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Abstract—The high feature-dimension and low sample-size for improving the prediction performance of AD diagnosis

problem is one of the major challenges in the study of compute
aided Alzheimer's Disease (AD) diagnosis. To circumvent ik

problem, feature selection and subspace learning have been

playing core roles in literature. Generally, feature seletion

methods are preferable in clinical applications due to thai ease
for interpretation, but subspace learning methods can usully

achieve more promising results. In this paper, we combine ta
different methodological approaches to discriminative fature

selection in a unified framework. Specifically, we utilize tvo

subspace learning methods, namely, Linear Discriminant Aal-

ysis (LDA) and Locality Preserving Projection (LPP), which

have proven their effectiveness in a variety of fields, to sett

class-discriminative and noise-resistant features. Urie previous
methods in neuroimaging studies that mostly focused on a bary

classification, the proposed feature selection method is filner

applicable for multi-class classification in AD diagnosisExtensive
experiments on the Alzheimer’s Disease Neuroimaging Inisitive

(ADNI) dataset show the effectiveness of the proposed mettio
over other state-of-the-art methods.

Index Terms—Alzheimer's disease, feature selection, sparse

coding, subspace learning, multi-class classification, i cog-
nitive impairment, neuroimaging data analysis

|. INTRODUCTION

ECENTLY, neurodegenerative diseases, such

[10].

In AD studies, the feature dimensionality is high in nature
[110, [12], [4], [L3]. Thus, dimensionality reduction (duas
subspace learning [114]. [15] and feature selection [167],[1
[18], [19], [20]) has become one of the core steps in the
field of machine learning. For example, Salas-Gonzalez
al. employed the statisticattest method to select voxels of
interest for AD diagnosis_ [17], while Zhoat al. combined
Least Absolute Shrinkage and Selection Operator (LASSO)
[21] and group sparse LASSQ [22] to predict AD status
[23], [24]. Feature selection methods, such as statistical
test and sparse linear regression, find the informativaifeat
subset from the original feature séi [5]] [6], [23]. [25].6]2
while subspace learning methods, such as Fisher’s Linear
Discriminant Analysis (LDA) [[27] and Locality Preserving
Projection (LPP)[[28], transform original features intooavt
dimensional space _[29]. In regards to the interpretabiity
the results, feature selection methods are preferable a@dp
to subspace learning methods, particularly in neuroinggin
studies, as selected features directly link anatomicalcstr
tures and thus provide an intuitive understanding. Mealawhi
sgbspace learning methods have recently presented pngmisi

Alzheimer's Disease (AD), Parkinson’s disease arperformances in various applicatioris |[30], [15], [31]. 32
Huntington’s disease, have become highly prevalent withid3]. For example, Suet al. applied a number of subspace
societies. Among these neurodegenerative diseases, ADegyning methods, such as Independent Component Analysis
the most prevalent and was reported to be the sixth leadifi§A) [84], Canonical Correlation Analysis (CCA) [B5], [R6
cause of death in the United Statgs [1]. Hence, many reseadeldl Partial Least Squares (PLS)1[37].][38] for medical image
groups have devoted their efforts to understand underlyingalysis [[38]. Liuet al. employed Local Linear Embedding

biological or physiological mechanisms behind AD.

(LLE) [B9] to reduce feature dimensionality of multivagat

Since neuroimaging tools, such as Magnetic Resonard&I data to show that subspace learning methods are superior
Imaging (MRI) and Positron Emission Topography (PET)o feature selection methods, suchtasst and Chi-squared,
have been successfully applied to investigate neuroplogsio in AD classification [[15].

ical characteristics of AD, machine learning techniquegeha
also been greatly devised for analyzing neuroimaging data Eh

AD diagnosis [2], [3], [4], [5], [6], [7], [8]. For example

(SVM) framework for the study of AD[]9], and Wangt

From a clinical standpoint, a model for AD/MCI diagnosis
ould be interpretable and able to accurately identifydike

. : ’ ease status of a subject; therefore, it is reasonable toioemb
Cuingnetet al. devised a general Supprot Vector Machin J

feature selection and subspace learning in a systematioegnan
One intuitive way to do this is to design a two-stage method,

al. proposed a sparse Bayesian multi-task learning algor'tn.@., subspace learning before feature selection or subspace
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learning preceded by feature selection. However, bechease t
approaches perform the methods individually, the resuklts a
likely to be suboptimal. It may be interesting to integrate
them in a unified framework, where we can complement the
limitations of each method.
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In this paper, we propose a novel feature selection mBthdal Image Preprocessing

to select class-discriminative and noise-resistant featfrom We conducted image preprocessing separately for MRI and

the o_riginal feature set py utilizing_characteristics obspace pet images of the selected 202 subjects. We downloaded
learning methods. Specifically, we inject two subspaceniegr |, Digital Imaging and COmmunications in Medicine (DI-

methods (such as LDAL[27] and LPP_[28]) into a sparsgopy MRI scans from the ADNI websfle All structural

least square regression framework. The rationale of usifk images used in this paper were acquired from 1.5T
both LDA and LPP in our formulation is that LDA considerscanners, These MR images were already reviewed for quality
both the global information inherent in the observationd any,y 5,tomatically corrected for spatial distortion caubgd
ghe class Lgbelf m{ormatlog, W'T thelgoa:]_(l)f i(:)lFe)ctmg $1asyadient nonlinearity and B1 field inhomogeneity. All PET
iscriminative features [27][[34][41], while Pré®es images were collected across a variety of scanners with

the neighborhood structure of each sample to reduce ey qqols individualized for each scanner. We used 18480
adverse effect of noises or outliefs [28]. [36]. Mathem&@lic  peoyyGlucose (FDG) PET images. Also, we removed cere-

it is very similar to conduct feature selection .b)_/ the sparsgyium in our preprocessing pipeline, as we mainly focused
feature selection framework, except that the original @&l j)rain regions in cerebrum for this study. These PET images
adjusted” by the incorporation of the global information ee first acquired 30-60 minutes post-injection, and were
(i.e., LDA) and local information i¢te., LPP). Both LDA and then averaged, spatially aligned, interpolated to a stahda

LPP enable the proposed framework (with an intuitive angye| size, intensity normalized, followed by smoothing to
easy way) to select class-discriminative and noise-@Hst ; ~ommon resolution of/8m full width at half maximum.

features. Specifically, the image processing was conducted by the
following steps: First, we performed anterior commissure-
[I. MATERIALS AND IMAGE PREPROCESSING posterior commissure correction using MIPAV softifafer
In this work, we used the Alzheimer's Disease Neuroima@!l images, and then used the N3 algoritiiml [42] to correct
ing Initiative (ADNI) dataset for performance evaluatidine the intensity inhomogeneity. Second, we extracted a brain
ADNI was launched in 2003 by the National Institute o®n all structural MR images using a robust skull-stripping
Aging (NIA), the National Institute of Biomedical Imagingmethod [43], and then conducted manual edition and intensit
and Bioengineering (NIBIB), the Food and Drug Adminisinhomogeneity correction (if necessary). Third, we rentbve
tration (FDA), private pharmaceutical companies and noféerebellum based on registration and intensity inhomagene
profit organizations, with a $60 million 5-year publicpriga correction by repeating N3 for three times, and then we used
partnership. The primary goal of ADNI was to demonstraf@e FAST algorithm in the FSL package [44] to segment
whether MRI, PET, other biological markers, and clinicagtructural MR images into three different tissues: Graythfat
and neuropsychological assessment could be combined(@M), White Matter (WM), and CerebroSpinal Fluid (CSF).
measure the progression of MCI and early AD. As a resuliext, we used HAMMERI[45] for registration and then dis-

approximately 800 adults, aged 55 to 90, participated ia tr#ected images into 93 Regions-Of-Interest (ROIs) by labeli
research. them based on the Jacob template [46]. After that, for each of

all 93 ROIs in the labeled image of a subject, we computed the

A. Subjects GM tissue volumes as features. For each subject, we aligned
' the PET images to their respective MR T1 images using affine
We describe the general inclusion/exclusion criteria @& th'egistration and then Computed the average intensity af eac

subjects as follows: First, the MMSE (Mini-Mental StateROl as a feature. So, we extracted 93 features from MRI and

Examination) score of each NC subject is between 24 apd features from PET for each subject.

30 with Clinical Dementia Rating (CDR) of 0. Moreover, the

NC subject is non-depressed, non MCI, and non-demented.

Second, the MMSE score of each MCI subject is between 24

and 30 with CDR of 0.5. Moreover, each MCI subject is aA. Notations

absence of significant level of impairment in other cogeitiv Throughout this paper, we denote matrices as boldface

domains, essentially preserved activities of daily liviegd nhercase letters, vectors as boldface lowercase lettats,
an absence of dementia. Last, the MMSE score of each Milfly|ars as normal italic letters, respectively. For a matri

AD subject is between 20 and 26 with the CDR of 0.5 or 1.6¢ _ [z;;], its i-th row andj-th column are denoted as and

We us_ed basel_ine MRI and PET imaggs obtained frop respectively. Also, we denote the Frobenius norm@&nd
202 subjects, which included 51 AD subjects, 52 Norma

i — / i||2 — 12
Control (NC) subjects, and 99 MCI subjects. Moreover, ggorm of a matrbX. as [X|[r = 2, Iz = V 2. %31z
MCI subjects included 43 MCI Converters (MCI-C) and 5@&nd || X2 = >, [x[la = X2, />, =7;, respectively. We

MCI Non-Converters (MCI-NC). The detailed demographifurther denote the transpose operator, the trace opeeatdr,
information is summarized in Table |. the inverse of a matriX as X”, tr(X), and X!, respec-
tively.

IIl. METHOD

1This work focuses on multi-class classification of AD diasisovitheither
single-modality datar multi-modality data, different from our previous work
[40], which focused on joint regression and classificatioithvenly multi- 2http://www.loni.usc.edu/ADNI
modality data. Zhttp://mipav.cit.nih.gov/clickwrap.php .
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TABLE I: Demographic information of the subjects. (MMSE: hiMental State Examination; ADAS-Cog: Alzheimer’s Disea
Assessment Scale-Cognitive subscale; MCI-C: MCI ConvertdCI-NC: MCI Non-Converters)

| [ AD [ NC [ MCC [ MCINC ]
Female/male 18/33 18/34 15/28 17/39
Age 752+ 74 | 75.3+52 | 7584+ 68| 748+ 7.1

Education | 14.7+ 3.6 | 158+ 3.2 | 16.1+ 2.6 | 15.8+ 3.2
MMSE 23.8+20 | 29.0+1.2 | 266+ 1.7 | 284+ 1.7
ADAS-Cog | 183+ 6.0 | 73£3.2 | 129+ 3.9 | 10.2+ 4.3

B. Sparse Multi-Task Learning with Subspace Regularinatiovhere 32, and 3, denote, respectively, the within-class co-
Let X € RIX" denote a feature matrix. whedeandn are, Variance and the between-class covariance matrices. Howev
respectively, the numbers of feature variables and subjedue to the non-convexity of EqL](2), it is not trivial to find
and Y € R*" denote a class indicator matrix with 0-12n optimal solution of the corresponding objective funtio
encoding, where is the number of classes. As for the featurfterestingly, we can reformulate this multi-class LDA in a
selection, we use a sparse regression model, which has b#ga" regression framework by replacing the original labe
successfully used in various applicatiois] [47T.] [48], [ED]. indicator matrix Y with a specific class indicator matrix
However, since the class indicator mathixincludes multiple Y = [4ix] defined as follows:
response variables, a regression model would find a regressi { n \/E
Yik = n

o if I(x;)=k

f\/?, otherwise
x;) denotes the class label ®f andn, is the number
of training samples of the clagf. That is, using a class indi-
cator matrixY defined in Eq.[(B), we can naturally incorporate
the multivariate discriminant analysis of an embeddinghodt
to the sparse regression framewdrk][51]. It is notewortat th
unlike the conventional LDA that projects features into an
embedding space, in which it is generally difficult to intetp
Pr investigate the results, we still work in the the origimgdut

coefficient vector for each response variable individudlly
this regard, we regularize a least square regression mattel w

an ¢, ;-norm to find the features commonly used across ﬂ?ﬁherel(
regression tasks as follows:

®3)

1
min oY = WEX[E + AWz, 1)

whereW € R%*¢ is a regression coefficient matrix ands a
sparsity control parameter. Thg ;-norm ||[W||, 1 penalizes
the coefficients in the same row AV together for joint
selection or unselection in regressing the response Vasia
in Y. In Eg. [3), the optimal solution assigns a reIativeI?pa(’fe' . .

large weight to the informative features and zero or a smaIIWIth respect_to topolqgmal relation among samplg,_lo-
weight to uninformative or less informative features| [4#B]. cal_ s_tructur_al _mf_ormatlo_n, we use ang,ﬂaph Laplacian by
By viewing the regression of each response variable as o gfining a similarity matrix = [s;;] € R beween every
task, we call Eq.[{1) asulti-task learning and Argyriouet pair of sa_mp[e points; andx; W'Fh a heat kernfiland define

al. have shown that Eq.(1) successfully utilizes the corretati a regularization term as follows:

of different classed [47].

It is shown that LDA exploits the distributional character- o
istics that help find a generalized solutiore(, small bias), = tr(WTXLXTW)
whereas LPP alleviates the sensitivity of the solution tse® ) ) o
or outliers in the training samplesd., small variance)[[27], WhereL = D —S andD < R™*" is a diagonal matrix with
[50]. However, in its current forni,e., Eq. [3), we cannot guar- tS diagonal elements defined ds = _; si;- X
antee the class-discriminative power of selected featanes By using the newly defined class indicator matiixin Eq.
the preservation of the neighborhood structure of datatpoin@) as the target response values and the locality preggrvin
which are important characteristics to enhance classiicat constraint in Eq.[{4), we formulate our objective functich a
performance. To resolve this drawback, we propose a nofellows:
sparse multi-task learning method by combining the methods R
O?discriminant analysis agnd topologiZaI structurg preston W9 Y = WIX|E + Aitr(WIXLXTW)
jointly in a sparse regression framework. Specifically, we + A2f|Wll21 (%)
utilize a Fisher's LDA [[34] that considers the global sample o )
distributions by means of the ratio between within-clas¥/here A1 and X, are the regularization tuning parameters.
variance and between-class-variance in a supervised manhi€re. we should note that Ed.](5) efficiently combines the
We also use an LPP 28] by constructing a Laplacian matf¢bspace learning methods., LDA and LPP, and a sparse

to efficiently use the local topological relation among stemp egression-based feature selection method in a unifiedetram
in an unsupervised manner. work. Concretely, LDA utilizes class label information for
In regards to Fisher’s criterion for discriminative featse- 4 > 3. For the case of = 2, it follows that g € {—2na/n, 201 /n}

. . . . > 3. = 2, Ui —2n2/n,2n1/n
Iecthn, a Stra'thforWard app_roach can penqllze the dlbEC 4ng S, 9 = 0, wheren; andno denote the numbers of subjects from
function of Eq. [1) with the Fisher’s ratio defined as followsthe negative and positive subjects, respectively [27]], [{BL].

w's, W SH (xi,%;) = exp[
w
Rg = WIS, W (2) For simplicity, we setc = 1 in our experiments.

Ry =3 si5llWhx — W3 @

2
=l

, Wwhereo € R defines a kernel width.
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discriminative feature selection, while LPP preservesréi@  Algorithm 1: Pseudo code of solving Ed.(5).
tionship between a sample and its neighborhood, which he'pﬁnput: 70) =1, a(l) =1, 7 = 0.2, A1, Ao
increase the robustness to noise. Output: W

Our method can be discriminated from the previous meth-|pitialize ¢ = 1:
ods: (1) Unlike the previous sparse linear regressionebasg |pitialize W(1) as a random diagonal matrix;
feature selection method$ ]48].1[6], the proposed meth%drepeat

finds the class-discriminative (via Fisher's criterionflamise- , | while L(W (1)) > Gooit—1) (T 1) (W(E)), W(t)) do

resistant regression (via graph Laplacian), based on whéh . Setn(t — 1) =yt — 1) I+ vis a
select informative features. (2) Compared to subspacaifegr predefined constant (For details,
methods, such as Principal Component Analysis (PCA) [52], refer to Appendix B) */;

LDA [B4], and LPP [28], which all have an interpretational, end

limitation, the proposed method selects features in thgir@l ;| sety(¢) = n(t — 1);
space and thus allows intuitive investigation of the result | ComputeW (¢ + 1) = arg min Gy (W, V(1));
(3) Furthermore, while the conventional LDA finds at most w___

(¢ — 1)-dimension features for a-class classification task, 9 Computea(t + 1) = Hi“;“(t);
e.g.,2-dimension features in a 3-class classification task, Eq. | Compute Eq.[(T1);

(®) can theoretically select at mas{(in generald > cin the 11 until Eq. (3) converges

AD study) number of features.

whereu’(t) = w'(t) — .15V f(w'(t)). In Eq. [9), w'(t +1)
takes a closed form solutioh [49] as follows:

Eg. (3) is a convex but non-smooth function. In this work,
we solve it by designing a new accelerated proximal gradient
method [53]. We first conduct the proximal gradient method )
on Eq. () by defining 0, otherwise

Meanwhile, in order to accelerate the proximal gradient
method in Eq.[{7), we further introduce an auxiliary var@bl
V(t+ 1) as follows:

C. Optimization

A ;
| O e @),

wi* = if W' ()13 > 7y (10)

FOW) =4|Y - WTX|3,

+ Mtr(WTXLXTW), (6)
LIW) = f(W) + A2 W]l2,1. o
V(t+1)=W() + %(W(t +1) - W(t), (11)

where the coefficienty (¢t + 1) is usually set asx(t + 1) =

f(W) is convex and differentiable, whili, || W|2,1 is convex
but non-smooth[[53]. To optimizéW with the proximal
gradient method, we iteratively update it with the follogin

rule: LI 53,
. We summarize the pseudo code for the proposed sparse
W(it+1)= Gy (W, W(t)), _ . . LR
(t+1) R oL ®)) ) multi-task learning with subspace regularization in Algfon

[@ and prove the convergence of Algoritiiin 1 in Apperidix A.
where Gy (W, W(t)) — FOW(@)  + P 9 9 pp

(VAW (0), W = W(0) + 252 [W = W(0) 7+ 2 W]la,
VIW() = (XXT + N\ XLXYW(t) - XY, (-,-) is an - o
inner product operator(t) is determined by the line search Because we use afy ;-norm regularizer in our objective
(refer to [49] for detailed description), arV (¢) is the value function, after finding the optimal solution with Algorithm
of W obtained at the-iteration. [, we have some zero row vectors W. Thus, we discard

By ignoring the terms independent ¥ in Eq. [7), we can the features, whose regression coefficient vectors are, zero
’ by regarding them as being uninformative in representiig th

D. Feature Selection and Multi-Class Classification

rewrite It as target response variablés., class labels.
W(t+1) = m) (W(t)) After conducting feature selection, we build a multi-class
= arg H\l}%}n LW —U(1)|3 (8) classifier with a Support Vegtor Maching; (SVM) [54]. There
22 W o s are two approaches for multi-class classificatlon [55], $6ich
n(t) ' asone-against-resand one-against-oneThe one-against-rest

where U(t) = W(t) — -V f(W(1)) and oy (W(H)) is method buildsc binary classifiers (here is the number of

. () classes) with each binary classifief (i = 1,...,c) built
the Euclidean projection oW (¢) onto the convex sef(t), ; ! o .
pro) (*) eh(1) between thei-th class and the othefc — 1) classes, while

and .5 denotes a stepsize at théteration. Thanks to the ; e 1) o
S . i the one-against-one method buﬂél%‘Q— binary classifiers,
separability ofW (¢ + 1) on each rowj.e., w’(t+ 1), we can _ . : e .
undate the weiahts for each row individuallv: with each binary classifiet; ; (j = 1, ..., ¢) built between the
P g y: i-th class and th¢th class { # j). In terms of computational
; 1 P Ao ; efficiency and the training cost, we choose to use the one-
w'(t+1) = arg i §||W —u'(d)]z + %HW ll2, (9) against-one approach, which classifies a test samplavith
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the following rule: validation. The parameters that showed the best perforenanc
in the inner cross-validation were used in tesﬁing
K(X¢e) = arg mzax(Ej/im (Xte))- (12)
B. Classification Accuracy
V. EXPERIMENTAL RESULTS Table[l summarizes the classification accuracy of all com-

peting methods for two multi-class classification problems
The proposed method outperformed all competing methods
We conducted performance evaluation on a subset of tieall experiments. For example, in the 3-class classificati
ADNI dataset by including 51 AD, 43 MCI-C, 56 MCI- problem, our method improved the classification accuracy by
Ndd, and 52 NC subjects. We considered two multi-clags29% (MRI), 4.01% (PET), and 5.44% (MRI+PET), respec-
classification problems: (1) AD vs. MCI vs. NC (3-class) antively, compared to the best performances among the compet-
(2) AD vs. MCI-C vs. MCI-NC vs. NC (4-class). In the 3-classng methods with the respective modality. Meanwhile, in the
classification, we included both MCI-C and MCI-NC as MCl4-class classification problem, the classification improgsts
For the modality fusion of MRI and PET (MRI+PET), wewere even higher than the best with as much as 7.61% (MRI),
concatenated their features into a long vector of 186 featur4.44% (PET), and 5.08% (MRI+PET), respectively. Based
We employed the metrics of classification ACCuracy (ACC)n these results, we argue that the proposed discriminative
to evaluate the performance of all competing methods. and noise-resistant feature selection method helped eehan
We compared the proposed method with Fisher Score (Fetgssification performances.
[27], LPP [28], standard LDA[]34], and PCA [52]. FS is a It is noticeable from Table Il that all feature selection et
feature selection method that selects features based on @Hg (except for LDA) outperformed the method of exploiting
score ranking in the original feature space. Meanwhile,, LPidll features {.e., Original), which implies the effectiveness
LDA, and PCA are the Subspace |earning methods, which %feature selection in SOIVing thbigh-dimenSion and small
used to consider local topological structures, globalcstmes, Sample sizeproblem in classification. We found that LDA
and maximal variance of the samples, respectively. Forethexchieved the lowest classification accuracies among the com
four methods, we solved them with a generalized eigeReting methods. The main reason was that LDA projected the
decomposition method and determined dimensions based@iginal high dimensional feature space into only two oethr
their respective eigenvalues. We also compared the prdpogénensional subspace, respectively. In such low-dimewsio
method with other state-of-the-art feature selection wash SPace, the performance was very limited. On the other hand,
namely, Sparse Joint Classification and Regression (SEJR)the subspace learning methods, except for LDA, outperfdrme
and Multi-Modal Multi-Task (M3T) [6]. SICR uses a Iogisticthe feature selection method of FS. This verified the commtus
loss function and a least square loss function simultarigoughat subspace learning methods outperform feature sefecti
along with ant, ;-norm for multi-task feature selection. It hagnethods [[36]. Thus, it is reasonable to integrate subspace
been used to conduct multi-class feature selection. M3 ud@arning into the feature selection framework, which airhs a
multi-task learning with arf, ;-norm to select a common seténhancing the classification power of the proposed feature
of features for tasks of regression and binary classifinatio Selection modelin the multi-class AD diagnosis. Moreotfe,
order to show the validity of feature selection strategies, Proposed method was able to outperform both the convertiona
also conducted a classification task without feature select feature selection and subspace learning methods by camgbini
i.e., using all features (denoted as ‘Original’). the _tWO approaches. o _
We used a 10-fold cross-validation technique because of - I presents the parameters’ sensitivity by changing
the limited number of samples. Specifically, we first rangompalues ofC in SVM and @, A;) in Eq. (8). The results show
partitioned the whole dataset into 10 subsets and thentedledh@t our method was sensitive to the parameters within only a
one subset for testing and used the remaining 9 subsets §81/l range, and the best parameter combination was always
training. We repeated the whole process 10 times to avoid d8ynd in our experiments, such as = 10°, A; = 10, and
possible bias during dataset partitioning for cross-wigh. C = 3 for the 3-class classification task with MRI+PET data
The final result was computed by averaging the results frdfh Fig-[.(c). . o
all of the experiments. We used an LIBSVM toolb&x1[56] for Fmally,_we also copdqcted three binary cIa;&ﬁcaU_on gask
SVM training. For the model selectione., tuning paramet by following the definition of response variables in_J[27],
in Eq. (8) and the soft margin paraméér SVM, we further [34], [IE] (Please see the detal_l in Footnote 4) and reported
split the training dataset into 5 subsets for 5-fold innarssr  Feéspective results in Table IlI. Similarly, the proposectimoel

A. Experimental Settings

6 ) ) 9We also conducted 10-fold cross-validation technique teves on all

In this paper, MCI-C and MCI-NC denote the conversion stéts MCl  competing methods and then reported the averaging resutsexperiments.
to AD in 18 months of follow-up. Specially, MCI-C indicatethet subjects |t js worth noting that, for fair comparison, we optimize pareter values
converted from MCI to AD in 36 months, while MCI-NC subjectsen® for each competing method. Specifically, for all subspacéhous such as
not converted to AD in both 18 months and 36 months. The ren@in FS, LPP, PCA and LDA, we determine their optimal dimensiityndiased on
MCI subjects were partitioned into a group not converted 8nnfonths but  their respective eignevalues computed by the generaligmth-elecomposition
converted in 36 months and another group with observatiéorrvation in  method, according té [13]T27]. [28]. [34]. [52]. For spargarning methods

baseline but missing information in 18 months. such as SJCR and M3T, we optimize their sparsity parametecrbys-
A1 €{1075,...,10%} and A2 € {107°,...,10%} validating its value in the ranges dfl0—>,...,1,...,10°} (as in [B]) and
8C e {275,...,2%} {107, ...,102}, respectively.
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achieved the best results, outperforming all the competiBgd1% (MRI), 4.18% (PET), and 5.34% (MRI+PET) compared

methods. to M3T. For the 4-class classification problem, the proposed
method improved on average by 4.61% (MRI), 3.03% (PET),

V. DISCUSSION and 8.27% (MRI+PET) compared to FS, by 4.17% (MRI),

A. Role of LDA and LPP in the Proposed Method 2.04% (PET), and 4.42% (MRI+PET) compared to SJCR,

. . I . . and by 7.85% (MRI), 5.38% (PET), and 6.59% (MRI+PET)
In this section, we justify the rationale of applying bmhcompared to M3T.

::PIF;] and LD’S‘ n tthhe Fé&ptjssed frarlgework..To UE'[S) Aer;clj_\; we Interestingly, the classification accuracies of the featur
é” g cc_)trr1]S| te':h ﬁpp ?arset_ e?ressmnd(l ;h )LP lection methods began to decrease after a certain dimen-
g. () without the regufarization térm anc aiso tne ionality, from which we believe that the intrinsic class-

Sparse Re_gerssmn (LPP-SR) as Iﬂ1 (5) replavingith the iscriminative feature dimensionality for the classifioatis
0-1 encoding method for representing class labels. Table v 53]

summarizes the classification performance of both LDA-S
LDA'SE. Most Discriminative Brain Regions

and LPP-SR on two classification tasks. Obviously,

utilizes the discriminative information of the data comgzito _ ) _ _ )

M3T [6] but does not have the graph Laplacian regularization "W also investigated the potential of brain regions as

term compared to our method, while LPP-SR exploits t omarkers in AD diagnosis based on the selected frequency o

graph Laplacian regularization term compared to M3T bLt]}?e.ROIs and also_compared the results among the feature se-

does not have the LDA parts compared to our methods. €Ction method¥ with MRI+PET. Fig[3 shows the frequency
When comparing the performances summarized in Table9i the ROIs selected by the proposed method in two multi-

and Table[TV, we find that LDA-SR, on average, improveﬁ'ass classification problems. We also visualized _the _10t mos

frequently selected ROls by the proposed method in[fig. 4 and
Fig.[H. We compared the 10 most frequently selected ROIls

by 0.99% more than M3T. The results support the efficacy
applying discriminant analysis in the sparse linear regjoes
PpYying y P 3 ﬁ different feature selection methods in Table V and Table

model. We also observe that LPP-SR improved by 2.89% m
than M3T. This indicates the effectiveness in adding lo
information into the sparse linear regression model, wélge : . ' o
verifying that the LPP regularization term could succelggfu Monly selected regions in two multi-class classificatiosksa
characterize local topological structures of the data ia t{/ere uncus nght_(zﬂ hippocampal formation r.|ght (30),
least square regressidn [57]. Furthermore, LDA-SR and LPpIcus left (46), middle temporal gyrus left (48), hippocamp
SR, on average, improved by 1.38% and 2.37%, respectivdg/mation left (69), amygdala left (76), middle temporatgy
compared to SICR. right (80), and amygdala right (83) from MRI; precuneus

Recent studies have indicated that LDA was able to Captll]}ght (26), pLecuneug left (41), "T”d ar:gular gyruhs left (87)
the global distributional characteristics of the traingagnples, "o PET. These regions were also selected by the proposed

while LPP was able to preserve the local topological stiestu method and the competing methods with MRI+PET. Moreover,

of the data [[27], [[57], [[50]. In real applications, since théhese discriminative brain regions have been pointed otliten
inherent structure of data is often complex and a singPéeVious literatures on binary classification [6] and hagerb

characterization (either global or local) may not be able fS° Shown to be highly rlated to AD and MCl in clinical
sufficiently represent underlying patterns. Lastly, we enaiagnosisi[S9],[[60],[[61],[62]. In this regard, we can saptt

found that LDA-SR and LPP-SR were worse than our methdd€S€ regions can be the potential biomarkers for AD/MCI
as much as 4.76% and 2.86%, respectively. This indicateés tﬂggnoss. hod selected 50.5 and 34.3 1 .
combining both LDA and LPP in a unified framework can helR/I ur method selected, on average, 50.5 an -3 features for

find a more generalized solutiong., small bias) via LDA and . RI,*'PET (186 dimensional featurg_s) fpr the 3-class CIQSSi'
alleviate the sensitivity of the classifier to noises or ieusl f|c§1t|qn task _and the 4-class classification task, respeigtiv
(i.e., small variance) via LPP. It is mterestlng that the s.mall_er number of feature; was
selected in a 4-class classification tasks rather than in a 3-
) ) ) L class classification task, whereas the larger number airfest
B. Effects of Dimensionality on Classification Accuracy was selected from MRI rather than from PET in both 3-
We investigated the performance changes of the four coglass and 4-class classification problems. Furthermooen fr
peting feature selection methods., FS, SJICR, M3T, and Table[ll, we can see that MRI-based methods achieved better
the proposed method. We plotted the performance changegéiformance than the PET-based methods. Based on these
Fig.[2 by varying the dimensionality from 10 to 90 with arpbservations, it is likely that the structural MR image pd®s
increment of 10 for MRI and PET, and from 20 to 180 with afore discriminative information in identifying the clirdt
increment of 20 for MRI+PET, respectively. It is noteworthtatus related to AD, compared to the functional PET image.
that the proposed method consistently showed the best permere, we should mention that most of the methods selected
formance over the varying dimensions. For the 3-classielassimilar features from the top 10 brain regions, but our métho
fication problem, the proposed method reported performanc?0
improvements on average of 4.92% (MRI), 4.58% (PET), aqgatlz\lrgtietlgiiict)ze s?etthhec;/dts:a(rfrlegthoifpstctﬁé Iggréc;rédné;g) do not candue
5.35% (MRI+PET) compared to FS, by 4.04% (MRI), 3.19% 111he number in the parentheses represents an index of an ReaseP
(PET), and 3.24% (MRI+PET) compared to SJCR, and byfer to TabldTX for the full name of the respective ROI.

From Fig[3, Tablg€Y and Table VI, we can see that the com-
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Fig. 1: Classification accuracy on different parameterttireg i.e., C € [-5 : 5] (upward),\; € {107°,..., 1072} (rightward),
and Xy € {1075, ..., 1072} (leftward).
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Fig. 2: Classification ACCuracy (ACC) of using different niben of features in four feature selection methods, on a &scla
classification task (top) and a 4-class classification thekkdm), respectively. Note that the horizontal axis repres different
number of features selected by various feature selectichaus.
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TABLE II: Comparison of classification accuracy ((messtandard deviation)%) for two multi-class classificatiasks. The
boldface denotes the best performance for each modalitprmbined modalities in each classification task. The valngbe
parentheses indicated the average number of selectedadgdiy all the methods in total 100 runs.

Method ADIMCIINC ADIMCI-C/MCI-NC/NC
MRI PET MRI+PET MR PET MRI+PET

Orignal || 61.96E1.46 (93.0) | 57.99E1.75 (93.0) | 62.58E1.77 (186) || 49.13L1.62 (93.0) | 47.9851.54 (93.0) | 49.89-L1.56 (186)
FS 62.33£1.56 (46.2) | 60.11:1.54 (42.3) | 62.88:1.31 (72.3) || 50.87:1.73 (38.7) | 50.44£1.49 (37.1)| 51.761.58 (59.0)
PCA 63.71:1.30 (35.2) | 61.49:1.58 (38.5) | 64.61-1.60 (62.8) || 51.05:-1.64 (36.2) | 51.51:1.62 (35.0)| 52.20+1.60 (61.3)
LPP 63.21£1.91 (39.3) | 61.03:1.22 (32.8) | 64.35:1.29 (65.2) || 51.72:1.42 (33.2) | 51.39:1.58 (26.3)| 52.60£1.37 (53.2)
LDA 49.01:1.71 (2.00) | 39.02£1.23 (2.00) | 51.85k1.66 (2.00) || 35.25+1.65 (3.00) | 31.82£1.40 (3.00) | 36.32£1.64 (3.00)
SJCR || 64.02:1.36 (38.2) | 61.31:1.73 (29.2) | 67.66:1.63 (58.2) || 52.13t1.73 (28.1) | 51.85:1.68 (27.4)| 55.98:1.65 (49.4)
M3T 63.30£1.66 (36.1) | 61.32:1.90 (28.4) | 67.9::1.91 (55.5) || 51.89:1.61 (25.7) | 50.91:1.83 (26.6) | 54.47£1.67 (47.9)
Proposed|| 68.311.23 (32.7) | 65.50£1.50 (28.8) | 73.35:1.53 (50.5) || 59.74+1.52 (20.1) | 56.29+1.53 (19.7) | 61.06+1.40 (34.3)

TABLE Ill: Comparison of classification accuracy ((messtandard deviation)%) for three binary classification saskhe
boldface denotes the best performance for each modalitpmbmed modalities in each classification task.

Method AD vs. NC MCI vs. NC MCI-C vs. MCI-NC
MRI PET MRI+PET MRI PET MRI+PET MRI PET MRI+PET
Orignal 89.5+1.34 | 86.2:1.85 | 89.7£1.48 68.3£1.72 | 69.0£1.12 | 71.6:0.95 60.3+1.23 | 62.2:1.54 | 62.7£1.56
FS 90.2+1.24 | 88.5:0.48 | 91.5+1.48 75.9£1.44 | 74.9£1.04 | 75.9+0.48 64.5+1.47 | 63.4:0.48 | 65.1£1.10
PCA 91.2+0.89 | 89.2+-0.68 | 92.0+0.95 76.2+1.06 | 75.1£0.96 | 77.2+0.21 65.3+1.11 | 64.9:0.75 | 66.2£1.81
LPP 92.0+£1.91 | 90.2+:0.92 | 93.2£1.01 77.1+1.81 | 75.9£1.58 | 78.0+0.10 66.2+1.15 | 65.3:0.65 | 66.8+1.50
LDA 80.2+1.71 | 80.1+£0.94 | 86.2£1.11 65.3£1.01 | 66.5+1.40 | 68.2:0.14 59.3+1.01 | 58.3:0.59 | 59.1£0.90
SJCR 92.9+1.36 | 92.6:0.95 | 94.2£1.22 78.2£1.51 | 77.1+£0.85 | 78.6:0.95 68.0+£0.93 | 67.0+£0.65 | 68.6+0.86
M3T 92.6+1.12 | 92.3:1.48 | 94.0£2.14 78.1£1.15 | 77.2£1.47 | 78.4£0.15 67.1+£0.62 | 67.0£0.54 | 67.9£1.00
Proposed || 94.3+0.95 | 93.3+0.79 | 95.5+-1.05 79.3+1.10 | 79.1+£0.99 | 79.7+0.21 70.1+1.00 | 69.9-0.52 | 71.2+1.22

TABLE 1V: Classification accuracy ((meatstandard deviation)%) of the LDA-SR and the LPP-SR methloel Malues in the
parentheses indicated the average number of selecteddgdiy all the methods in total 100 runs.

Method ADIMCIINC AD/MCI-C/MCI-NC/NC
MRI PET MRI+PET MRI PET MRI+PET
[DA-SR || 64.2752.02 (36.3) | 62.02E2.45 (32.1) | 69.45L3.06 (52.3) || 52.53-1.80 (20.5) | 51.4552.36 (22.9) | 56.02E1.86 (39.2)
LPP-SR || 65.04:1.17 (30.2) | 63.96:1.56 (33.2) | 71.31:1.47 (49.8) || 55.45:1.48 (22.9) | 53.85£1.74 (23.2) | 57.54+1.37 (43.5)
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Fig. 3: Frequency of the selected ROIs by the proposed methitbdMRI+PET in a 3-class classification task (top) and a
4-class classification task (bottom), respectively. Fanegle, F'renquencyse = 100 in the upper left sub-figure means that
the 22nd ROI was selected 100 times over 100 repeats by tip@ged method.

selected them with the highest frequdHcyFor example, in the 3-class classification task with MRI+PET, M3T selected
the brain regions of middle temporal gyrus right (80) and

12In our experiments, we conducted 10-fold cross-validatiem times to amygd_ala “ght (83) from MRI (See the |i_iSt column of Table
obtain 100 groups of reduced feature sets, we define the tErequency’ V), which are ranked top 6 and top 8 with the frequency of

asFrenquency; = the-times of the I—th feature appeared In 100 groups . 9504 and 92%, respectively, while our method selected them
100%.
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TABLE V: Top 10 selected ROIs by feature selection methodshen3-class classification task. Note that in the last column
the values on the left-side of the semicolon denote the nsggelected from MRI, while the values next to the semicolon
indicate the regions selected from PET. Please refer toeT&bfor the full names of the ROls.

Method MRI PET MRI+PET
FS 17,30,46,48,63,69,76,80,83,84 11,12,18,26,41,48,62,79,83,90 30,46,48,69,76,80,83; 26,41,87
SJCR 22,30,46,63,64,69,76,79,80,8311,12,16,18,26,29,62,64,79,87 22,30,46,48,62,76,83; 16,41,87
M3T 17,22,30,46,48,61,64,69,76,83 11,18,26,29,35,41,48,64,79,87 25,30,46,62,76,80,83; 16,26,87
Proposed| 17,22,30,46,48,61,63,64,69,8311,12,26,29,35,41,62,64,79,97 22,30,46,48,61,69,76; 26,41,87

TABLE VI: Top 10 selected ROIs by feature selection methodshe 4-class classification task. Note that in the last calum
the values on the left-side of the semicolon denote the nsggelected from MRI, while the values next to the semicolon

indicate the regions selected from PET. Please refer toeT&bfor the full names of the ROls.

Method MRI PET MRI+PET
FS 17,30,46,48,61,69,76,80,83,84 12,18,26,38,41,47,48,62,86,87 30,46,48,69,76 80,83 ; 26,41,8[7
SJCR 30,43,48,56,63,64,76,80,83,84 12,16,18,26,35,55,41,62,79,87 22,46,48,64,69,76,90 ; 26,41,8/7
M3T 22,30,46,56,58,64,69,76,83,90 11,16,18,26,29,35,41,55,64,79 30,46,48,61,64,69,83 ; 26,41,87
Proposed| 17,30,43,46,48,63,64,69,76,8311,12,18,26,29,35,41,62,64,79 22,30,46,64,69,76,83 ; 26,41,8/7

(@) MRI (b) PET

Fig. 4: Top 10 selected regions in the 3-class classificaagk with MRI/PET.

(a) MRI

(b) PET

Fig. 5: Top 10 selected regions in the 4-class classificatisk with MRI/PET.

with the frequency of 99% and 99% for MRI, respectivelyiight (11) and anterior limb of internal capsule right (79)
but ranked them in top 11 and top 12, due to the highom PET. These regions may also be potential biomarkers
frequency (100%) of all other top 10 regions (7 for MRI andor multi-class AD diagnosis.

3 for PET). On the other hand, most of the methods also

selected other brain regions (different from the aforemoeed D. Large MRI Dataset from ADNI

potential biomarkers) as the top ones in our experimentsy su
as parahippocampal gyrus left (17), temporal pole left (63
and entorhinal cortex left (64) from MRI, and globus palladu

We further evaluate performance on a large MRI dataset
rom the ADNI cohort, including 186 AD, 118 MCI-C, 124
MCI-NC, and 226 NC. We used the same setting as in
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Method AD/MCI/NC AD/MCI-C/MCI-NC/NC \ 5 N 10
Orignal || 61.98E2.51 (93.0) 48.02-1.73 (93.0) 2 M 2 M
FS 62.56+1.79 (43.2) 50.80+1.09 (36.6)
PCA 64.76+1.61 (36.5) 51.49+1.58 (32.1) (@) 3-class (b) 4-class
LPP 64.32+1.49 (31.5) 55.84+1.64 (29.3) ] o )
LDA 49.13+1.65 (2.00) 45.7H-2.16 (3.00) Fig. 8: Classification accuracy on different parametersirsg
SICR || 64.871.78 (42.6) 53.98+1.57 (39.2) ie., C €[5 : 5] (upward),\; € {1075,...,10~2} (right-
M3T 64.75+1.16 (31.2) 52.32+1.34 (28.6) d d 105 10-21 (leftward
LDA-SR || 64.88:1.52 (35.8) 56.34+1.78 (24.8) ward), and\; € { R } (leftward).
LPP-SR || 65.13:0.76 (32.2) 57.19+1.67 (26.8)
Proposed|| 68.49+0.89 (29.3) 61.86+1.22 (23.2)
classification problems. In our future works, we will extehd
—FS—SJCR— M3T — Proposed proposed linear feature selection model to the nonlineataho
65 via kernel functions to capture complex patterns betweaimbr
70 60 images and the corresponding AD status.
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> > APPENDIX
c c . . . .
g 50 g 50 Regarding the convergence of the optimization, we can use
g g the following theorem proved in [53]:
s s 9 P -
% 20" 40 60 80 %20 40 60 80 Theorem 1. [63] Let {W ()} be the sequence generated by
AD/MCI/NC AD/MCI-C/MCI-NC/NC

Algorithm([3, then fo ¢ > 1, the foIIowmg holds
Fig. 7: Frequency of the selected ROIs by the proposed metho@W (t)) — L(W*) < M

(t+1)?
on a large MRI dataset in a 3-class classification task @&ft) wherey > 0 is a predefined constant? is the Lipschitz
a 4-class classification task (right), respectively. constant of the gradient of (W) in Eq. [8), andW* =

argn‘lﬂlznﬁ(W).

Section IV-A. The experimental results are reported in @abl Theoren{]l shows that the convergence rate of the proposed
IVIM and [VII] as well as Figureg16[17, and 8. Again, theaccelerated proximal gradient method(;;), wheret de-
proposed method achieved the best results, outperfornilingreotes an iteration number.

the competing methods. The feature selection strategies we

also helpful in enhancing classification accuracy, conghéoe
the ‘Original’ method.
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TABLE VIII: Top 10 selected ROIs by feature selection methadh a 3-class classification task (second column) and asé-cla
classification task (third column), respectively, on a éaMR| dataset. Refer to Tab[ellX for the full names of the ROls.

Method AD/MCI/NC AD/MCI-C/MCI-NC/NC
FS 17,30,46,48,63,69,76,79,83,84 17,22,46,48,61,69,76,80,83,90
SJCR 17,30,46,63,64,69,76,79,80,83 17,43,48,56,61,64,76,80,83,84
M3T 17,22,30,46,48,61,76,79,83,84 22,30,46,56,58,64,69,76,83,84
Proposed|| 17,30,46,48,61,63,64,69,76,8317,30,46,56,61,63,64,69,76,33

TABLE IX: The names of the selected ROIs in this work.

Index | ROl Name Index | ROl Name
5 precentral gyrus right 10 superior frontal gyrus right
11 globus palladus right 12 globus palladus left
15 putamen right 16 frontal lobe WM right
17 parahippocampal gyrus left 18 angular gyrus right
19 temporal pole right 20 subthalamic nucleus right
22 uncus right 25 frontal lobe WM left
26 precuneus right 29 posterior limb of internal capsule right
30 hippocampal formation right 35 anterior limb of internal capsule left
36 occipital lobe WM right 41 precuneus left
42 parietal lobe WM left 43 temporal lobe WM right
46 uncus left a7 middle occipital gyrus right
48 middle temporal gyrus left 53 postcentral gyrus left
55 precentral gyrus left 56 temporal lobe WM left
57 medial front-orbital gyrus left 61 perirhinal cortex left
62 inferior temporal gyrus left 63 temporal pole left
64 entorhinal cortex left 69 hippocampal formation left
73 postcentral gyrus right 76 amygdala left
79 anterior limb of internal capsule righfl 80 middle temporal gyrus right
82 corpus callosum 83 amygdala right
84 inferior temporal gyrus right 87 angular gyrus left
90 lateral occipitotemporal gyrus left
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