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Recent studies on AD/MCI diagnosis have shown that the tasks of identifying brain disease and predicting clinical
scores are highly related to each other. Furthermore, it has been shown that feature selection with a manifold
learning or a sparse model can handle the problems of high feature dimensionality and small sample size.
However, the tasks of clinical score regression and clinical label classification were often conducted separately
in the previous studies. Regarding the feature selection, to our best knowledge, most of the previous work
considered a loss function defined as an element-wise difference between the target values and the predicted
ones. In this paper, we consider the problems of joint regression and classification for AD/MCI diagnosis
and propose a novel matrix-similarity based loss function that uses high-level information inherent in the
target response matrix and imposes the information to be preserved in the predicted response matrix.
The newly devised loss function is combined with a group lasso method for joint feature selection across tasks,
i.e., predictions of clinical scores and a class label. In order to validate the effectiveness of the proposed method,
we conducted experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, and showed that
the newly devised loss function helped enhance the performances of both clinical score prediction and disease
status identification, outperforming the state-of-the-art methods.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Alzheimer's disease (AD) is themost common formof dementia that
often appears in the persons over 65 years old. Brookmeyer et al.
showed that there are 26.6 million AD patients worldwide and 1 out
of 85 people will be affected by AD by 2050 (Brookmeyer et al., 2007;
Fan et al., 2007; Wee et al., 2011). Thus, for timely treatment that
might be effective to slow the progression, it's highly important for
early diagnosis of AD and its early stage, Mild Cognitive Impairment
(MCI). Studies have shown that AD may significantly affect both struc-
tures and functions of the brain (Greicius et al., 2004; Guo et al., 2010;
Wang et al., 2011; Zhang and Shen, 2012). Greicius et al. demonstrated
that the disrupted connectivity between posterior cingulate and
hippocampus led to the posterior cingulate hypometabolism (Greicius
et al., 2004). Guo et al. reported that AD patients exhibited significant
decrease of gray matter volume in the hippocampus, parahippocampal
gyrus, and insula and superior temporal gyrus (Guo et al., 2010).
However, previous imaging studies for the diagnosis of AD employed
either univariate methods or group-comparison methods, thus limiting
their application to disease diagnosis on an individual level (Chu et al.,
2012; Lemoine et al., 2010; Li et al., 2012; Liu et al., 2012;
Salas-Gonzalez et al., 2010; Wee et al., 2012; Zhang et al., 2012; Zhou
et al., 2011).

For the last decades, neuroimaging has been successfully used to
investigate the characters of neurodegenerative progression in the
spectrum between cognitive normal and AD. Particularly, different
modalities provide different kinds of information for helping monitor-
ing AD, e.g., structural brain atrophy by Magnetic Resonance Imaging
(MRI) (De Leon et al., 2007; Du et al., 2007; Fjell et al., 2010; McEvoy
et al., 2009), metabolic alterations in the brain by Positron Emission
Tomography (PET) (Morris et al., 2001; Santi et al., 2001), and patholog-
ical amyloid depositions through CerebroSpinal Fluid (CSF) (Buchhave
et al., 2009; Fjell et al., 2010; Hansson et al., 2006; Seppälä et al.,
2011). It has been shown that the analysis of patterns in neuroimaging
data for AD/MCI diagnosis can be efficiently handled by machine
learning and pattern recognition methods. However, the previous
studies mostly focused on developing classification models for
predicting categorical class labels such as AD, MCI, and healthy Normal
Control (NC). Recently, regression models have also been investigated
to predict clinical scores such as Alzheimer's Disease Assessment
Scale-Cognitive subscale (ADAS-Cog) and Mini-Mental State Examina-
tion (MMSE) from individual MRI and/or PET scans (Cheng et al.,
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1 Please refer to ‘www.adni-info.org’ for up-to-date information.
2 Including 43 MCI converters and 56 MCI non-converters.
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2013; Franke et al., 2010; Stonnington et al., 2010; Walhovd et al.,
2010). For example, Cheng et al. presented a novel semi-supervised
multi-modal relevance vector regression method for predicting clinical
scores of neurological diseases (Cheng et al., 2013); Duchesne et al.
employed linear regressionmodels to estimate one-yearMMSE changes
from structural MRI (Duchesne et al., 2009); Fan et al. and Wang et al.
designed, independently, high-dimensional kernel-based regression
methods to estimate ADAS-Cog and MMSE (Wang et al., 2010).

Unlike those previous studies that focused on only one of the tasks
(Jie et al., 2013; Liu et al., 2014; Suk and Shen, 2013), there have been
also efforts to tackle both tasks simultaneously in a unified framework.
For example, Zhang and Shen proposed a method of joint feature
selection for both disease diagnosis and clinical score prediction, and
showed that the features used for these tasks were highly correlated
(Zhang and Shen, 2012). For better understanding of the underlying
mechanism of AD, our interest in this paper is to predict both clinical
scores and disease status jointly, and herewe call it as a Joint Regression
and Classification (JRC) problem.

For a robust model construction, it has been a long issue in the field
of medical image analysis to filter out uninformative features and to
overcome the small sample size problem. Wang et al. showed that
only a few brain areas (such as medial temporal lobe structures, medial
and lateral parietal, as well as prefrontal cortical areas) may predict
memory scores and thus can be used to discriminate AD from NC
(Wang et al., 2011). Regarding the small sample size problem, in the
diagnosis of AD, the available sample size is usually small, while the
feature dimensionality is high. For example, the sample size used in
(Jie et al., 2013; Liu et al., 2014) was as small as 103 (i.e., 51 AD and
52 NC), while the dimensionality of features (including MRI features
and PET features) was hundreds or even thousands. The small sample
size makes it difficult to build a generalized model, and the high-
dimensional data could lead to the over-fitting issue (Zhu et al., 2012)
although the number of intrinsic features may be low (Weinberger
et al., 2004).

In order to tackle these problems, feature selection has been com-
monly used in the literature. Zhang and Shen embedded an ℓ2,1-norm
regularizer into a sparse learning model for multi-task learning
(Zhang and Shen, 2012). Recent studies on neuroimage-based AD/MCI
diagnosis demonstrated that the consideration of the manifold of the
data can further improve the performance of the feature selection
model (Zhu et al., 2013a, 2013b). Moreover, manifold learning
techniques have been used in the feature selection models for either
regression or classification (Cho et al., 2012; Cuingnet et al., 2011; Jie
et al., 2013; Liu et al., 2013, 2014). Cho et al. adopted a manifold har-
monic transformation method on the cortical thickness data (Cho
et al., 2012). Liu et al. conducted the manifold learning between a
predicted graph and a target graph for AD classification (Liu et al.,
2013), while Jie et al. proposed amanifold regularized multi-task learn-
ing framework to jointly select features from multi-modal data for AD
diagnosis (Jie et al., 2013). To our best knowledge, previous methods
usually first conducted feature selection and then built regression or
classification models for the diagnosis of AD. From a mathematical
standpoint, the previous methods used a loss function defined as sum
of the element-wise difference between target values and predicted
ones, and considered only the manifold of feature observations, not
the manifold of the target variables. Furthermore, none of the previous
methods considered a manifold-based feature selection method for
the JRC problem.

In this paper, we propose a novel loss function that considers a high-
level information inherent in the observations, and combine it with a
group lasso (Yuan and Lin, 2006) for joint sparse feature selection in
the JRC problem. The rationale for our approach is that, compared to
the low-level neuroimaging features, it is less likely for the high-level
clinical label and clinical scores to be contaminated by noises (Zhang
and Shen, 2012). For this reason, we build a more robust model by
taking into account the relational information between high-level
clinical label and clinical scores as well as the relation among samples
in feature selection. This discriminates our method from the previous
methods that considered only the relation among feature samples.
Specifically, we define a loss function as a matrix similarity and impose
the high-level information in the target responsematrix to be preserved
in the predicted responsematrix. For the high-level information,we use
the relations between response samples and the relations between
response variables in a response matrix, each of which we call as
‘sample-sample relation’ and ‘variable–variable relation’. Hereafter,
each column and each row of a matrix denote, respectively, one sample
and one response variable. In our work, a sample in a response matrix
consists of clinical scores and a class label, and each of the clinical scores
or a class label is considered as a response variable. By utilizing these
high-level information inherent in the target response matrix and
imposing them to be preserved in the predicted response matrix, we
define a more sophisticated loss function, which affects feature
selection, and thus enhances the performances of the regression and
classification in AD/MCI diagnosis.

Materials and image preprocessing

For performance evaluation, we use the ADNI dataset publicly
available on the web. The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies, and non-profit organizations. The
main goal of ADNI was designed to test if the serial of MRI, PET, other
biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI and early AD. To
this end, ADNI recruited over 800 adults (aged 55 to 90) to participate
in the research. More specifically, approximately 200 cognitively
normal older individuals were followed for 3 years, 400 people with
MCI were followed for 3 years, and 200 people with early AD were
followed for 2 years.1 The research protocol was approved by each
local institutional review board and the written informed consent was
obtained from each participant.

Subjects

The general inclusion/exclusion criteria of the subjects are briefly
described as follows:

1. TheMMSE score of each healthy subject (a.k.a., Normal Control (NC))
is between 24 and 30. Their Clinical Dementia Rating (CDR) is of 0.
Moreover, the healthy subject is non-depressed, non MCI, and non-
demented.

2. TheMMSE score of eachMCI subject is between 24 and 30. Their CDR
is of 0.5. Moreover, eachMCI subject is an absence of significant level
of impairment in other cognitive domains, essentially preserved
activities of daily living, and an absence of dementia.

3. The MMSE score of each Mild AD subject is between 20 and 26, with
the CDR of 0.5 or 1.0.

In this paper, we use baseline MRI, PET, and CSF data obtained from
202 subjects including 51 AD subjects, 52 NC subjects, and 99 MCI
subjects2. The detailed demographic information is summarized in
Table 1.

MRI, PET, and CSF

We downloaded raw Digital Imaging and Communications in
Medicine (DICOM) MRI scans from the public ADNI website. These
MRI scans were already reviewed for quality, and automatically
corrected for spatial distortion caused by gradient nonlinearity and B1

http://www.adni-info.org


Table 1
Demographic information of the subjects. The numbers in parentheses denote the number
of subjects in each clinical category. (MCI-C: MCI Converters, MCI-NC: MCI Non-
converters).

AD NC MCI-C MCI-C

(51) (52) (43) (56)

Female/male 18/33 18/34 15/28 17/39
Age 75.2 ± 7.4 75.3 ± 5.2 75.8 ± 6.8 74.8 ± 7.1
Education 14.7 ± 3.6 15.8 ± 3.2 16.1 ± 2.6 15.8 ± 3.2
MMSE 23.8 ± 2.0 29.0 ± 1.2 26.6 ± 1.7 28.4 ± 1.7
ADAS-Cog 18.3 ± 6.0 12.1 ± 3.8 12.9 ± 3.9 8.03 ± 3.8
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field inhomogeneity. PET images were acquired 30–60 min post-
injection. They were then averaged, spatially aligned, interpolated to a
standard voxel size, intensity normalized, and smoothed to a common
resolution of 8mm full width at half maximum. CSF data were collected
in the morning after an overnight fast using a 20- or 24-gauge spinal
needle, frozen within 1 h of collection, and transported on dry ice to
the ADNI Biomarker Core laboratory at the University of Pennsylvania
Medical Center. In this study, CSF Aβ42, CSF t-tau, and CSF p-tau are
used as features.

Image analysis

The image processing for all MR and PET images was conducted
following the same procedures in Zhang and Shen (2012). Specifically,
we first performed anterior commissure–posterior commissure correc-
tion using MIPAV software3 on all images, and used the N3 algorithm
(Sled et al., 1998) to correct the intensity inhomogeneity. Second,
we extracted a brain on all structural MR images using a robust skull-
strippingmethod, followed bymanual edition and intensity inhomoge-
neity correction. After removal of cerebellum based on registration and
intensity inhomogeneity correction by repeating N3 for three times, we
used FAST algorithm in the FSL package (Zhang et al., 2001) to segment
the structural MR images into three different tissues: Gray Matter
(GM), White Matter (WM), and CerebroSpinal Fluid (CSF). Next, we
used HAMMER4 (Shen and Davatzikos, 2002) (although other methods
(Jia et al., 2010; Qiao et al., 2009; Shen et al., 1999; Shen and Davatzikos,
2004; Yang et al., 2008; Zacharaki et al., 2008) can be used) to conduct
registration and obtained the Region-Of-Interest (ROI)-labeled image
based on the Jacob template, which dissects a brain into 93 ROIs
(Kabani, 1998). For each of all 93 ROI regions in the labeled image of
one subject, we computed the GM tissue volumes in the ROI region by
integrating the GM segmentation result of this subject. And, for each
subject, we first aligned the PET image to its respective MR T1 image
using affine registration and then computed the average intensity of
each ROI in the PET image. Finally, for each subject, we obtained totally
93 features fromMRI, 93 features from PET, and 3 features from CSF. In
order for multi-modality fusion, we simply concatenated the features of
modalities into a long feature vector.

Method

In this section, we describe our framework for joint regression and
classification in AD/MCI diagnosis and propose a novel matrix
similarity-based loss function and feature selection. Fig. 1 presents a
schematic diagram of our method for predictions of clinical scores and
a class label. Given MRI, PET, and CSF data, we first extract features
from MRI and PET, while we use the CSF data itself as CSF features.
We then construct a feature matrix X with a concatenation of multi-
modal features at each column, and a corresponding response matrix
3 http://mipav.cit.nih.gov/clickwrap.php.
4 Although there exist many recent methods for registration, HAMMER has already

been validated on many datasets including the ADNI dataset and continuously improved
for the last decade.
Y with a concatenation of clinical scores (e.g., ADAS-Cog, MMSE) and a
class label at each column. With our new loss function and a group
lasso method, we select features that are jointly used to represent the
clinical scores and the class label. By using the dimension-reduced
data, we build clinical score regression models and a clinical label
identificationmodelwith Support Vector Regression (SVR) and Support
Vector Classification (SVC), respectively.

Notations

In this paper, we denote matrices as boldface uppercase letters,
vectors as boldface lowercase letters, and scalars as normal italic letters,
respectively. For a matrix X = [xij], its i-th row and j-th column are
denoted as xi and xj, respectively. Also, we denote the Frobenius norm

and ℓ2,1-norm of a matrix X as Xk kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i xi
�� ��2

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ j x j

�� ��2
2

qr
and

Xk k2;1 ¼ ∑i∥xi∥2 ¼ ∑i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ jx

2
ij

q
, respectively. We further denote the

transpose operator, the trace operator, and the inverse of a matrix X
as XT, tr(X), and X−1, respectively.

Matrix-similarity based loss function

Let X = [x1, …, xn] ∈ ℝd × n and Y = [y1, …, yn] ∈ ℝc × n, where n,
d, and c denote the numbers of samples (or subjects),5 feature variables,
and response variables, respectively. In ourwork, the response variables
correspond to ADAS-Cog, MMSE, and a class label. We assume that the
response variables can be predicted by a weighted linear combination
of the features as follows:

Y≈WTX ¼ Ŷ ð1Þ

whereW ∈ ℝd × c is a regression matrix. By regarding the prediction of
each response variable as a task and constraining the same features to
be used across tasks, we can use a group lasso method (Yuan and Lin,
2006) formulated as follows:

min
W

f Wð Þ þ λ Wk k2;1 ð2Þ

where f(W) is a loss function depending onW and λ is a sparsity control
parameter. Note that each element in a columnwk ofW assigns aweight
to each of the observed features in predicting the k-th response variable.
The ℓ2,1-norm regularizer ‖W‖2,1 penalizes all coefficients in the same
row of W together for joint selection or un-selection in predicting the
response variables. Specifically, the ℓ2-norm regularizer enforces the
selection of the same features across all tasks, and theℓ1-norm imposes
the feature sparseness in the linear combination. In our JRC problem,
thisℓ2,1-norm selects the ROIs that are highly relevant to the estimation
of both clinical scores and a class label.

With regard to the loss function in Eq. (2), themost commonly used
metric in the literature is the element-wise distance between the target
response matrix Y and the predicted response matrix Ŷ as follows:

f Wð Þ ¼ Y−WTX
��� ���2

F

¼ Y−Ŷ
��� ���2

F

¼
Xc
i¼1

Xn
j¼1

yij−ŷij
� �2

:

ð3Þ

This element-wise loss function has been successfully used in many
objective functions in the literature (Suk et al., 2013; Yuan and Lin,
2006; Zhang and Shen, 2012). From a matrix similarity point of view,
Eq. (3) measures the matrix similarity between Y and Ŷ with the sum
5 In this work, we have one sample per subject.
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Fig. 1. The framework of the proposed method.
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of the element-wise differences between matrices. Note that, in this
case, the lower the score is, the more similar they are. However, we
believe that there exists additional information inherent in thematrices,
which we can use in measuring the similarity, such as the relations
between any pair of columns and the relations between any pair of
rows in a matrix. In our case, the columns and the rows correspond,
respectively, to samples and response variables. Ideally, besides the
element-wise values, those relations in the target response matrix Y
should be preserved in the predicted response matrix Ŷ. Concretely,
the row-wise relations find the correlations of a clinical label and
ADAS-Cog, a clinical label and MMSE, and ADAS-Cog and MMSE over
samples, and the column-wise relations represent the correlation
between any pair of samples over response variables. By enriching the
loss function with the higher-level information and imposing the infor-
mation to be matched between two matrices, we can find an optimal
regression matrix W that helps accurately predict the target response
values, and thus select useful features. The selected features can be
finally used for more accurate prediction of testing samples in both
the clinical scores and a class label.

To better characterize the newly devised loss function, we explain
them in the context of a graph matching. We illustrate the sample–
sample (a pair of columns) relations, e.g., (yi–yj) or ðŷi−ŷ jÞ, and the

variable–variable (a pair of rows) relations, e.g., (yk–yl) or ðŷk−ŷlÞ, by
means of a graph in Figs. 2(a) and (b), respectively. In Fig. 2(a), a node
represents one sample, i.e., a column vector yi or ŷi in the respective
matrices, an edge in a graph denotes the relation between the connect-
ed nodes, and different colors denote different class labels. In the graph,
the samples of the same class would have a small distance, whereas the
samples of different classes would have a large distance. In Fig. 2(b),
a node represents a set of observations for a response variable, i.e., a
y1

yj
yn

yi
n

1

i

j

≈

GY
S GS

(a) S-graph matching

Fig. 2. An illustration of measuringmatrix similarity bymeans of a graphmatching. For simplic
the target or the predicted response matrix, edges represent the distance between nodes, and
predicted response matrix and edges denote the distance between nodes.
row vector in the respective matrices, and an edge denotes the relation
between nodes.

As explained above, we impose these relational properties in a target
response matrix, now represented by graphs, to be preserved in the
respective graphs for the predicted response matrix as follows:

GS
Y≈GS

Ŷ ð4Þ

GV
Y≈GV

Ŷ ð5Þ

where GY
S andGS

Ŷ denote, respectively, graphs representing the sample–
sample relations for the target response matrix Y and the predicted
response matrix Ŷ , and GY

V and GV
Ŷ denote, respectively, graphs

representing the variable–variable relations for the target response
matrix Y and the predicted response matrix Ŷ. Hereafter, we call the
graphs representing the sample–sample relations and the variable–
variable relations as ‘S-graph’ and ‘V-graph’, respectively. We formulate
the problemofmatching two sets of graphs, i.e., S-graph andV-graph, as
follows:

MS ¼
Xn
i; j¼1

yi−y j

� �
−
�
ŷi−ŷ j

���� ���2
2

¼
Xn
i; j¼1

yi−y j

� �
− WTxi−WTx j

� ���� ���2
2

ð6Þ
y
y1 1

y

≈

GY
V GV

(b) V-graph matching

ity, we showed only a small number of nodes. (a) Each node represents a column vector of
colors represent class labels. (b) Each node represents a row vector of the target or the



6 In our work, we used the built-in function ‘lyap’ in MATLAB, i.e., vec(W(t)) =
(I⊗ A(W(t− 1)) + BT⊗ I)− 1vec(C), where A is a function of W.
7 Following the previouswork (Zhu et al., 2013a, 2013b, 2013c), we set K as the number

of non-zero row vectors, i.e., K ¼ ∑
i
δ wi
�� ��

2 NθÞ
�

, where δ(⋅) is a Kronecker delta function
and θ is a threshold. In our experiments, we set θ = 10−5 empirically.

8 We used the LIBSVM toolbox available at ‘http://www.csie.ntu.edu.tw/~cjlin/libsvm/’.
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MV ¼
Xc
k;l¼1

yk−yl
� �

Þ− ŷk−ŷl
� ���� ���2

2

¼
Xc
k;l¼1

yk−yl
� �

− wkð ÞTX− wlð ÞTX
� ���� ���2

2

ð7Þ

where MS and MV denote, respectively, the graph matching scores
between GY

S andGS
Ŷ, and between GY

V andGV
Ŷ, and n and c denote, respec-

tively, the numbers of samples and response variables in thematrices as
mentioned above. By introducing these newly devised graph matching
terms into the loss function of Eq. (3), our new loss function becomes
as follows:

f Wð Þ ¼ Y−WTX
��� ���2

F
þ α1MS þ α2MV ð8Þ

where α1 and α2 denote, respectively, the control parameters for the
respective terms. Compared to the conventional element-wise loss
function in Eq. (3), the proposed function additionally considers two
graph matching regularization terms.

Finally, our objective function for feature selection can be written as
follows:

min
W

Y−WTX
��� ���2

F
þ α1

Xn
i; j¼1

yi−y j

� �
− WTxi−WTx j

� ���� ���2
2

þ α2

Xc
k;l¼1

yk−yl
� �

− wkð ÞTX− wlð ÞTX
� ���� ���2

2
þ λ Wk k2;1:

ð9Þ

It is worth noting that unlike the previous manifold learning
methods, i.e., local linear embedding (Roweis and Saul, 2000), locality
preserving projection (He et al., 2005), and high-order graph matching
(Liu et al., 2013), that focused on the sample similarities by imposing
nearby samples to be still nearby in the transformed space, the
proposed method imposes more strict constraints, i.e., sample–sample
relations and variable–variable relations, in finding the optimal
regression matrixW.

Objective function optimization

After some mathematical transformations, we can simplify MS and
MV as follows:

MS ¼ tr 2WTXHnX
TW−4YHnX

TW
� �

ð10Þ

MV ¼ tr 2XTWHcW
TX−4XTWHcY

� �
ð11Þ

whereHn= nIn− 1n(1n)T andHc= cIc− 1c(1c)T, In (or Ic) is an identity
matrix of size n (or c), and 1n (or 1c) is a column vector of n (or c) ones.
By replacing the graph matching terms MS and MV with Eqs. (10) and
(11), our objective function in Eq. (9) can be rewritten as follows:

min
W

Y−WTX
��� ���2

F
þ α1tr 2WTXHnX

TW−4YHnX
TW

� �
þ α2tr 2XTWHcW

TX−4XTWHcY
� �

þ λ Wk k2;1:
ð12Þ

By setting the derivative of the objective function in Eq. (12) with
respect to W as zero, we can obtain an equation formed as follows:

AWþWB ¼ C ð13Þ

where A = − (XXT)−1(XXT + 2α1XHnXT + λQ), B = 2α2Hc, C =
−(XXT)−1(XYT +2α1XHnYT +2α2XYTHc), andQ∈ℝd × d is a diagonal
matrix with the i-th diagonal element set to

qii ¼
1

2 wi
�� ��

2

: ð14Þ
Although the objective function in Eq. (12) is convex, due to the non-
smooth term of ∥ W ∥ 2,1, it is not straightforward to find the global
optimum. Furthermore, due to the inter-dependence in computing
matrices of W and Q, it's not trivial to solve Eq. (13). To this end, in
this work, we apply an iterative approach to optimize Eq. (13) by alter-
natively computing Q and W. That is, at the t-th iteration, we first
update thematrixW(t) with thematrixQ(t− 1) fixed and then update
the matrix Q(t) with the updated matrix W(t). Refer to Algorithm 16

and Appendix A, respectively, for implementation details and the
proof of convergence of our algorithm.

Algorithm 1. Pseudo code of solving Eq. (12).
Feature selection and model training

Due to the use of an ℓ2,1-norm regularizer in our objective function,
after finding the optimal solution with Algorithm 1, we have some zero
(or close to zero) row vectors in W, whose corresponding features are
not useful in joint predictions of clinical scores and a class label. Further-
more, following the literatures (Zhu et al., 2013b, 2013c), we believe
that the lower the ℓ2-norm value of a row vector, the less informative
the respective feature in our observation. To this end, we first sort
rows in W in a descending order based on their ℓ2-norm values, i.e.,
‖wj‖2, j ∈ {1, …, d}, to find K top-ranked rows,7 and then select the
respective features. Note that the selected features are jointly used to
predict clinical scores and a class label.

With the selected features, we then train support vector machines,
which have been successfully used in many fields (Suk and Lee, 2013;
Zhang and Shen, 2012). Specifically, we build two SVR (Smola and
Schölkopf, 2004) models for predicting ADAS-Cog and MMSE scores,
respectively, and a SVC (Burges, 1998) model for identifying a class
label.8

Experimental results

We conducted various experiments to compare the proposedmeth-
od with the state-of-the-art methods, as detailed below.

Experimental settings

We considered three binary classification problems: AD vs. NC,
MCI vs. NC, and MCI-C vs. MCI-NC. For MCI vs. NC, both MCI-C and
MCI-NC were labeled as MCI. For each set of experiments, we used
features from MRI, PET, MRI + PET (MP for short), or MRI + PET +
CSF (MPC for short) for training our feature selection model with the

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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same target responses, i.e., 2 clinical scores and 1 class label. Then, with
the respectively selected features, we trained two regression models,
each of which was for a clinical score of ADAS-Cog and MMSE, respec-
tively, and one classification model for a class label.

To evaluate the performance of all competing methods, we
employed the metrics of Correlation Coefficient (CC) and Root Mean
Squared Error (RMSE) between the predicted clinical scores and the
target clinical scores in regression, and also the metrics of classification
ACCuracy (ACC), SENsitivity (SEN), SPEcificity (SPE), and Area Under
Curve (AUC) in classification.

We used 10-fold cross-validation to compare all methods. Specifi-
cally, we first randomly partitioned the whole dataset into 10 subsets.
We then selected one subset for testing and used the remaining 9
subsets for training. We repeated the whole process 10 times to avoid
the possible bias during dataset partitioning for cross-validation.
The final result was computed by averaging results from all experi-
ments. For the model selection, i.e., tuning parameters9 in Eq. (12)
and in the LIBSVM toolbox,10 we further split the training dataset into
5 subsets for 5-fold inner cross-validation. The parameters that resulted
in the best performance in the inner cross-validation were used in
testing.
Table 2
Performance comparison on simulated data. The number in parentheses is a standard
deviation. Note that ‘Data1-N’ means the original features of ‘Data1’ and ‘Data2-S’ means
the single-task based feature selection method on ‘Data2’. The boldface denotes the best
performance in each metric and each dataset.

Dataset Method ACC CC (ADAS-Cog) CC (MMSE)

Data1 Data1-N 0.701 (0.093) 0.806 (0.118) 0.787 (0.142)
Data1-S 0.701 (0.086) 0.923 (0.065) 0.898 (0.070)
HOGM 0.712 (0.090) 0.949 (0.020) 0.938 (0.023)
M3T 0.704 (0.093) 0.950 (0.118) 0.948 (0.032)
Proposed 0.720 (0.073) 0.984 (0.016) 0.980 (0.017)

Data2 Data2-N 0.709 (0.102) 0.765 (0.132) 0.769 (0.131)
Data2-S 0.725 (0.099) 0.799 (0.105) 0.800 (0.123)
HOGM 0.720 (0.106) 0.832 (0.073) 0.827 (0.088)
M3T 0.719 (0.105) 0.857 (0.169) 0.830 (0.161)
Proposed 0.747 (0.071) 0.896 (0.061) 0.879 (0.080)

Data3 Data3-N 0.640 (0.115) 0.780 (0.196) 0.696 (0.189)
Data3-S 0.650 (0.128) 0.783 (0.149) 0.718 (0.170)
M2TFS-C 0.655 (0.138) 0.798 (0.132) 0.734 (0.166)
M2TFS-K 0.668 (0.129) 0.812 (0.124) 0.746 (0.153)
HOGM 0.678 (0.119) 0.802 (0.142) 0.748 (0.170)
M3T 0.654 (0.141) 0.820 (0.159) 0.751 (0.202)
Proposed 0.698 (0.107) 0.850 (0.101) 0.780 (0.155)

Data4 Data4-N 0.626 (0.111) 0.821 (0.117) 0.650 (0.205)
Data4-S 0.641 (0.096) 0.848 (0.114) 0.695 (0.208)
M2TFS-C 0.649 (0.084) 0.861 (0.077) 0.739 (0.173)
M2TFS-K 0.658 (0.799) 0.875 (0.090) 0.745 (0.154)
Competing methods

Weparticularly selected the followingmethods/ways for comparison.

• Original features basedmethod:We conducted the tasks of regression
and classification using the original features with no feature selection
step, and used them as baseline method. In the following, we denote
this method with the suffix “N”.

• Single-task based method: We conducted each of regression or
classification tasks separately by using the objective function in
Eq. (12). In particular, although here we used the same original
features as the proposedmethod, we performed the task of regression
or classification separately at each time for selecting their own sets of
features. In the following, we use the suffix “S” to represent the type of
single-task based method. For example, MP-S denotes a single-task
based feature selection method on the MP data.

• M3T (Zhang and Shen, 2012): This Multi-Modal Multi-Task method
includes two key steps: (1) using multi-task feature selection for
determining a common subset of relevant features for multiple
response variables (or multiple tasks) from each modality, and (2) a
multi-kernel decision fusion for integrating the selected features
from all modalities for prediction. It is worth noting that M3T is
a special case of our method, i.e., by setting α1 = 0 and α2 = 0 in
Eq. (12).

• HOGM (Liu et al., 2013): High-Order Graph Matching method uses a
sample–sample relation in a matrix and applies an ℓ1-norm regulari-
zation term with a single response or a single task.

• M2TFS (Jie et al., 2013): Manifold regularized Multi-Task Feature
Selection (M2TFS) conducts feature selection by combining the least
square loss function with an ℓ2,1-norm regularizer and a graph
regularizer, and then perform multi-modality classification as a
multi-task learning framework with each task focusing on each
modality. This method is designed only for conducting classification.
In our experiments, M2TFS included two versions, i.e., (1) M2TFS-C,
denoting the use of simple concatenation of multi-modality features
for classification, and (2) M2TFS-K, denoting the use of multiple
kernels for fusing information from multi-modality data. Since
M2TFSwas designed formulti-modality data, requiring eachmodality
with the same feature dimensionality, we applied it to only MP in our
experiments.
9 α1 ∈ {10−5, …, 102}, α2 ∈ {10−5, …, 102}, and λ ∈ {102, …, 108} in our experiments.
10 C ∈ {2−5, …, 25} in our experiments.
Simulation study

In this section, we justify the validity of the proposed method on
simulation data and compare with the competing methods. For the
simulation study, we generated data using a linear regression model
of Y = WTX + E, where X ∈ ℝd × n is a regressor matrix,W ∈ ℝd × 3 is
a coefficient matrix, E ∈ ℝ3× n is a noise matrix, and Y = [y1T, y2T, y3T]T ∈
ℝ3× n is a response matrix. Specifically, we generated two datasets to
consider the cases of single-modality and multi-modality. (1) Single-
modality: For each class, we generated ni (i = 1,2) samples by setting
the first d0 rows relevant to the classes and the remaining d–d0 rows
irrelevant for discrimination. The samples of each class were generated
from multivariate normal distribution. The class labels of all samples
were set in y3. We constructed W by setting the first d0 rows with the
values drawn fromN 0;1ð Þand the rest d–d0 rows zero.We then obtain-
ed the noise E fromN 0;10−3Σ 0:1ð Þ

� �
, where Σ(0.1) was a covariance

matrix with the diagonal elements of 1 and the off-diagonal elements of
0.1. After obtaining X, W, and E as described above, we obtained the
observation [y2T, y3T]T via the linear regression model and then centered
and standardized it. We generated data sets of ‘Data1’ by setting n1 =
50, n2 = 60, d = 80, and d0 = 30, and ‘Data2’ by setting n1 = 50,
n2 = 50, d = 120, and d0 = 60. (2) Multi-modality: Applying the
same setting with the single-modality, we generated W, and E, and
two regression matrices with the same dimensionality. X includes
these two regression matrices to form multi-modality data. Finally,
we obtained Y and then centered and standardized it. We generated
data sets of ‘Data3’ n1 = 50, n2 = 50, d = 140, and d0 = 50, and
‘Data4’ by setting n1 = 50, n2 = 40, d1 = 120, and d0 = 50.

We applied the proposed method and the competing methods
on these simulated data according to the experimental setting in
Section Experimental settings, and evaluated the performances using
the metrics of Correlation Coefficient (CC) and ACCuracy (ACC) for re-
gression and classification, respectively. Table 2 shows the results on
the four simulation datasets. The proposed method obtained the best
performance in both classification and regression. Specifically, first,
the method without feature selection obtained the worst performance
for both classification and regression in the four simulated dataset.
This shows the importance of conducting feature selection on the
HOGM 0.664 (0.101) 0.868 (0.088) 0.754 (0.173)
M3T 0.651 (0.100) 0.879 (0.155) 0.750 (0.217)
Proposed 0.684 (0.070) 0.922 (0.098) 0.788 (0.153)



Table 3
Comparison of classification performances (%) of the competing methods. (ACCuracy (ACC), SENsitivity (SEN), SPEcificity (SPE), and Area Under Curve (AUC)). The boldface denotes the
best performance in each metric and each feature.

Feature Method AD vs. NC MCI vs. NC MCI-C vs. MCI-NC

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

MRI MRI-N 89.5 82.7 86.3 95.3 68.3 92.6 39.2 82.5 60.25 15.5 92.3 68.7
MRI-S 91.2 85.9 92.5 96.7 76.7 93.3 37.6 83.7 64.5 24.9 95.8 70.6
HOGM 93.4 89.5 92.5 97.1 77.7 95.6 51.4 84.4 66.8 36.7 95.0 72.2
M3T 92.6 87.2 95.9 97.5 78.1 94.5 54.0 83.1 67.1 37.7 92.0 72.5
Proposed 93.8 89.7 96.7 97.9 79.7 95.0 56.1 85.2 70.8 40.7 94.0 75.6

PET PET-N 86.2 83.5 84.8 94.8 69.0 95.0 30.8 77.9 62.2 21.6 93.1 71.3
PET-S 87.9 85.7 90.9 94.7 73.8 96.5 36.2 78.7 65.1 31.0 95.5 73.5
HOGM 91.7 91.1 92.8 95.6 74.7 96.5 43.2 79.3 66.6 35.5 95.5 72.4
M3T 90.9 90.5 93.1 96.4 77.2 94.5 44.3 80.5 67.0 39.1 93.2 73.1
Proposed 92.3 92.3 93.9 96.6 79.1 96.1 47.2 81.2 70.9 42.7 94.1 77.4

MP MP-N 89.7 92.2 85.9 96.1 71.6 96.1 43.9 82.7 62.7 22.6 93.5 73.2
MP-S 90.8 92.6 93.8 96.7 76.3 97.0 39.9 83.4 66.9 33.9 96.0 75.7
M2TFS-C 91.0 90.4 91.4 95 73.4 76.5 67.1 78.0 58.4 52.3 63.0 60.0
M2TFS-K 95.0 94.9 95.0 97.0 79.3 85.9 66.6 82.0 68.9 64.7 71.8 70.0
HOGM 95.2 92.8 95.4 97.8 79.5 96.6 58.6 84.6 67.6 45.5 96.8 75.1
M3T 94.0 92.0 96.3 98.0 78.4 95.0 57.7 83.9 67.9 47.0 93.3 75.7
Proposed 95.3 93.5 98.1 98.3 80.2 96.5 59.7 85.5 72.0 48.1 94.3 78.7

MPC MPC-N 90.8 93.1 88.3 96.5 72.5 96.3 47.1 84.1 64.1 23.1 93.6 73.9
MPC-S 92.5 94.1 93.8 97.6 77.1 97.1 47.5 83.9 67.8 34.1 96.8 75.8
HOGM 95.6 94.5 96.9 98.5 80.6 96.7 64.7 86.2 68.8 47.5 98.5 75.3
M3T 94.6 93.1 96.4 98.5 80.1 95.2 58.7 84.3 68.5 47.5 92.7 76.0
Proposed 95.9 95.7 98.6 98.8 82.0 98.0 60.1 87.0 72.6 48.5 94.4 78.8
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high-dimensional features before performing classification or regression.
Second, our joint classification and regression framework outperform the
single-task framework since the joint framework uses more information
than the single-task framework. Third, all methods with multi-modality
data improved performances compared to the methods with single-
modality data.

Classification results

Table 3 shows the classification performance for all methods.
Fig. 3 shows the classification accuracy of the proposed method
using single-task or multi-task formulation. Fig. 4 shows the Receiv-
er Operating Characteristic (ROC) curves of the proposed method
using four different combinations of data, i.e., MRI, PET, MP, and
MPC. From the results, it is clear that the proposed method outper-
forms the competing methods in all experiments. Specifically, we
observe the following results.

• It is important to conduct feature selection on the high-dimensional
features before performing classification. The worst results were ob-
tained by the methods without feature selection, i.e., MRI-N, PET-N,
MP-N, and MPC-N. For example, for MRI-based classification as
shown in Table 3, even using a simple feature selection method, i.e.,
MRI-S, can still increase the classification accuracy by 1.7%, 8.4%, and
4.25% compared to MRI-N in AD vs. NC, MCI vs. NC, and MCI-C vs.
MRI PET MP MPC
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NC, and MCI-C vs. MCI-NC classifications, respectively.

• It is beneficial to use joint regression and classification framework for
feature selection, even only for the task of classification. As shown in
Table 3 and Fig. 3, the proposed method that performed feature
selection for joint regression and classification achieved better
classification performance than the single-task based classification
methods (MRI-S, PET-S, MP-S, and MPC-S). For example, for MRI-
based classification, our method improved the classification accuracy
by 2.6%, 3.0%, and 6.3% compared to MRI-S based method in AD vs.
NC, MCI vs. NC, and MCI-C vs. MCI-NC classifications, respectively.

• Multi-modality data helps improve classification performance. As
shown in Table 3, in all experiments, the classification performances
of all methods with multi-modality data such as MP and MPC were
better than the same methods with single-modality data such as
MRI or PET. Also, the classification performance byMPCwas generally
better than MP. For example, in classifying AD from NC, the proposed
method with MPC achieved the classification accuracy of 95.9%,
sensitivity of 95.7%, specificity of 98.6%, and AUC of 98.8%, while the
best performance among other competing methods with single-
modality data was only 93.8% (accuracy), 92.3% (sensitivity), 96.7%
(specificity), and 97.9% (AUC), respectively, and the best performance
among other competingmethodswithMP datawas 95.3% (accuracy),
94.9% (sensitivity), 98.1% (specificity), and 98.3% (AUC), respectively.
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Fig. 4. Receiver Operating Characteristic (ROC) curves for the proposed method using 4 different types of data.
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In classifying MCI from NC, the proposed method with MPC achieved
the classification accuracy of 82.0%, sensitivity of 98.0%, specificity
of 60.1%, and AUC of 87.0%, while the best performance among
other competing methods with single-modality data was only 79.7%
(accuracy), 96.5% (sensitivity), 56.1% (specificity), and 85.2% (AUC),
respectively, and the best performance among other competing
methods with MP data was 80.2% (accuracy), 97.0% (sensitivity),
67.1% (specificity), and 85.5% (AUC), respectively. In classifying MCI-
C fromMCI-NC, the proposedmethod withMPC achieved the classifi-
cation accuracy of 72.6%, sensitivity of 48.5%, specificity of 94.4%, and
AUC of 78.8%, while the best accuracy among other competing
methods with single-modality data was only 70.9% (accuracy), 42.7%
(sensitivity), 95.5% (specificity), and 77.4% (AUC), respectively, and
the best performance among other competing methods with MP
was 72.0% (accuracy), 64.7% (sensitivity), 96.8% (specificity), and
78.7% (AUC), respectively.

Regression results

We evaluated the regression performance through the estimation of
clinical scores (i.e., ADAS-Cog and MMSE) for the cases of using MRI,
PET, MP, and MPC, respectively. We presented the results of CCs and
RMSEs of all competing methods in Table 4 and Figs. 5–9, respectively.
Table 4
Comparison of regression performances of the competing methods in terms of Correlation
performance in each metric and each feature.

Feature Method AD vs. NC MCI vs. N

ADAS-Cog MMSE ADAS-Co

CC RMSE CC RMSE CC

MRI MRI-N 0.587 4.96 0.520 2.02 0.329
MRI-S 0.591 4.85 0.566 1.95 0.347
HOGM 0.625 4.53 0.598 1.91 0.352
M3T 0.649 4.60 0.638 1.91 0.445
Proposed 0.661 4.58 0.650 1.89 0.461

PET PET-N 0.597 4.86 0.514 2.04 0.333
PET-S 0.620 4.83 0.593 2.00 0.356
HOGM 0.600 4.69 0.515 1.99 0.360
M3T 0.647 4.67 0.593 1.92 0.447
Proposed 0.663 4.64 0.610 1.89 0.452

MP MP-N 0.626 4.80 0.587 1.99 0.365
MP-S 0.634 4.83 0.585 1.92 0.359
M2TFS-C 0.641 4.89 0.636 1.87 0.446
M2TFS-K 0.645 4.59 0.648 1.82 0.458
HOGM 0.633 4.64 0.602 1.83 0.364
M3T 0.653 4.61 0.639 1.91 0.450
Proposed 0.666 4.53 0.651 1.80 0.463

MPC MPC-N 0.629 4.79 0.588 1.97 0.368
MPC-S 0.638 4.81 0.599 1.92 0.366
HOGM 0.639 4.63 0.611 1.81 0.365
M3T 0.665 4.59 0.663 1.81 0.451
Proposed 0.668 4.47 0.685 1.78 0.470
Table 4 shows that the proposedmethod outperforms all other com-
peting methods, when using a combination of three multi-modality
data. Fig. 5 shows the regression performance of our method with a
single-task or a multi-task learning scheme. Figs. 6–9 further show the
scatter plots of the target scores vs. the estimated scores of our method
for ADAS-Cog and MMSE, respectively, when using 4 different types of
data. In thesefigures, the horizontal axis represents the predicted values
of ADAS-Cog (top in Figs. 6–9) or MMSE (bottom in Figs. 6–9), and the
vertical axis represents the target values.

In Table 4, we can see that the regression performance of the
methods without feature selection (MRI-N, PET-N, MP-N and MPC-N)
was worse thanmethods with feature selection. Moreover, our method
consistently achieved the best performance compared to other compet-
ing methods. Table 4 and Figs. 6–9 also indicate that our method with
MPC consistently outperformed the samemethodwithMP on each per-
formance measure, although the method with MP already achieved a
better performance than our method with a single modality such
as MRI or PET. This scenario was observed for all other competing
methods. In the prediction of ADAS-Cog and MMSE scores in AD vs.
NC, our method with MPC obtained the CCs of 0.668 and 0.685,
respectively, and the RMSEs of 4.47 and 1.78, respectively. The best
performance among other competingmethods with features of a single
modality such as MRI or PET was 0.663 and 0.650 (CCs), and 4.58 and
Coefficient (CC) and Root Mean Square Error (RMSE). The boldface denotes the best

C MCI-C vs. MCI-NC

g MMSE ADAS-Cog MMSE

RMSE CC RMSE CC RMSE CC RMSE

4.48 0.309 1.90 0.420 4.10 0.441 1.51
4.27 0.367 1.64 0.426 4.01 0.482 1.44
4.26 0.371 1.63 0.435 3.94 0.521 1.41
4.27 0.420 1.66 0.497 4.01 0.550 1.41
4.21 0.441 1.62 0.543 3.97 0.573 1.39
4.34 0.331 1.70 0.382 4.08 0.452 1.50
4.26 0.359 1.69 0.437 4.00 0.478 1.48
4.21 0.368 1.67 0.430 4.03 0.523 1.41
4.24 0.432 1.68 0.520 3.91 0.569 1.45
4.21 0.444 1.66 0.542 3.88 0.571 1.43
4.29 0.335 1.69 0.431 4.09 0.455 1.47
4.25 0.371 1.67 0.449 4.00 0.496 1.41
4.25 0.408 1.64 0.504 3.99 0.545 1.38
4.21 0.415 1.63 0.517 3.99 0.557 1.37
4.20 0.365 1.65 0.450 3.93 0.531 1.40
4.23 0.433 1.64 0.522 3.81 0.567 1.36
4.20 0.448 1.62 0.542 3.76 0.579 1.35
4.29 0.337 1.70 0.449 4.08 0.457 1.46
4.25 0.394 1.66 0.461 4.00 0.517 1.40
4.20 0.368 1.65 0.454 3.92 0.534 1.40
4.19 0.441 1.62 0.530 3.72 0.570 1.31
4.16 0.456 1.59 0.556 3.62 0.584 1.29
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Fig. 5. Correlation Coefficients (CC) for ADAS-Cog (top) and MMSE (bottom) score prediction with our method formulated for single-task (“Single”) or multi-task (“Joint”) regression.
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1.89 (RMSEs), respectively, and the best performance by other compet-
ingmethods with MP features was 0.666 and 0.651 (CCs), and 4.53 and
1.80 (RMSEs), respectively. In MCI vs. NC, our method obtained CCs of
0.47 (ADAS-Cog) and 0.456 (MMSE), and RMSEs of 4.16 (ADAS-Cog)
and 1.59 (MMSE), which were superior to those of single-modality
or MP. The proposed method also obtained the best results for the
predictions of ADAS-Cos and MMSE scores in MCI-C vs. MCI-NC.

We also compared the proposed method with its variants, i.e., the
single response (or single task) based method in Fig. 5. From the figure,
we can see that the joint formulation of registration and classification
outperforms the single-task based regression, same as for the classifica-
tion task above.
11 The selected brain regions by both M2TFS-C and M2TFS-K were conducted on MP
data.
Results summary

From our experimental results, we found that (1) the proposed
method formulated in a joint regression and classification framework
outperformed its counterpart that was formulated separately for
regression or classification; (2) the joint use of multiple modalities
outperformed the case of using a single modality separately. Moreover,
the paired-sample t-tests (at 95% significance level) between results of
ourmethod and all other competingmethods (e.g., with the p-values of
all cases less than0.025 andmost cases less than 0.001) showed that our
method was significantly better than all other methods on the tasks of
predicting clinical scores (i.e., ADAS-Cog and MMSE) and identifying
class label.

We also compared our method with M3T (Zhang and Shen, 2012)
that used the element-wise loss function in feature selection and
also the methods that considered only either ‘sample–sample relation’
(S-graph) or ‘variable–variable relation’ (V-graph). In Fig. 10, we can
see that (1) both S-graph and V-graph based methods showed better
performances in regression and classification than M3T. The mean
improvement by both S-graph and V-graph based methods was about
1% compared to M3T. (2) Although there was no significant difference
between S-graph and V-graph based methods (at 95% significance
level in the paired-sample t-tests), our method that considered both
graphs simultaneously were statistically significant different from
them and M3T.
Most discriminative brain regions

We also investigated the most discriminative regions that were
selected by the proposed feature selection method. Since the feature
selection in each fold was performed only based on the training set,
the selected features could vary across different cross-validations. We
thus defined the most discriminative regions based on the selected
frequency of each region over the cross-validations. The top 10 selected
regions in MCI vs. NC classification with MPC were marked in Fig. 11.
They were amygdala right, hippocampal formation left, hippocampal
formation right, entorhinal cortex left, temporal pole left, para-
hippocampal gyrus left, uncus left, perirhinal cortex left, cunecus left,
and temporal pole right. It is noteworthy that the top six-ranked brain
regions are known to be highly related to AD andMCI inmany previous
studies (Chételat et al., 2005; Convit et al., 2000; Fox and Schott, 2004;
Liu et al., 2014; Misra et al., 2009; Zhang and Shen, 2012). Moreover,
according to Table 5, almost all the competing methods11 selected
these six regions as the top selected regions. Even though most of the
methods (including our methods and the competing methods) in our
experiments selected these six features as a part of their final feature
set, our proposed method outperforms the competing methods since
it can select more useful features than the competing methods thanks
to consideration of high-level information.
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Fig. 6. Scatter plots and the respective Correlation Coefficients (CCs) obtained by the proposed method on MRI data (top: ADAS-Cog, bottom: MMSE).
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Conclusion

In this work, we proposed a novel loss function in the context of a
matrix similarity. Specifically, we used high-level information inherent
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in the target response matrix and imposed the information to be pre-
served in the predicted response matrix. Our objective function for
joint feature selection was formulated by combining the newly devised
loss function with a group lasso. In our extensive experiments on ADNI
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by the proposed method on PET data (top: ADAS-Cog, bottom: MMSE).
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Fig. 8. Scatter plots and the respective Correlation Coefficients (CCs) obtained by the proposed method on the MP data (top: ADAS-Cog, bottom: MMSE).
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Fig. 9. Scatter plots and the respective Correlation Coefficients (CCs) obtained by the proposed method on the MPC data (top: ADAS-Cog, bottom: MMSE).
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dataset, we validated the effectiveness of the proposed method by
showing the performance enhancements of both the clinical scores
(ADAS-Cog and MMSE) prediction and the class label identification,
outperforming the state-of-the-art methods. In the future work, we
will extend the proposed framework to the problem of incomplete
data, which often occurs in clinical trails and longitudinal follow-up
studies.
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Appendix A

We prove that the proposed Algorithm 1 makes the value of the
objective function in Eq. (12) monotonically decrease. We first give a
Lemma from (Zhu et al., 2013a,2013b, 2013c) as follows, which will
be used in our proof.

Lemma 1. For any nonzero row vectors (w(t))i ∈ ℝc and (w(t + 1))i ∈
ℝc, i = 1,…, d, and t denotes an iteration index, the following holds:

Xd
i¼1

w t þ 1ð Þð Þi
��� ���2

2

2 w tð Þð Þi�� ��
2

− w t þ 1ð Þð Þi
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w tð Þð Þi
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1
CA

0
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1
CA≥0:

ðA:1Þ

Theorem 1. In each iteration, Algorithm 1 monotonically decreases the
objective function value in Eq. (12).

Proof. In Algorithm 1, we denote that part of Eq. (12), i.e., without the
last term λ ∥W ∥ 2,1, in the t-th iteration asℒ(t)= ∥ Y− (W(t))TX ∥ F

2+
α1tr(2(W(t))TXHnXTW(t) − 4YHnXTW(t)) + α2tr(2XTW(t)Hc(W(t))TX
− 4XTW(t)HcY). We also denoteQ(t) as the optimal value in the t-th it-
eration for Q. According to Zhu et al. (2013a, 2013b,2013c), optimizing



(a) MRI

(b) PET

Fig. 11. Top 10 selected MRI/PET regions in the MCI classification with MPC. The brain regions were color-coded. Moreover, different colors indicate different brain regions.
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Table 5
The six brain regions selected by the competing methods. ‘Y/N’ denotes, respectively,
whether a brain region was ranked within the top 10 or not; For the cases of ‘N’, we
reported its ranking in the parentheses with boldface.

Regions MPC-S M2TFS-C M2TFS-K HOGM M3T

Parahippocampal gyrus left Y Y Y N(11) Y
Hippocampal formation right N(15) Y Y Y Y
Temporal pole left Y Y Y Y Y
Entorhinal cortex left Y Y Y Y Y
Hippocampal formation left N(18) Y Y Y Y
Amygdala right Y Y Y Y Y
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the non-smooth convex form ∥ W ∥ 2,1 can be transferred to iteratively
optimize Q and W in tr(fWTQW). Therefore, according to the 3-rd step
of Algorithm 1, we have

ℒ t þ 1ð Þ þ λtr W t þ 1ð Þð ÞTQ tð ÞW t þ 1ð Þ
� �

≤ℒ tð Þ
þ λtr W tð Þð ÞTQ tð ÞW tð Þ

� �
: ðA:2Þ

By changing the trace form into the form of summation, we have
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By simple modification, we can have
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After reorganizing terms, we finally have
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According to Lemma 1, the third term of the left side in Eq. (A.5) is
non-negative. Therefore, the following inequality holds
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