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Abstract—The high feature-dimension and low sample-size
problem is one of the major challenges in the study of computer-
aided Alzheimer’s Disease (AD) diagnosis. To circumvent this
problem, feature selection and subspace learning have been
playing core roles in literature. Generally, feature selection
methods are preferable in clinical applications due to their ease
for interpretation, but subspace learning methods can usually
achieve more promising results. In this paper, we combine two
different methodological approaches to discriminative feature
selection in a unified framework. Specifically, we utilize two
subspace learning methods, namely, Linear Discriminant Anal-
ysis (LDA) and Locality Preserving Projection (LPP), which
have proven their effectiveness in a variety of fields, to select
class-discriminative and noise-resistant features. Unlike previous
methods in neuroimaging studies that mostly focused on a binary
classification, the proposed feature selection method is further
applicable for multi-class classification in AD diagnosis.Extensive
experiments on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset show the effectiveness of the proposed method
over other state-of-the-art methods.

Index Terms—Alzheimer’s disease, feature selection, sparse
coding, subspace learning, multi-class classification, mild cog-
nitive impairment, neuroimaging data analysis

I. I NTRODUCTION

RECENTLY, neurodegenerative diseases, such as
Alzheimer’s Disease (AD), Parkinson’s disease and

Huntington’s disease, have become highly prevalent within
societies. Among these neurodegenerative diseases, AD is
the most prevalent and was reported to be the sixth leading
cause of death in the United States [1]. Hence, many research
groups have devoted their efforts to understand underlying
biological or physiological mechanisms behind AD.

Since neuroimaging tools, such as Magnetic Resonance
Imaging (MRI) and Positron Emission Topography (PET),
have been successfully applied to investigate neurophysiolog-
ical characteristics of AD, machine learning techniques have
also been greatly devised for analyzing neuroimaging data for
AD diagnosis [2], [3], [4], [5], [6], [7], [8]. For example,
Cuingnet et al. devised a general Supprot Vector Machine
(SVM) framework for the study of AD [9], and Wanget
al. proposed a sparse Bayesian multi-task learning algorithm
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for improving the prediction performance of AD diagnosis
[10].

In AD studies, the feature dimensionality is high in nature
[11], [12], [4], [13]. Thus, dimensionality reduction (such as
subspace learning [14], [15] and feature selection [16], [17],
[18], [19], [20]) has become one of the core steps in the
field of machine learning. For example, Salas-Gonzalezet
al. employed the statisticalt-test method to select voxels of
interest for AD diagnosis [17], while Zhouet al. combined
Least Absolute Shrinkage and Selection Operator (LASSO)
[21] and group sparse LASSO [22] to predict AD status
[23], [24]. Feature selection methods, such as statisticalt-
test and sparse linear regression, find the informative feature
subset from the original feature set [5], [6], [23], [25], [26],
while subspace learning methods, such as Fisher’s Linear
Discriminant Analysis (LDA) [27] and Locality Preserving
Projection (LPP) [28], transform original features into a low-
dimensional space [29]. In regards to the interpretabilityof
the results, feature selection methods are preferable compared
to subspace learning methods, particularly in neuroimaging
studies, as selected features directly link anatomical struc-
tures and thus provide an intuitive understanding. Meanwhile,
subspace learning methods have recently presented promising
performances in various applications [30], [15], [31], [32],
[33]. For example, Suiet al. applied a number of subspace
learning methods, such as Independent Component Analysis
(ICA) [34], Canonical Correlation Analysis (CCA) [35], [36],
and Partial Least Squares (PLS) [37], [38] for medical image
analysis [33]. Liuet al. employed Local Linear Embedding
(LLE) [39] to reduce feature dimensionality of multivariate
MRI data to show that subspace learning methods are superior
to feature selection methods, such ast-test and Chi-squared,
in AD classification [15].

From a clinical standpoint, a model for AD/MCI diagnosis
should be interpretable and able to accurately identify thedis-
ease status of a subject; therefore, it is reasonable to combine
feature selection and subspace learning in a systematic manner.
One intuitive way to do this is to design a two-stage method,
i.e., subspace learning before feature selection or subspace
learning preceded by feature selection. However, because these
approaches perform the methods individually, the results are
likely to be suboptimal. It may be interesting to integrate
them in a unified framework, where we can complement the
limitations of each method.
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In this paper, we propose a novel feature selection method1

to select class-discriminative and noise-resistant features from
the original feature set by utilizing characteristics of subspace
learning methods. Specifically, we inject two subspace learning
methods (such as LDA [27] and LPP [28]) into a sparse
least square regression framework. The rationale of using
both LDA and LPP in our formulation is that LDA considers
both the global information inherent in the observations and
the class label information, with the goal of selecting class-
discriminative features [27], [34], [41], while LPP preserves
the neighborhood structure of each sample to reduce the
adverse effect of noises or outliers [28], [36]. Mathematically,
it is very similar to conduct feature selection by the sparse
feature selection framework, except that the original datagets
“adjusted” by the incorporation of the global information
(i.e., LDA) and local information (i.e., LPP). Both LDA and
LPP enable the proposed framework (with an intuitive and
easy way) to select class-discriminative and noise-resistant
features.

II. M ATERIALS AND IMAGE PREPROCESSING

In this work, we used the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) dataset for performance evaluation.The
ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Adminis-
tration (FDA), private pharmaceutical companies and non-
profit organizations, with a $60 million 5-year publicprivate
partnership. The primary goal of ADNI was to demonstrate
whether MRI, PET, other biological markers, and clinical
and neuropsychological assessment could be combined to
measure the progression of MCI and early AD. As a result,
approximately 800 adults, aged 55 to 90, participated in this
research.

A. Subjects

We describe the general inclusion/exclusion criteria of the
subjects as follows: First, the MMSE (Mini-Mental State
Examination) score of each NC subject is between 24 and
30 with Clinical Dementia Rating (CDR) of 0. Moreover, the
NC subject is non-depressed, non MCI, and non-demented.
Second, the MMSE score of each MCI subject is between 24
and 30 with CDR of 0.5. Moreover, each MCI subject is an
absence of significant level of impairment in other cognitive
domains, essentially preserved activities of daily living, and
an absence of dementia. Last, the MMSE score of each Mild
AD subject is between 20 and 26 with the CDR of 0.5 or 1.0.

We used baseline MRI and PET images obtained from
202 subjects, which included 51 AD subjects, 52 Normal
Control (NC) subjects, and 99 MCI subjects. Moreover, 99
MCI subjects included 43 MCI Converters (MCI-C) and 56
MCI Non-Converters (MCI-NC). The detailed demographic
information is summarized in Table I.

1This work focuses on multi-class classification of AD diagnosis witheither
single-modality dataor multi-modality data, different from our previous work
[40], which focused on joint regression and classification with only multi-
modality data.

B. Image Preprocessing

We conducted image preprocessing separately for MRI and
PET images of the selected 202 subjects. We downloaded
raw Digital Imaging and COmmunications in Medicine (DI-
COM) MRI scans from the ADNI website2. All structural
MR images used in this paper were acquired from 1.5T
scanners. These MR images were already reviewed for quality,
and automatically corrected for spatial distortion causedby
gradient nonlinearity and B1 field inhomogeneity. All PET
images were collected across a variety of scanners with
protocols individualized for each scanner. We used 18-Fluoro-
DeoxyGlucose (FDG) PET images. Also, we removed cere-
bellum in our preprocessing pipeline, as we mainly focused
on brain regions in cerebrum for this study. These PET images
were first acquired 30-60 minutes post-injection, and were
then averaged, spatially aligned, interpolated to a standard
voxel size, intensity normalized, followed by smoothing to
a common resolution of 8mm full width at half maximum.
Specifically, the image processing was conducted by the
following steps: First, we performed anterior commissure-
posterior commissure correction using MIPAV software3 for
all images, and then used the N3 algorithm [42] to correct
the intensity inhomogeneity. Second, we extracted a brain
on all structural MR images using a robust skull-stripping
method [43], and then conducted manual edition and intensity
inhomogeneity correction (if necessary). Third, we removed
cerebellum based on registration and intensity inhomogeneity
correction by repeating N3 for three times, and then we used
the FAST algorithm in the FSL package [44] to segment
structural MR images into three different tissues: Gray Matter
(GM), White Matter (WM), and CerebroSpinal Fluid (CSF).
Next, we used HAMMER [45] for registration and then dis-
sected images into 93 Regions-Of-Interest (ROIs) by labeling
them based on the Jacob template [46]. After that, for each of
all 93 ROIs in the labeled image of a subject, we computed the
GM tissue volumes as features. For each subject, we aligned
the PET images to their respective MR T1 images using affine
registration and then computed the average intensity of each
ROI as a feature. So, we extracted 93 features from MRI and
93 features from PET for each subject.

III. M ETHOD

A. Notations

Throughout this paper, we denote matrices as boldface
uppercase letters, vectors as boldface lowercase letters,and
scalars as normal italic letters, respectively. For a matrix
X = [xij ], its i-th row andj-th column are denoted asxi and
xj , respectively. Also, we denote the Frobenius norm andℓ2,1-

norm of a matrixX as‖X‖F =
√

∑

i ‖xi‖22 =
√

∑

j ‖xj‖22
and ‖X‖2,1 =

∑

i ‖xi‖2 =
∑

i

√

∑

j x
2
ij , respectively. We

further denote the transpose operator, the trace operator,and
the inverse of a matrixX as X

T , tr(X), andX
−1, respec-

tively.

2http://www.loni.usc.edu/ADNI
3http://mipav.cit.nih.gov/clickwrap.php.

http://www.loni.usc.edu/ADNI
http://mipav.cit.nih.gov/clickwrap.php
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TABLE I: Demographic information of the subjects. (MMSE: Mini-Mental State Examination; ADAS-Cog: Alzheimer’s Disease
Assessment Scale-Cognitive subscale; MCI-C: MCI Converters; MCI-NC: MCI Non-Converters)

AD NC MCI-C MCI-NC

Female/male 18/33 18/34 15/28 17/39
Age 75.2± 7.4 75.3± 5.2 75.8± 6.8 74.8± 7.1

Education 14.7± 3.6 15.8± 3.2 16.1± 2.6 15.8± 3.2
MMSE 23.8± 2.0 29.0± 1.2 26.6± 1.7 28.4± 1.7

ADAS-Cog 18.3± 6.0 7.3 ± 3.2 12.9± 3.9 10.2± 4.3

B. Sparse Multi-Task Learning with Subspace Regularization

Let X ∈ R
d×n denote a feature matrix, whered andn are,

respectively, the numbers of feature variables and subjects,
and Y ∈ R

c×n denote a class indicator matrix with 0-1
encoding, wherec is the number of classes. As for the feature
selection, we use a sparse regression model, which has been
successfully used in various applications [47], [48], [5],[10].
However, since the class indicator matrixY includes multiple
response variables, a regression model would find a regression
coefficient vector for each response variable individually. In
this regard, we regularize a least square regression model with
an ℓ2,1-norm to find the features commonly used across the
regression tasks as follows:

min
W

1

2
‖Y −W

T
X‖2F + λ‖W‖2,1 (1)

whereW ∈ R
d×c is a regression coefficient matrix andλ is a

sparsity control parameter. Theℓ2,1-norm ‖W‖2,1 penalizes
the coefficients in the same row ofW together for joint
selection or unselection in regressing the response variables
in Y. In Eq. (1), the optimal solution assigns a relatively
large weight to the informative features and zero or a small
weight to uninformative or less informative features [47],[49].
By viewing the regression of each response variable as one
task, we call Eq. (1) asmulti-task learning, and Argyriouet
al. have shown that Eq. (1) successfully utilizes the correlation
of different classes [47].

It is shown that LDA exploits the distributional character-
istics that help find a generalized solution (i.e., small bias),
whereas LPP alleviates the sensitivity of the solution to noises
or outliers in the training samples (i.e., small variance) [27],
[50]. However, in its current form,i.e.,Eq. (1), we cannot guar-
antee the class-discriminative power of selected featuresand
the preservation of the neighborhood structure of data points,
which are important characteristics to enhance classification
performance. To resolve this drawback, we propose a novel
sparse multi-task learning method by combining the methods
of discriminant analysis and topological structure preservation
jointly in a sparse regression framework. Specifically, we
utilize a Fisher’s LDA [34] that considers the global sample
distributions by means of the ratio between within-class-
variance and between-class-variance in a supervised manner.
We also use an LPP [28] by constructing a Laplacian matrix
to efficiently use the local topological relation among samples
in an unsupervised manner.

In regards to Fisher’s criterion for discriminative feature se-
lection, a straightforward approach can penalize the objective
function of Eq. (1) with the Fisher’s ratio defined as follows:

RG =
W

T
ΣwW

WTΣbW
(2)

whereΣw andΣb denote, respectively, the within-class co-
variance and the between-class covariance matrices. However,
due to the non-convexity of Eq. (2), it is not trivial to find
an optimal solution of the corresponding objective function.
Interestingly, we can reformulate this multi-class LDA in a
linear regression framework by replacing the original label
indicator matrix Y with a specific class indicator matrix
Ŷ = [ŷik] defined as follows:

ŷik =

{ √

n
nk

−
√

nk

n
, if l(xi) = k

−
√

nk

n
, otherwise

(3)

wherel(xi) denotes the class label ofxi andnk is the number
of training samples of the classk4. That is, using a class indi-
cator matrixŶ defined in Eq. (3), we can naturally incorporate
the multivariate discriminant analysis of an embedding method
to the sparse regression framework [51]. It is noteworthy that
unlike the conventional LDA that projects features into an
embedding space, in which it is generally difficult to interpret
or investigate the results, we still work in the the originalinput
space.

With respect to topological relation among samples,i.e., lo-
cal structural information, we use a graph Laplacian by
defining a similarity matrixS = [sij ] ∈ R

n×n between every
pair of sample pointsxi andxj with a heat kernel5 and define
a regularization term as follows:

RL =
n
∑

i,j

sij‖WT
xi −W

T
xj‖22

= tr(WT
XLX

T
W)

(4)

whereL = D − S andD ∈ R
n×n is a diagonal matrix with

its diagonal elements defined asdii =
∑

j sij .

By using the newly defined class indicator matrixŶ in Eq.
(3) as the target response values and the locality preserving
constraint in Eq. (4), we formulate our objective function as
follows:

min
W

1

2
‖Ŷ −W

T
X‖2F + λ1tr(W

T
XLX

T
W)

+ λ2‖W‖2,1 (5)

where λ1 and λ2 are the regularization tuning parameters.
Here, we should note that Eq. (5) efficiently combines the
subspace learning methods,i.e., LDA and LPP, and a sparse
regression-based feature selection method in a unified frame-
work. Concretely, LDA utilizes class label information for

4k ≥ 3. For the case ofk = 2, it follows that ŷi ∈ {−2n2/n, 2n1/n}
and

∑n
i=1 ŷi = 0, wheren1 andn2 denote the numbers of subjects from

the negative and positive subjects, respectively [27], [34], [51].

5H(xi,xj) = exp

[

−
‖xi−xj‖

2

σ

]

, whereσ ∈ R
+ defines a kernel width.

For simplicity, we setσ = 1 in our experiments.
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discriminative feature selection, while LPP preserves therela-
tionship between a sample and its neighborhood, which helps
increase the robustness to noise.

Our method can be discriminated from the previous meth-
ods: (1) Unlike the previous sparse linear regression-based
feature selection methods [48], [6], the proposed method
finds the class-discriminative (via Fisher’s criterion) and noise-
resistant regression (via graph Laplacian), based on whichwe
select informative features. (2) Compared to subspace learning
methods, such as Principal Component Analysis (PCA) [52],
LDA [34], and LPP [28], which all have an interpretational
limitation, the proposed method selects features in the original
space and thus allows intuitive investigation of the results.
(3) Furthermore, while the conventional LDA finds at most
(c − 1)-dimension features for ac-class classification task,
e.g.,2-dimension features in a 3-class classification task, Eq.
(5) can theoretically select at mostd (in general,d ≫ c in the
AD study) number of features.

C. Optimization

Eq. (5) is a convex but non-smooth function. In this work,
we solve it by designing a new accelerated proximal gradient
method [53]. We first conduct the proximal gradient method
on Eq. (5) by defining

f(W) = 1
2‖Ŷ −W

T
X‖2F

+ λ1tr(W
T
XLX

T
W),

L(W) = f(W) + λ2‖W‖2,1.
(6)

f(W) is convex and differentiable, whileλ2‖W‖2,1 is convex
but non-smooth [53]. To optimizeW with the proximal
gradient method, we iteratively update it with the following
rule:

W(t+ 1) = argmin
W

Gη(t)(W,W(t)), (7)

where Gη(t)(W,W(t)) = f(W(t)) +

〈∇f(W(t)),W −W(t)〉+ η(t)
2 ‖W−W(t)‖2F +λ2‖W‖2,1,

∇f(W(t)) = (XX
T + λ1XLX

T )W(t) −XŶ
T

, 〈·, ·〉 is an
inner product operator,η(t) is determined by the line search
(refer to [49] for detailed description), andW(t) is the value
of W obtained at thet-iteration.

By ignoring the terms independent ofW in Eq. (7), we can
rewrite it as

W(t+ 1) = πη(t)(W(t))
= argmin

W

1
2‖W −U(t)‖22
+ λ2

η(t)‖W‖2,1
(8)

whereU(t) = W(t) − 1
η(t)∇f(W(t)) and πη(t)(W(t)) is

the Euclidean projection ofW(t) onto the convex setη(t),
and 1

η(t) denotes a stepsize at thet-iteration. Thanks to the
separability ofW(t+1) on each row,i.e.,wi(t+1), we can
update the weights for each row individually:

w
i(t+ 1) = argmin

wi

1

2
‖wi − u

i(t)‖22 +
λ2

η(t)
‖wi‖2, (9)

Algorithm 1: Pseudo code of solving Eq. (5).

Input : η(0) = 1, α(1) = 1, γ = 0.2, λ1, λ2;
Output : W;

1 Initialize t = 1;
2 Initialize W(1) as a random diagonal matrix;
3 repeat
4 while L(W(t)) > Gη(t−1)(πη(t−1)(W(t)),W(t)) do
5 Setη(t− 1) = γη(t− 1) /* γ is a

predefined constant (For details,
refer to Appendix A) */;

6 end
7 Setη(t) = η(t− 1);
8 ComputeW(t+ 1) = argmin

W

Gη(t)(W,V(t));

9 Computeα(t+ 1) =
1+

√
1+4α(t)2

2 ;
10 Compute Eq. (11);
11 until Eq. (5) converges;

whereui(t) = w
i(t)− 1

η(t)∇f(wi(t)). In Eq. (9),wi(t+ 1)
takes a closed form solution [49] as follows:

w
i∗ =











(1− λ2

η(t)‖u(t)i‖2

2

)ui(t),

if ‖ui(t)‖22 > λ2

η(t)

0, otherwise.

(10)

Meanwhile, in order to accelerate the proximal gradient
method in Eq. (7), we further introduce an auxiliary variable
V(t+ 1) as follows:

V(t+ 1) = W(t) +
α(t) − 1

α(t + 1)
(W(t+ 1)−W(t)), (11)

where the coefficientα(t + 1) is usually set asα(t + 1) =
1+

√
1+4α(t)2

2 [53].
We summarize the pseudo code for the proposed sparse

multi-task learning with subspace regularization in Algorithm
1 and prove the convergence of Algorithm 1 in Appendix A.

D. Feature Selection and Multi-Class Classification

Because we use anℓ2,1-norm regularizer in our objective
function, after finding the optimal solution with Algorithm
1, we have some zero row vectors inW. Thus, we discard
the features, whose regression coefficient vectors are zero,
by regarding them as being uninformative in representing the
target response variables,i.e., class labels.

After conducting feature selection, we build a multi-class
classifier with a Support Vector Machines (SVM) [54]. There
are two approaches for multi-class classification [55], [6], such
asone-against-restandone-against-one. The one-against-rest
method buildsc binary classifiers (herec is the number of
classes) with each binary classifierκi (i = 1, ..., c) built
between thei-th class and the other(c − 1) classes, while
the one-against-one method buildsc(c−1)

2 binary classifiers,
with each binary classifierκi,j (j = 1, ..., c) built between the
i-th class and thej-th class (i 6= j). In terms of computational
efficiency and the training cost, we choose to use the one-
against-one approach, which classifies a test samplexte with
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the following rule:

κ(xte) = argmax
i

(Σjκi,j(xte)). (12)

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

We conducted performance evaluation on a subset of the
ADNI dataset by including 51 AD, 43 MCI-C, 56 MCI-
NC6, and 52 NC subjects. We considered two multi-class
classification problems: (1) AD vs. MCI vs. NC (3-class) and
(2) AD vs. MCI-C vs. MCI-NC vs. NC (4-class). In the 3-class
classification, we included both MCI-C and MCI-NC as MCI.
For the modality fusion of MRI and PET (MRI+PET), we
concatenated their features into a long vector of 186 features.
We employed the metrics of classification ACCuracy (ACC)
to evaluate the performance of all competing methods.

We compared the proposed method with Fisher Score (FS)
[27], LPP [28], standard LDA [34], and PCA [52]. FS is a
feature selection method that selects features based on the
score ranking in the original feature space. Meanwhile, LPP,
LDA, and PCA are the subspace learning methods, which are
used to consider local topological structures, global structures,
and maximal variance of the samples, respectively. For these
four methods, we solved them with a generalized eigen-
decomposition method and determined dimensions based on
their respective eigenvalues. We also compared the proposed
method with other state-of-the-art feature selection methods,
namely, Sparse Joint Classification and Regression (SJCR) [5]
and Multi-Modal Multi-Task (M3T) [6]. SJCR uses a logistic
loss function and a least square loss function simultaneously,
along with anℓ2,1-norm for multi-task feature selection. It has
been used to conduct multi-class feature selection. M3T uses
multi-task learning with anℓ2,1-norm to select a common set
of features for tasks of regression and binary classification. In
order to show the validity of feature selection strategies,we
also conducted a classification task without feature selection,
i.e., using all features (denoted as ‘Original’).

We used a 10-fold cross-validation technique because of
the limited number of samples. Specifically, we first randomly
partitioned the whole dataset into 10 subsets and then selected
one subset for testing and used the remaining 9 subsets for
training. We repeated the whole process 10 times to avoid any
possible bias during dataset partitioning for cross-validation.
The final result was computed by averaging the results from
all of the experiments. We used an LIBSVM toolbox [56] for
SVM training. For the model selection,i.e., tuning parameters7

in Eq. (5) and the soft margin parameter8 in SVM, we further
split the training dataset into 5 subsets for 5-fold inner cross-

6In this paper, MCI-C and MCI-NC denote the conversion statusfrom MCI
to AD in 18 months of follow-up. Specially, MCI-C indicated the subjects
converted from MCI to AD in 36 months, while MCI-NC subjects were
not converted to AD in both 18 months and 36 months. The remaining
MCI subjects were partitioned into a group not converted in 18 months but
converted in 36 months and another group with observation information in
baseline but missing information in 18 months.

7λ1 ∈ {10−5, ...,102} andλ2 ∈ {10−5, ...,102}
8C ∈ {2−5, ...,25}

validation. The parameters that showed the best performance
in the inner cross-validation were used in testing9.

B. Classification Accuracy

Table II summarizes the classification accuracy of all com-
peting methods for two multi-class classification problems.
The proposed method outperformed all competing methods
in all experiments. For example, in the 3-class classification
problem, our method improved the classification accuracy by
4.29% (MRI), 4.01% (PET), and 5.44% (MRI+PET), respec-
tively, compared to the best performances among the compet-
ing methods with the respective modality. Meanwhile, in the
4-class classification problem, the classification improvements
were even higher than the best with as much as 7.61% (MRI),
4.44% (PET), and 5.08% (MRI+PET), respectively. Based
on these results, we argue that the proposed discriminative
and noise-resistant feature selection method helped enhance
classification performances.

It is noticeable from Table II that all feature selection meth-
ods (except for LDA) outperformed the method of exploiting
full features (i.e., Original), which implies the effectiveness
of feature selection in solving thehigh-dimension and small
sample sizeproblem in classification. We found that LDA
achieved the lowest classification accuracies among the com-
peting methods. The main reason was that LDA projected the
original high dimensional feature space into only two or three
dimensional subspace, respectively. In such low-dimensional
space, the performance was very limited. On the other hand,
the subspace learning methods, except for LDA, outperformed
the feature selection method of FS. This verified the conclusion
that subspace learning methods outperform feature selection
methods [36]. Thus, it is reasonable to integrate subspace
learning into the feature selection framework, which aims at
enhancing the classification power of the proposed feature
selection model in the multi-class AD diagnosis. Moreover,the
proposed method was able to outperform both the conventional
feature selection and subspace learning methods by combining
the two approaches.

Fig. 1 presents the parameters’ sensitivity by changing
values ofC in SVM and (λ1, λ2) in Eq. (5). The results show
that our method was sensitive to the parameters within only a
small range, and the best parameter combination was always
found in our experiments, such asλ1 = 103, λ2 = 10, and
C = 3 for the 3-class classification task with MRI+PET data
in Fig. 1.(c).

Finally, we also conducted three binary classification tasks
by following the definition of response variables in [27],
[34], [51] (Please see the detail in Footnote 4) and reported
respective results in Table III. Similarly, the proposed method

9We also conducted 10-fold cross-validation technique ten times on all
competing methods and then reported the averaging results of all experiments.
It is worth noting that, for fair comparison, we optimize parameter values
for each competing method. Specifically, for all subspace methods such as
FS, LPP, PCA and LDA, we determine their optimal dimensionality based on
their respective eignevalues computed by the generalized eigen-decomposition
method, according to [13], [27], [28], [34], [52]. For sparse learning methods
such as SJCR and M3T, we optimize their sparsity parameter bycross-
validating its value in the ranges of{10−5, ...,1, ...,105} (as in [5]) and
{10−5, ...,102}, respectively.
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achieved the best results, outperforming all the competing
methods.

V. D ISCUSSION

A. Role of LDA and LPP in the Proposed Method

In this section, we justify the rationale of applying both
LPP and LDA in the proposed framework. To this end, we
further consider the LDA Sparse Regression (LDA-SR) as
Eq. (5) without the LPP regularization term and also the LPP
Sparse Regerssion (LPP-SR) as Eq. (5) replacingŶ with the
0-1 encoding method for representing class labels. Table IV
summarizes the classification performance of both LDA-SR
and LPP-SR on two classification tasks. Obviously, LDA-SR
utilizes the discriminative information of the data compared to
M3T [6] but does not have the graph Laplacian regularization
term compared to our method, while LPP-SR exploits the
graph Laplacian regularization term compared to M3T but
does not have the LDA parts compared to our methods.

When comparing the performances summarized in Table II
and Table IV, we find that LDA-SR, on average, improved
by 0.99% more than M3T. The results support the efficacy of
applying discriminant analysis in the sparse linear regression
model. We also observe that LPP-SR improved by 2.89% more
than M3T. This indicates the effectiveness in adding local
information into the sparse linear regression model, whilealso
verifying that the LPP regularization term could successfully
characterize local topological structures of the data in the
least square regression [57]. Furthermore, LDA-SR and LPP-
SR, on average, improved by 1.38% and 2.37%, respectively,
compared to SJCR.

Recent studies have indicated that LDA was able to capture
the global distributional characteristics of the trainingsamples,
while LPP was able to preserve the local topological structures
of the data [27], [57], [50]. In real applications, since the
inherent structure of data is often complex and a single
characterization (either global or local) may not be able to
sufficiently represent underlying patterns. Lastly, we have
found that LDA-SR and LPP-SR were worse than our method
as much as 4.76% and 2.86%, respectively. This indicates that
combining both LDA and LPP in a unified framework can help
find a more generalized solution (i.e.,small bias) via LDA and
alleviate the sensitivity of the classifier to noises or outliers
(i.e., small variance) via LPP.

B. Effects of Dimensionality on Classification Accuracy

We investigated the performance changes of the four com-
peting feature selection methods,i.e., FS, SJCR, M3T, and
the proposed method. We plotted the performance changes in
Fig. 2 by varying the dimensionality from 10 to 90 with an
increment of 10 for MRI and PET, and from 20 to 180 with an
increment of 20 for MRI+PET, respectively. It is noteworthy
that the proposed method consistently showed the best per-
formance over the varying dimensions. For the 3-class classi-
fication problem, the proposed method reported performance
improvements on average of 4.92% (MRI), 4.58% (PET), and
5.35% (MRI+PET) compared to FS, by 4.04% (MRI), 3.19%
(PET), and 3.24% (MRI+PET) compared to SJCR, and by

5.01% (MRI), 4.18% (PET), and 5.34% (MRI+PET) compared
to M3T. For the 4-class classification problem, the proposed
method improved on average by 4.61% (MRI), 3.03% (PET),
and 8.27% (MRI+PET) compared to FS, by 4.17% (MRI),
2.04% (PET), and 4.42% (MRI+PET) compared to SJCR,
and by 7.85% (MRI), 5.38% (PET), and 6.59% (MRI+PET)
compared to M3T.

Interestingly, the classification accuracies of the feature
selection methods began to decrease after a certain dimen-
sionality, from which we believe that the intrinsic class-
discriminative feature dimensionality for the classification is
low [58].

C. Most Discriminative Brain Regions

We also investigated the potential of brain regions as
biomarkers in AD diagnosis based on the selected frequency of
the ROIs and also compared the results among the feature se-
lection methods10 with MRI+PET. Fig. 3 shows the frequency
of the ROIs selected by the proposed method in two multi-
class classification problems. We also visualized the 10 most
frequently selected ROIs by the proposed method in Fig. 4 and
Fig. 5. We compared the 10 most frequently selected ROIs
by different feature selection methods in Table V and Table
VI.

From Fig. 3, Table V and Table VI, we can see that the com-
monly selected regions in two multi-class classification tasks
were uncus right (22)11, hippocampal formation right (30),
uncus left (46), middle temporal gyrus left (48), hippocampal
formation left (69), amygdala left (76), middle temporal gyrus
right (80), and amygdala right (83) from MRI; precuneus
right (26), precuneus left (41), and angular gyrus left (87)
from PET. These regions were also selected by the proposed
method and the competing methods with MRI+PET. Moreover,
these discriminative brain regions have been pointed out inthe
previous literatures on binary classification [6] and have been
also shown to be highly related to AD and MCI in clinical
diagnosis [59], [60], [61], [62]. In this regard, we can say that
these regions can be the potential biomarkers for AD/MCI
diagnosis.

Our method selected, on average, 50.5 and 34.3 features for
MRI+PET (186 dimensional features) for the 3-class classi-
fication task and the 4-class classification task, respectively.
It is interesting that the smaller number of features was
selected in a 4-class classification tasks rather than in a 3-
class classification task, whereas the larger number of features
was selected from MRI rather than from PET in both 3-
class and 4-class classification problems. Furthermore, from
Table II, we can see that MRI-based methods achieved better
performance than the PET-based methods. Based on these
observations, it is likely that the structural MR image provides
more discriminative information in identifying the clinical
status related to AD, compared to the functional PET image.

Here, we should mention that most of the methods selected
similar features from the top 10 brain regions, but our method

10Note that the methods (such as PCA, LPP, and LDA) do not conduct
feature selection, so they cannot output the selected regions.

11The number in the parentheses represents an index of an ROI. Please
refer to Table IX for the full name of the respective ROI.
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Fig. 1: Classification accuracy on different parameters’ setting, i.e.,C ∈ [−5 : 5] (upward),λ1 ∈ {10−5, ..., 10−2} (rightward),
andλ2 ∈ {10−5, ..., 10−2} (leftward).
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Fig. 2: Classification ACCuracy (ACC) of using different number of features in four feature selection methods, on a 3-class
classification task (top) and a 4-class classification task (bottom), respectively. Note that the horizontal axis represents different
number of features selected by various feature selection methods.
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TABLE II: Comparison of classification accuracy ((mean±standard deviation)%) for two multi-class classification tasks. The
boldface denotes the best performance for each modality or combined modalities in each classification task. The values in the
parentheses indicated the average number of selected features by all the methods in total 100 runs.

Method AD/MCI/NC AD/MCI-C/MCI-NC/NC
MRI PET MRI+PET MRI PET MRI+PET

Orignal 61.96±1.46 (93.0) 57.99±1.75 (93.0) 62.59±1.77 (186) 49.13±1.62 (93.0) 47.98±1.54 (93.0) 49.89±1.56 (186)
FS 62.33±1.56 (46.2) 60.11±1.54 (42.3) 62.88±1.31 (72.3) 50.87±1.73 (38.7) 50.44±1.49 (37.1) 51.76±1.58 (59.0)

PCA 63.71±1.30 (35.2) 61.49±1.58 (38.5) 64.61±1.60 (62.8) 51.05±1.64 (36.2) 51.51±1.62 (35.0) 52.20±1.60 (61.3)
LPP 63.21±1.91 (39.3) 61.03±1.22 (32.8) 64.35±1.29 (65.2) 51.72±1.42 (33.2) 51.39±1.58 (26.3) 52.60±1.37 (53.2)
LDA 49.01±1.71 (2.00) 39.02±1.23 (2.00) 51.85±1.66 (2.00) 35.25±1.65 (3.00) 31.82±1.40 (3.00) 36.32±1.64 (3.00)
SJCR 64.02±1.36 (38.2) 61.31±1.73 (29.2) 67.66±1.63 (58.2) 52.13±1.73 (28.1) 51.85±1.68 (27.4) 55.98±1.65 (49.4)
M3T 63.30±1.66 (36.1) 61.32±1.90 (28.4) 67.91±1.91 (55.5) 51.89±1.61 (25.7) 50.91±1.83 (26.6) 54.47±1.67 (47.9)

Proposed 68.31±1.23 (32.7) 65.50±1.50 (28.8) 73.35±1.53 (50.5) 59.74±1.52 (20.1) 56.29±1.53 (19.7) 61.06±1.40 (34.3)

TABLE III: Comparison of classification accuracy ((mean±standard deviation)%) for three binary classification tasks. The
boldface denotes the best performance for each modality or combined modalities in each classification task.

Method AD vs. NC MCI vs. NC MCI-C vs. MCI-NC
MRI PET MRI+PET MRI PET MRI+PET MRI PET MRI+PET

Orignal 89.5±1.34 86.2±1.85 89.7±1.48 68.3±1.72 69.0±1.12 71.6±0.95 60.3±1.23 62.2±1.54 62.7±1.56
FS 90.2±1.24 88.5±0.48 91.5±1.48 75.9±1.44 74.9±1.04 75.9±0.48 64.5±1.47 63.4±0.48 65.1±1.10

PCA 91.2±0.89 89.2±0.68 92.0±0.95 76.2±1.06 75.1±0.96 77.2±0.21 65.3±1.11 64.9±0.75 66.2±1.81
LPP 92.0±1.91 90.2±0.92 93.2±1.01 77.1±1.81 75.9±1.58 78.0±0.10 66.2±1.15 65.3±0.65 66.8±1.50
LDA 80.2±1.71 80.1±0.94 86.2±1.11 65.3±1.01 66.5±1.40 68.2±0.14 59.3±1.01 58.3±0.59 59.1±0.90
SJCR 92.9±1.36 92.6±0.95 94.2±1.22 78.2±1.51 77.1±0.85 78.6±0.95 68.0±0.93 67.0±0.65 68.6±0.86
M3T 92.6±1.12 92.3±1.48 94.0±2.14 78.1±1.15 77.2±1.47 78.4±0.15 67.1±0.62 67.0±0.54 67.9±1.00

Proposed 94.3±0.95 93.3±0.79 95.5±1.05 79.3±1.10 79.1±0.99 79.7±0.21 70.1±1.00 69.9±0.52 71.2±1.22

TABLE IV: Classification accuracy ((mean±standard deviation)%) of the LDA-SR and the LPP-SR method.The values in the
parentheses indicated the average number of selected features by all the methods in total 100 runs.

Method AD/MCI/NC AD/MCI-C/MCI-NC/NC
MRI PET MRI+PET MRI PET MRI+PET

LDA-SR 64.27±2.02 (36.3) 62.02±2.45 (32.1) 69.45±3.06 (52.3) 52.53±1.80 (20.5) 51.45±2.36 (22.9) 56.02±1.86 (39.2)
LPP-SR 65.04±1.17 (30.2) 63.96±1.56 (33.2) 71.31±1.47 (49.8) 55.45±1.48 (22.9) 53.85±1.74 (23.2) 57.54±1.37 (43.5)
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Fig. 3: Frequency of the selected ROIs by the proposed methodwith MRI+PET in a 3-class classification task (top) and a
4-class classification task (bottom), respectively. For example,Frenquency22 = 100 in the upper left sub-figure means that
the 22nd ROI was selected 100 times over 100 repeats by the proposed method.

selected them with the highest frequency12. For example, in

12In our experiments, we conducted 10-fold cross-validationten times to
obtain 100 groups of reduced feature sets, we define the term ‘Frequency’
asFrenquencyi =

the times of the i−th feature appeared in 100 groups
100

×
100%.

the 3-class classification task with MRI+PET, M3T selected
the brain regions of middle temporal gyrus right (80) and
amygdala right (83) from MRI (see the last column of Table
V), which are ranked top 6 and top 8 with the frequency of
95% and 92%, respectively, while our method selected them



0018-9294 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBME.2015.2466616, IEEE Transactions on Biomedical Engineering

ACCEPTED TO IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 9

TABLE V: Top 10 selected ROIs by feature selection methods onthe 3-class classification task. Note that in the last column,
the values on the left-side of the semicolon denote the regions selected from MRI, while the values next to the semicolon
indicate the regions selected from PET. Please refer to Table IX for the full names of the ROIs.

Method MRI PET MRI+PET
FS 17,30,46,48,63,69,76,80,83,84 11,12,18,26,41,48,62,79,83,90 30,46,48,69,76,80,83; 26,41,87

SJCR 22,30,46,63,64,69,76,79,80,83 11,12,16,18,26,29,62,64,79,87 22,30,46,48,62,76,83; 16,41,87
M3T 17,22,30,46,48,61,64,69,76,83 11,18,26,29,35,41,48,64,79,87 25,30,46,62,76,80,83; 16,26,87

Proposed 17,22,30,46,48,61,63,64,69,83 11,12,26,29,35,41,62,64,79,87 22,30,46,48,61,69,76; 26,41,87

TABLE VI: Top 10 selected ROIs by feature selection methods on the 4-class classification task. Note that in the last column,
the values on the left-side of the semicolon denote the regions selected from MRI, while the values next to the semicolon
indicate the regions selected from PET. Please refer to Table IX for the full names of the ROIs.

Method MRI PET MRI+PET
FS 17,30,46,48,61,69,76,80,83,84 12,18,26,38,41,47,48,62,86,87 30,46,48,69,76 80,83 ; 26,41,87

SJCR 30,43,48,56,63,64,76,80,83,84 12,16,18,26,35,55,41,62,79,87 22,46,48,64,69,76,90 ; 26,41,87
M3T 22,30,46,56,58,64,69,76,83,90 11,16,18,26,29,35,41,55,64,79 30,46,48,61,64,69,83 ; 26,41,87

Proposed 17,30,43,46,48,63,64,69,76,83 11,12,18,26,29,35,41,62,64,79 22,30,46,64,69,76,83 ; 26,41,87

(a) MRI (b) PET

Fig. 4: Top 10 selected regions in the 3-class classificationtask with MRI/PET.

(a) MRI (b) PET

Fig. 5: Top 10 selected regions in the 4-class classificationtask with MRI/PET.

with the frequency of 99% and 99% for MRI, respectively,
but ranked them in top 11 and top 12, due to the high
frequency (100%) of all other top 10 regions (7 for MRI and
3 for PET). On the other hand, most of the methods also
selected other brain regions (different from the aforementioned
potential biomarkers) as the top ones in our experiments, such
as parahippocampal gyrus left (17), temporal pole left (63),
and entorhinal cortex left (64) from MRI, and globus palladus

right (11) and anterior limb of internal capsule right (79)
from PET. These regions may also be potential biomarkers
for multi-class AD diagnosis.

D. Large MRI Dataset from ADNI

We further evaluate performance on a large MRI dataset
from the ADNI cohort, including 186 AD, 118 MCI-C, 124
MCI-NC, and 226 NC. We used the same setting as in
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TABLE VII: Comparison of classification accuracy
((mean±standard deviation)%) for two multi-class
classification tasks with MRI. The boldface denotes the
best performance in each classification task. The values in the
parentheses indicated the average number of selected features
by all the methods in total 100 runs.

Method AD/MCI/NC AD/MCI-C/MCI-NC/NC
Orignal 61.98±2.51 (93.0) 48.01±1.73 (93.0)

FS 62.56±1.79 (43.2) 50.80±1.09 (36.6)
PCA 64.76±1.61 (36.5) 51.49±1.58 (32.1)
LPP 64.32±1.49 (31.5) 55.84±1.64 (29.3)
LDA 49.13±1.65 (2.00) 45.71±2.16 (3.00)
SJCR 64.87±1.78 (42.6) 53.98±1.57 (39.2)
M3T 64.75±1.16 (31.2) 52.32±1.34 (28.6)

LDA-SR 64.88±1.52 (35.8) 56.34±1.78 (24.8)
LPP-SR 65.13±0.76 (32.2) 57.19±1.67 (26.8)
Proposed 68.49±0.89 (29.3) 61.86±1.22 (23.2)
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Fig. 7: Frequency of the selected ROIs by the proposed method
on a large MRI dataset in a 3-class classification task (left)and
a 4-class classification task (right), respectively.

Section IV-A. The experimental results are reported in Tables
VII and VIII, as well as Figures 6, 7, and 8. Again, the
proposed method achieved the best results, outperforming all
the competing methods. The feature selection strategies were
also helpful in enhancing classification accuracy, compared to
the ‘Original’ method.

VI. CONCLUSION

In this paper, we focused on thehigh feature-dimension
problem for multi-class classification in AD diagnosis. Specif-
ically, we proposed a novel feature selection method by
integrating subspace learning, which utilized both the global
and the local topological information inherent in the data,in a
sparse linear regression framework. In our experimental results
on the ADNI dataset, we validated the efficacy of the proposed
method by enhancing classification accuracies in multi-class
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Fig. 8: Classification accuracy on different parameters’ setting,
i.e., C ∈ [−5 : 5] (upward),λ1 ∈ {10−5, ..., 10−2} (right-
ward), andλ2 ∈ {10−5, ..., 10−2} (leftward).

classification problems. In our future works, we will extendthe
proposed linear feature selection model to the nonlinear model
via kernel functions to capture complex patterns between brain
images and the corresponding AD status.
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APPENDIX

Regarding the convergence of the optimization, we can use
the following theorem proved in [53]:

Theorem 1. [53] Let {W(t)} be the sequence generated by
Algorithm 1, then for∀ t ≥ 1, the following holds
L(W(t)) − L(W∗) ≤ 2γϑ‖W(1)−W

∗‖2

F

(t+1)2 ,

where γ > 0 is a predefined constant,ϑ is the Lipschitz
constant of the gradient off(W) in Eq. (6), andW∗ =
argmin

W

L(W).

Theorem 1 shows that the convergence rate of the proposed
accelerated proximal gradient method isO( 1

t2
), where t de-

notes an iteration number.
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