

In this paper, 151 subjects in total are selected from ADNI 

ataset for performance evaluation, which consists of 70 MCI- 

 and 81 MCI-NC subjects. Detailed demographic information is 

ummarized in Table 1 . Based on the statistics of phenotype data 

e.g., Mini-Mental State Examination (MMSE) score), it is clear that 

he phenotype data is not sufficient to distinguish MCI-C and MCI- 

C subjects. MMSE is a clinical score used broadly in clinical and 

esearch to measure cognitive impairment. The range of MMSE is 0 

o 30. The cutting off point of MMSE for AD is < 25, MCI is 25-27,

ormal control is 28-30. Among all longitudinal subjects, the dis- 

ribution of the number of longitudinal scans is shown in Fig. 3 (a) 

here most of subjects have at least 5 follow-up scans (exclud- 

ng baseline scan). Specifically, we further inspect the duration be- 

ween baseline scan and AD conversion in 70 MCI-C subjects. As 

hown in Fig. 3 (b), the AD convert occurs randomly after the base- 

ine scan in our MCI-C training subjects. 

.2. Image processing 

We downloaded raw digital imaging and communica- 

ions in medicine (DICOM) MRI scans from the ADNI website 
Table 1 

Demographic information of the MCI-C and MCI-NC

Female/Male Age MMS

MCI-NC 56/25 75.93 ± 6.41 26.6

Befo

MCI-C 52/18 74.70 ± 4.75 26.5

5 
ttp://www.adni-info.org/ . All MR images have been reviewed for 

uality, and automatically corrected for spatial distortion caused 

y gradient nonlinearity and bias field inhomogeneity. The data 

re 1.5 T MRI data and all from ADNI1. 

As displayed in Fig. 4 , image processing was conducted by the 

ollowing steps: 

(1) Anterior commissure-posterior commissure correction using 

MIPAV software for all images; 

(2) Correct intensity inhomogeneity using N4 bias correction al- 

gorithm ( Tustison et al., 2010 ); 

(3) Extract brain using a robust skull-stripping method 

( Fennema-Notestine et al., 2006 ); 

(4) Image segmentation by using the FAST program in FSL pack- 

age ( Zhang et al., 2001 ) to obtain the whole brain tissue seg- 

mentation of GM,WM, and CSF; 

(5) Parcellate whole image into 90 regions of interest (ROIs) 

by registering the AAL template ( Kabani et al., 1998 ) 

(with manually labeled 90 ROIs) to each longitudinal im- 

age sequence via a longitudinal image registration method 

( Wu et al., 2012 ); 

Calculate the tissue percentages of the GM, WM, CSF, back- 

round and the mean Jacobian values of displacements (estimated 

n Step 5) for each ROI. 

.3. Experiments setup 

.3.1. Counterpart methods under comparison 

We compare our proposed TS-SVM based early detection 

ethod with classic SVM which is referred as SVM in the follow- 

ng experiments. Furthermore, we evaluate the impact of feature 

election in both classic SVM and our TS-SVM, which are referred 

s SVM + FS and TS-SVM + FS, respectively. We use two types of data

or the classic SVM method with L 2 , 1 feature selection penalty. 

irstly, we apply single MR images to classic SVM with joint fea- 

ure selection (denoted as SVM-S & SVM-S + FS); then, the novel 

xtracted partial sequences are applied to SVM and joint feature 

election (denoted as SVM-P & SVM-P + FS). It is worth noting that 

he partial sequences enables the classic SVM model be trained 

or different MR images automatically. Therefore, the early detec- 

ion performance of classic SVM model using partial MR image se- 

uences are improved a lot compared with using multiple MR im- 

ges because it is trained for recognizing small partial sequences 

rom different AD progression stage. Furthermore, we also selected 
 subjects. 

E 

7 ± 3.69 

re diag. diagnosed After diag. 

7 ± 2.86 26.71 ± 3.14 26.85 ± 4.26 

http://www.adni-info.org/
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Fig. 4. The images pre-processing and feature extraction step 

Table 2 

Accuracy of AD detection at 6 and 0 months earlier than AD clinical diagnosis for the MCI-C subjects 

who converted to AD in 18 months after baseline scan. 

Method 18 Months Earlier 12 Month Earlier 6 Months Earlier 0 Months Earlier 

ACC AUC ACC AUC ACC AUC ACC AUC 

SVM-S - - - - 0.6653 0.7153 0.6826 0.7241 

SVM-S + FS 0.6713 0.7175 0.6943 0.7382 

SVM-EP - - - - 0.6821 0.7336 0.6924 0.7315 

SVM-EP + FS 0.6961 0.7452 0.7065 0.7482 

SVM-P 0.7110 0.7612 0.7345 0.7937 

SVM-P + FS - - - - 0.7557 0.7862 0.7735 0.8237 

TS-SVM - - - - 0.8816 0.9327 0.8975 0.9431 

TS-SVM + FS - - - - 0.9025 0.9649 0.9075 0.9776 
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 dataset with the partial sequences extracted from baseline to the 

arly detection time scans by our TS-SVM method. We use this 

ataset to train classic SVM model with feature selection (denoted 

s SVM-EP & SVM-EP + FS). This is to evaluate the importance of 

he earliest detection time scans for classic SVM model. 

.3.2. Evaluation measurements 

We use several quantitative measurements to evaluate not only 

he classification accuracy but also the early detection range AD 

onversion. Besides the widely used Accuracy (ACC), Sensitivity 

SEN) and Specificity (SPEC), we also employ F1-score which is 

efined as the harmonic mean of precision and recall values 

 Hoai et al., 2011 ; Hoai and Torre, 2014 ; Huang et al., 2014 ): 

 1 − scor e = 

2 P r ecision × Recall 

P r ecision + Recall 

Where P recision = # 

T ruePositi v e 
# T rueP ositi v e +# F alseP ositi v e and Recall = 

# T ruePositi v e 
# T ruePosit i v e +# F alseNegat i v e , # T ruePositi v e represents the number 

f accurately detected positive samples (MCI-C), # F alseNegati v e 
epresents the number of positive samples which are not detected, 

 T rueNegati v e represents the number of negatives which are 

lassified correctly and # F alseNegati v e represents the number of 

egative samples which are not assigned with correct labels by 

ur classifier. Of note, high F 1 − score indicates not only better 

erformance in AD early detection but also the Precision and 

ecall are well balanced. We report the F1-score of our method 

ompared with competing methods with respect to early detection 

ime in order to show all competing methods dynamically. 

.3.3. Parameter selection 

We used ten-fold cross-validation strategy to evaluate the clas- 

ification performance. In all experiments, we split the data into 

0 non-overlap folds, where one fold is used as the testing data 

nd the remaining nine folds are used for training at each time. 

e repeat the whole process for ten times to avoid any possible 
6 
ias caused by dataset partition. The final classification accuracy 

s reported by averaging the classification results from cross vali- 

ations. To learn the best parameters, we use five-fold inner cross 

alidation strategy. We spilt the training data into five non over- 

ap folds and use one fold data as the parameter validation data. 

he parameters are tuned using grid search strategy in the valida- 

ion dataset (completely separated from testing dataset and train- 

ng dataset). 

.4. Performance evaluation on AD early detection 

In each cross validation case, we train our TS-SVM on the train- 

ng data and sequentially apply the trained classifier to the testing 

ubject image sequence after the first follow-up. Since the month 

f converting to AD after baseline scans varies across MCI-C sub- 

ects, we show the detection Accuracy (ACC) and Accuracy Under 

OC curve (AUC) for MCI-C subjects converting to AD in 18 months, 

4 months, and 30 months after the baseline scan in Tables 2–

 , respectively. It is clear that the SVM-P (partial MR images se- 

uences) achieves highest accuracy compared to SVM-S (single MR 

mages) and SVM-EP (earliest partial MR image sequences by TS- 

VM). The partial sequences enable the SVM-P to recognize dy- 

amic structure changes at any scanning time or AD progression 

tage. Therefore, SVM-P is more sensitive to different dynamic 

tructure changes involved in AD progress. Our TS-SVM outper- 

orms the SVM-P with more than 10% improvement in terms of 

CC, which suggests the advantage of using temporal consistency 

nd monotony constraints in our proposed method. Also, feature 

election is very important to improve the detection accuracy. In 

verage, our full method (TS-SVM + FS) can detect AD 6 months ear- 

ier than clinical diagnosis with 86.76% accuracy, 12 months earlier 

han clinical diagnosis with 82.5% accuracy, and 18 months earlier 

han clinical diagnosis with 76.53% accuracy. 

Furthermore, Fig. 5 shows the F1-scores in long-range early de- 

ection, short-range early detection, and AD diagnosis applications 

y four AD early detection competing methods: SVM-P, SVM-P + FS, 
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Table 3 

Accuracy of AD detection at 12, 6 and 0 months earlier than AD clinical diagnosis for the MCI-C sub- 

jects who converted to AD in 24 months after baseline scan. 

Method 18 Months Earlier 12 Month Earlier 6 Months Earlier 0 Months Earlier 

ACC AUC ACC AUC ACC AUC ACC AUC 

SVM-S - - 0.6285 0.6634 0.6324 0.6782 0.6805 0.7215 

SVM-S + FS 0.6325 0.6702 0.6573 0.6923 0.6951 0.7411 

SVM-EP - - 0.6452 0.6837 0.6612 0.7024 0.6923 0.7351 

SVM-EP + FS 0.6535 0.6921 0.6761 0.7155 0.6987 0.7438 

SVM-P - - 0.7325 0.7822 0.7455 0.7917 0.7535 0.8223 

SVM-P + FS - - 0.7537 0.7912 0.7685 0.8123 0.7725 0.8314 

TS-SVM - - 0.8425 0.8851 0.8593 0.9042 0.8635 0.9128 

TS-SVM + FS - - 0.8475 0.8932 0.8720 0.9277 0.8812 0.9216 

Table 4 

Accuracy of AD detection at 18, 12, 6 and 0 months earlier than AD clinical diagnosis for the MCI-C 

subjects who converted to AD in 30 months after baseline scan. 

Method 18 Months Earlier 12 Month Earlier 6 Months Earlier 0 Months Earlier 

ACC AUC ACC AUC ACC AUC ACC AUC 

SVM-S 0.5534 0.5913 0.5541 0.5953 0.5954 0.6315 0.6152 0.6551 

SVM-S + FS 0.5672 0.6127 0.5723 0.6157 0.6053 0.6421 0.6356 0.6735 

SVM-EP 0.5623 0.6034 0.5716 0.6125 0.6039 0.6452 0.6241 0.6645 

SVM-EP + FS 0.5742 0.6151 0.5821 0.6261 0.6145 0.6603 0.6365 0.6803 

SVM-P 0.6016 0.6542 0.6025 0.6677 0.6325 0.6712 0.6515 0.6931 

SVM-P + FS 0.6557 0.6862 0.6735 0.6127 0.6675 0.6983 0.6464 0.6926 

TS-SVM 0.7345 0.7734 0.7675 0.8116 0.7805 0.8334 0.7875 0.8503 

TS-SVM + FS 0.7653 0.7983 0.8125 0.8434 0.8345 0.8672 0.8431 0.8894 

Fig. 5. Averaged F1-score in AD diagnosis, short-range early diagnosis, and long- 

range early diagnosis by SVM-P (Magenta) and SVM-P + FS (green), our TS-SVM 

(blue) and our full method TS-SVM + FS (red). The SVM-P + FS (green) achieves best 

performance for classic SVM models. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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S-SVM, TS-SVM + FS. We only show the performance of SVM-P 

ince it achieves best performance among the above competing 

ethods using classic SVM. As displayed in the bottom of Fig. 5 , 

D diagnosis at clinical onset uses the longest longitudinal image 

equence (baseline to clinical diagnosis time). In this scenario, our 

ethod can be used to provide imaging-based validation in clinical 

ractice. On the contrary, long-range early diagnosis uses shortest 

ongitudinal image sequence and detect early AD onset 12 months 

r 18 months earlier than the clinical diagnosis time. The accuracy 

f long-range early diagnosis is lower than short range early de- 

ection since less longitudinal images are used. However, our AD 

arly detection method (TS-SVM + FS) can achieve F1-score = 0 . 720 

8 months prior to clinical diagnosis time. This is comparable to 
7 
he performance of classic SVM-P + FS at AD clinical diagnosis time 

F1-socre = 0 . 725). 

.4.1. Discussion 

We found that high detection performance is achieved in de- 

ecting AD 6-12 months prior to AD conversion time, but the per- 

ormance drops dramatically in detecting AD for longer periods 

rior to AD conversion time. One explanation for this decrement 

n detection performance is bias inherent in the longitudinal data 

e used. In this dataset, for subjects that converted to AD after 

-12 months from the baseline scan, we have 2 or 3 follow up 

ime points, therefore, there were enough follow ups in the train- 

ng data for the detector. However, for MCI subjects that converted 

o AD 18 months from the baseline scan, there was only one fol- 

ow up. Due to the lack of follow-up data points for these sub- 

ects, the training data is severely biased. We believe that if enough 

ollow-ups are provided for subjects that convert to AD after 18 

onths since the baseline scan, the performance of TS-SVM will 

mprove. 

In our full method (TS-SVM + FS), there is only one regular- 

zation parameter η ( Eq. (3) ) which balances the sparsity of the 

earned support vector w and the inequality constraints. It is worth 

oting that other important parameters such as adaptive margin 

( b ) and training classification error ɛ are optimized in the train- 

ng stage. Here we evaluate the sensitivity of parameter in AD early 

etection. Specifically, we set the value for η from 0.01 to 50.0 and 

valuate the classification accuracy on the validation dataset. Fig. 6 

hows the detection accuracy vs. the value of parameter η with 

ifferent detection ranges. It is straightforward to determine the 

ptimal parameter η = 0 . 1 which is very consistent in either short 

erm or long term early detection applications. 

Another important parameter related to temporal dynamics in 

D progression is h. A large value of h indicates individual is de- 

eloping from MCI/NC to AD quickly. It is especially important for 

arly AD diagnosis. We set the optimal value for h based on an 

ndependent validation dataset. We show the detection accuracy 

s. the value of parameter h in Fig. 7 computed on our validation 
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Fig. 6. The valuation of parameter sensitivity for variable η which balances the 

sparsity constraint and inequality constraints in Eq. (4) . 

Fig. 7. The valuation of parameter sensitivity for variable h for evaluate the mono- 

tonicity of testing subjects. 

Fig. 8. The cost function values vs. iteration numbers by TS-SVM and TS-SVM + FS 

methods. 
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Fig. 9. The top 20 selected ROIs by the proposed TS-SVM + FS method which are 

highly involved in early detection of AD progression. We repeat ten-fold cross vali- 

dation for ten times. In each test, we select top 20 ROIs. This figure shows the fre- 

quency of ROIs selected in those ten-fold cross validation. Different color indicates 

different selection frequency. 
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ataset. The optimal value for h in our experiments is set to be 

.01. 

.4.2. Convergence analysis 

We display the averaged convergence curve on the ten cross 

alidation folds of training dataset. All the parameters involved are 

xed using the best value obtained by grid search. Fig. 8 shows the 

onvergence curves by TS-SVM and TS-SVM + FS methods. It can 

e seen that the value of objective functions ( Eq. (2) by TS-SVM 

nd Eq. (3) by TS-SVM + FS) converges after 100 iterations for both 

ethods. 
8 
.5. Depict critical brain regions intensively involved in AD 

rogression 

Since our method jointly selects morphological features during 

raining TS-SVM, it is possible to visualize the predictive impact 

f each brain region by examining the contribution of morpho- 

ogical features computed from each ROI in our early AD detec- 

ion method. Intuitively, the higher the overall weight of the mor- 

hological patterns extracted from a particular brain region, the 

reater role this region has in predicting AD conversion. In Fig. 9 , 

e visualized the top 20 brain regions with largest overall weights 

fter feature selection, which are strongly associated with AD pro- 

ression. The brain regions highlighted include neocortical and par- 

limbic areas (medial/lateral temporal lobe, medial/lateral parietal 

obe, and occipito-frontal cortex) that are selectively affected in AD. 

 few subcortical regions including the hippocampus, caudate nu- 

leus, putamen, and thalamus were also implicated to predict con- 

ersion to AD, likely reflecting striato-thalamic nodes in cortical- 

ubcortical functional networks ( Hoesen et al., 20 0 0 ; Risacher and 

aykin, 2013 ; Risacher and Saykin, 2013 ). 

Furthermore, we separate the training image sequences into 

hree AD conversion groups based on the time course of progres- 

ion: Group 1 (conversion to AD 12 months post-baseline), Group 

 (conversion to AD 18 months post-baseline, and Group 3 (con- 

ersion to AD > 24 months post- baseline). For each group, we ap- 

ly our TS-SVM + FS method separately. The goal of this experiment 

s to investigate the association of each brain region to AD pro- 

ression. We map the contribution of each anatomical region onto 

he brain surface displayed in Fig. 10 , where red and blue denote 

 strong or weak relationship to AD conversion, respectively. Of 

ote, the significance score in each region is measured by the nor- 

alized feature selection weights of all morphological patterns ex- 

racted from the underlying region. It is clear that (1) some subcor- 

ical regions such as hippocampus, putamen, amygdala, and tha- 

amus are always active during AD progression; (2) left and right 

erebral hemispheres are differentially associated with AD progres- 

ion. Due to the limited number of training samples in each group, 

t is difficult to interpret the feature selection results for each brain 

egion in the cortical area. Instead, we examine the impacts of L/R 

rontal lobe, L/R parietal lobe, L/R temporal lobe, and L/R occipital 

obe, respectively. We display the most active lobe in Fig. 11 , the 

elected top four lobes are colored by light blue and other regions 

re colored by gray. As displayed in Fig. 11 , it is clear that selective

emporal lobe changes are the primary locus associated with ear- 

ier AD conversion, whereas the occipital lobe is relatively spared 

n early AD converters. However, over longer observation periods 
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Fig. 10. Visualization of impacts of each brain region in AD progression. We color-code all ROIs by their respective selected frequency in our experiments at different AD 

progression stage: 18 Months, 12 Months and 6 Months before AD conversion. (red: high impact; blue: low impact). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Visualization of impacts of each brain lobe in AD progression. The light blue 

colored lobes are the top selected lobes. We show the top four selected lobes at 

different AD progression stage. At the early AD progression stage (18 Months before 

converting to AD) the temporal lobes, partial lobe and the frontal lobe are selected; 

The occipital lobe and the temporal lobe are selected at the late AD progression 

stage (i.e. 6 Months before convert to AD). (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 12. The performance of AD early diagnosis in the real clinic setting where we 

use no more than three follow-up MR scans including baseline scan. 
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 > 12 months), the relative weights of temporal and occipital lobe 

nvolvement in conversion to AD begin to converge. 

.5.1. Discussion 

Our novel analytical method robustly detects AD at time points 

 or 12 months prior to conversion from MCI. By contrast, per- 

ormance for predicting conversion drops markedly at 18 months. 

ne reason for this drop-off in performance is an inherent bias in 

he ADNI dataset. Whereas subjects converting to AD at 12 or 18 

onths from baseline had three or four follow-up scans, the ma- 

ority of MCI subjects that converted to AD 24 months out from 

aseline scan had only one subsequent scan. This difference in 

vailable training data imposes a significant limitation. We believe 

hat the performance of our TS-SVM can be improved by having 

ata from more time points. Our current work only uses single- 

odality data to classify MCI converters from MCI non-converters 

ith accuracy > 80% using two MR images. We believe that perfor- 

ance can be significantly improved if this model can be trained 

sing multiple modality data. Furthermore, in real-world clinical 

pplications, our method would have to account for more groups 

han just MCI converters and MCI non-converters, the binary clas- 

ification approach used in this study. Future work will explore the 
9 
ultiple-class classification problem to make this method suitable 

or real clinical applications. 

.6. Performance evaluation in the real clinic setting 

In the previous experiments, we do not consider the factor of 

umber of MR scans used in early diagnosis, as show in Tables 2–

 . However, in general clinical practice, it is very different to have 

lderly people scanned more than three times, even on a yearly ba- 

is. Hence, we specifically report the prediction accuracy in terms 

f alarm window and number of MR images. As shown in Fig. 12 ,

he prediction accuracy consistently increases when more longitu- 

inal MR scans are used for prediction. Our early diagnosis method 

s able to predict AD conversion 12 months ahead of clinic di- 

gnosis with 81.75% accuracy using just two follow-up MR scans, 

hich indicates the realistic potential to apply our computer as- 

isted early diagnosis method to the clinic arena. 

.7. Performance evaluation of our method with demographic and 

linical data included 

Although the focus of our work is to show that the temporal 

orphologic structure changes captured in longitudinal MR im- 

ges are discriminative biomarkers for identifying the MCI sub- 
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Table 5 

Accuracy of AD diagnosis including gender, education, APOE 4, APOE2, age and baseline cognitive score (MMSE) by our 

method, at 24, 18, 12, 6 and 0 months earlier than AD clinical diagnosis for the MCI-C subjects with 0, 1, 2, 3 and 4 MR 

Images including baseline scan. 

Early Diagnosis Time 4 MR Images 3 MR Images 2 MR Images 1 MR Images 0 MR Images 

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC 

0 months earlier 0.952 0.962 0.931 0.953 0.914 0.928 0.843 0.862 0.772 0.787 

6 month earlier 0.931 0.949 0.916 0.925 0.895 0.911 0.812 0.824 0.755 0.762 

12 month earlier 0.905 0.917 0.887 0.903 0.872 0.893 0.772 0.793 0.731 0.753 

18 month earlier 0.873 0.891 0.862 0.879 0.854 0.862 0.750 0.762 0.712 0.728 

24 month earlier 0.854 0.865 0.839 0.851 0.822 0.831 0.735 0.747 0.681 0.713 
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ypes: MCI converters vs. MCI non-converters, the AD risk factors 

n demographic data should not be ignored. Our model is very 

exible to combine this demographic information to improve the 

erformance. In this section, we add the AD risk factors including 

ender, education level, date of birth, APOE4 allele count (a gene 

hich increases the risk for AD), APOE2 allele count (a gene which 

nhances neuroprotection against AD) as the input feature of our 

odel ( Altmann et al., 2014 ; Chiang et al., 2010 ).Similarly, we use

0-fold cross-validation strategy and vary the available MR Images 

2, 3, 4) for testing subjects. Table 5 shows the mean AD diagnosis 

ccuracy with 0, 1 (baseline), 2, 3 and 4 MR images available at 0, 

, 12, 18, 24 months before clinical onset time. The demographic 

ata increases the performance of our method substantially. For 

xample, with 2 MR images, we can predict AD 12 month earlier at 

he accuracy of 87.2%, which increases about 10% compare to our 

odel trained on MR images only. The improved model can predict 

D 24 months earlier than clinical diagnosis time with accuracy of 

3.1%. 

We added the results of our model using only the demographic 

ata (gender, education, age) and genomics data: APOE2, APOE4 as 

ne of our baseline model show in Table 5 (0 MR Image). We also

dd the results on using only one baseline MR image along with 

ll demographic data and APOE2, APOE4 as shown in Table 5 (1 

R image). With only the demographic and gene data, our model 

hows accuracy at 68.1% to predict the AD 24 month earlier than 

linical diagnosis time (drops about > 4.5%) compared to using 1 

R image. With only baseline MR image, our model shows accu- 

acy at 73.2% (decreased > 8% compared to using 2 MRI scans) to 

redict AD 24 months before clinical diagnosis time. 

This result in Table 5 demonstrated that the neuroimaging fea- 

ures are very important for the prediction of AD. It has been 

hown by neuroscientist that the brain structure starts to change 

rom normal to abnormal first during the AD developing process 

 Jack Jr. et al., 2010 ). The memory and cognitive ability starts 

o changes to abnormal after the brain structure changing. Since 

he neuroimaging data (MRI) can capture the brain morphological 

tructures and clinical test only capture the cognitive and memory 

bility changes, the neuroimaging data will capture the early brain 

hanges than cognitive test. Therefore, using neuroimaging data are 

ore informative than cognitive test especially for early AD diag- 

osis. Furthermore, with two MRI scans compared to one MRI scan, 

ur model shows a large improvement ( > 8%) on early AD predic- 

ion, which demonstrated that the longitudinal/temporal morpho- 

ogical structures measured by MRI scan is a crucial biomarker for 

uccessful AD prediction (early diagnosis). 

.7.1. Discussion 

This is an extended work of the paper ( Zhu et al., 2016 ;

hitwell et al., 2008 ), we have extended the paper in several as- 

ects: Firstly, we analysis the structural SVM with temporal mono- 

onicity constraints with more details on F1 score of AD prediction 

t different time frame (18, 12, 6 months before clinical diagno- 

is time), optimization, parameter sensitivity and algorithm con- 

ergence. Secondly, we also added more detail information on the 
10 
ataset such as the distribution of visiting number, disease status 

NC, MCI converter, MCI non-converter and AD) and clinical scores. 

hirdly, we add the demographic information and genetic data as 

he input of our model and show that it can consistently improve 

D diagnosis and prediction performance. Fourthly, we analyzed 

he selected brain regions by our model in right and left brain at 

ifferent time (6 months, 12 months and 18 months before clini- 

al diagnosis time). At last, we discussed the scenario of applying 

his method in clinical practice and show the prediction accuracy 

t different disease stage (12, 6 and 0 months before clinical di- 

gnosis) with different number (2, 3, 4) of longitudinal MRI scans 

vailable. 

. Conclusion 

In this paper, we present a novel method for predicting con- 

ersion from MCI to AD using a minimal number of MR images 

2 MR images) based on a Temporally Structural-SVM (TS-SVM) 

nd joint feature selection framework. In order to allow our model 

o accommodate fewer MR images during the testing process, we 

xtract different length partial MR image sequences at different 

ime points for each subject in the training data. Furthermore, 

o avoid inconsistent and unrealistic detection results, we enforce 

onotony on the output of SVM since AD progression is generally 

nexorable ( Durrleman et al., 2009 ). In order to achieve early alarm 

f the onset of AD symptom, we propose to constrain the score 

f MCI converters to increase monotonically with AD progres- 

ion (more follow-up scans are examined). Furthermore, we jointly 

erform feature selection and classification of TS-SVM, yielding 

romising results in terms of MCI-converters/MCI-Non-Converters 

lassification accuracy using a lower number of MR images com- 

ared to the standard SVM approach. 
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ppendix 

ptimization 

Eq. (4) is a special case of convex problem with global min- 

mum since the objective function is a semi-positive definite 

uadratic problem with linear constraints. However, it is hard to 

ptimize Eq. (4) directly due to the large number of linear in- 

quality constraints (several inequality constraints for each subject 
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n the training data). To solve this problem efficiently, we intro- 

uce the hinge loss function to measure the error of inequality 

onstraints ( Hoai et al., 2011 ; Hoai and Torre, 2014 ; Huang et al.,

014 ), a dummy variable v to separate the group sparsity con- 

traint from other inequality constraints and use the Alternating 

irection Method of Multipliers (ADMM) ( Boyd et al., 2011a ) to re- 

ove the inequality constraints. Now, we reformulate it as an un- 

onstrained convex problem by rewriting Eq. (4) as, 

rgmi n w , c , ∈ 
1 

2 
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a , τ
n 
b 
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h 
, (5) 

here ||.|| h is a hinge loss function used to measure the er- 

or of inequality constraints with the quadratic loss: ‖ x ‖ h = 

 max ( 0 , x ) ‖ 2 2 , μ is the penalty parameters for the constraint 

 = v and λ is the Lagrange Multiplier for the equality constraint 

 = v . 

Eq. (5) can be solved by alternatively updating the gradient of 

he overall energy function with respect to w, v , ∈ and c until the

verall energy function converges. The Lagrange parameters λ and 

he penalty parameter μ can be estimated in the iteration. At k-th 

teration, the Lagrange Multiplier λ and penalty parameter μ are 

pdated as: λk = λk −1 + μk −1 ( w k −1 − v k −1 ) , μk = μk −1 ρ, where 

is a learning step parameter usually set to be slightly more than 

. In this way, the penalty value μ for equality constraint is in- 

reased gradually in each iteration. We set ρ = 1 . 1 in our experi- 

ent. 
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