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In this paper, we focus on joint regression and classification for Alzheimer’s disease diagnosis and propose

a new feature selection method by embedding the relational information inherent in the observations into

a sparse multi-task learning framework. Specifically, the relational information includes three kinds of re-

lationships (such as feature-feature relation, response–response relation, and sample-sample relation), for

preserving three kinds of the similarity, such as for the features, the response variables, and the samples,

respectively. To conduct feature selection, we first formulate the objective function by imposing these three

relational characteristics along with an �2,1-norm regularization term, and further propose a computationally

efficient algorithm to optimize the proposed objective function. With the dimension-reduced data, we train

two support vector regression models to predict the clinical scores of ADAS-Cog and MMSE, respectively, and

also a support vector classification model to determine the clinical label. We conducted extensive experi-

ments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset to validate the effectiveness of the

proposed method. Our experimental results showed the efficacy of the proposed method in enhancing the

performances of both clinical scores prediction and disease status identification, compared to the state-of-

the-art methods.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Alzheimer’s Disease (AD) is characterized as a genetically complex

nd irreversible neurodegenerative disorder and often found in per-

ons aged over 65. Recent studies have shown that there are about

6.6 million AD patients worldwide, and 1 out of 85 people will be

ffected by AD by 2050 (Brookmeyer et al., 2007; Zhang et al., 2012;

hou et al., 2011; Zhu et al., 2014a; 2014b). Thus, there have been

reat interests for early diagnosis of AD and its prodromal stage, Mild

ognitive Impairment (MCI).

It has been shown that the neuroimaging tools, including Mag-

etic Resonance Imaging (MRI) (Fjell et al., 2010), Positron Emission

omography (PET) (Wee et al., 2013; Morris et al., 2001), and func-

ional MRI (Suk et al., 2013), help understand the neurodegenera-

ive process in the progression of AD. Furthermore, machine learn-

ng methods can effectively handle complex patterns in the ob-

erved subjects for either identifying clinical labels, such as AD, MCI,
∗ Corresponding author at: Department of Radiology and BRIC, The University of

orth Carolina at Chapel Hill, USA; and and Department of Brain and Cognitive En-

ineering, Korea University, Republic of Korea.
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nd Normal Control (NC) (Cheng et al., 2013; Franke et al., 2010;

alhovd et al., 2010), or regressing the clinical scores, such as

lzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-

og) and Mini-Mental State Examination (MMSE) (McEvoy et al.,

009; Wee et al., 2012).

In computer-aided AD diagnosis, the available sample size is usu-

lly small, but the feature dimensionality is high. For example, the

ample size used in (Jie et al., 2013) was as small as 99, while the

eature dimensionality (including both MRI and PET features) was

undreds or even thousands. The small sample size makes it diffi-

ult to build an effective model, and the high-dimensional data could

ead to an overfitting problem although the number of intrinsic fea-

ures may be very low (Weinberger et al., 2004; Suk et al., 2014; Zhu

t al., 2015c; 2015b). To this end, researchers predefined the disease-

elated features and used the low-dimensional feature vector for dis-

ase identification. For example, Wang et al. (2011) considered the

rain areas of medial temporal lobe structures, medial and lateral

arietal, as well as prefrontal cortical areas, and showed that these ar-

as were useful to predict most memory scores and classify AD from

C subjects.

However, to further enhance diagnostic accuracy and better un-

erstand the disease-related brain atrophies, it’s necessary to select
ature selection method for joint regression and classification in AD
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Table 1

Demographic information of the subjects. (MCI-C: MCI Converters; MCI-NC: MCI

Non-Converters).

AD NC MCI-C MCI-NC

Female/male 18/33 18/34 15/28 17/39

Age 75.2 ± 7.4 75.3 ± 5.2 75.8 ± 6.8 74.8 ± 7.1

Education 14.7 ± 3.6 15.8 ± 3.2 16.1 ± 2.6 15.8 ± 3.2

MMSE 23.8 ± 2.0 29.0 ± 1.2 26.6 ± 1.7 28.4 ± 1.7

ADAS-Cog 18.3 ± 6.0 12.1 ± 3.8 12.9 ± 3.9 8.03 ± 3.8
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2 Here, MCI-C and MCI-NC denote, respectively, those who progressed to AD in 18
features in a data-driven manner. It has been shown that the fea-

ture selection helps overcome both problems of high dimensionality

and small sample size by removing uninformative features. Among

various feature selection techniques, manifold learning methods has

been successfully used in either regression or classification (Cho et al.,

2012; Cuingnet et al., 2011; Liu et al., 2014; Zhang and Shen, 2012;

Zhang et al., 2011; Suk et al., 2015). For example, Cho et al. (2012)

adopted a manifold harmonic transformation method on the corti-

cal thickness data. Meanwhile, while most of the previous studies fo-

cused on separately identifying brain disease and estimating clinical

scores (Jie et al., 2013; Liu et al., 2014; Suk and Shen, 2013), there

also have been some efforts to tackle both tasks simultaneously in

a unified framework. For example, Zhang and Shen (2012) proposed

a feature selection method for simultaneous disease diagnosis and

clinical scores prediction, and achieved promising results. However,

to our best knowledge, the previous manifold-based feature selection

methods considered only the manifold of the samples, not manifold

of either the features or the response variables.

For better understanding of the underlying mechanism of AD, our

interest in this paper is to predict both clinical scores and disease sta-

tus jointly, which we call as Joint Regression and Classification (JRC)

problem. In particular, we devise new regularization terms to re-

flect the relational information inherent in the observations and then

combine them with an �2,1-norm regularization term within a multi-

task learning framework for joint sparse feature selection in the JRC

problem. The rationale for the proposed regularization method is as

follows: (1) If some features are related to each other, then the same

or similar relation is expected to be preserved between the respec-

tive weight coefficients. (2) Due to the algebraic operation in the least

square regression, i.e., matrix multiplication, the weight coefficients

are linked to the response variables via regressors, i.e., feature vec-

tors in our work. Therefore, it is meaningful to impose the relation

between a pair of weight coefficients to be similar to the relation

between the respective pair of target response variables. (3) As con-

sidered in many manifold learning methods (Belkin et al., 2006; Fan

et al., 2008; Zhu et al., 2011; 2013b; 2013c), if a pair of samples are

similar to each other, then their respective response values should be

also similar to each other. By imposing these three relational charac-

teristics along with the �2,1-norm regularization term on the weight

coefficients, we formulate a new objective function to conduct fea-

ture selection and further solve it with a new computationally effi-

cient optimization algorithm. Then, we can select effective features

to build a classifier for clinical label identification and two regression

models for ADAS-Cog and MMSE scores prediction, respectively.

2. Image preprocessing

In this work, we used the publicly available ADNI dataset for per-

formance evaluation.

2.1. Subjects

We selected the subjects satisfying the following general inclu-

sion/exclusion criteria1: (1) The MMSE score of each NC is between

24 and 30. Their Clinical Dementia Rating (CDR) is of 0. Moreover,

the NC is non-depressed, non MCI, and non-demented. (2) The MMSE

score of each MCI subject is between 24 and 30. Their CDR is of 0.5.

Moreover, each MCI subject is an absence of significant level of im-

pairment in other cognitive domains, essentially preserved activities

of daily living, and an absence of dementia. (3) The MMSE score of

each Mild AD subject is between 20 and 26, with the CDR of 0.5 or

1.0.

In this paper, we use baseline MRI and PET obtained from 202 sub-

jects including 51 AD subjects, 52 NC subjects, and 99 MCI subjects.
1 Please refer to ‘http://adni.loni.usc.edu/’ for up-to-date information.

m
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diagnosis, Medical Image Analysis (2015), http://dx.doi.org/10.1016/j.med
oreover, 99 MCI subjects include 43 MCI-C and 56 MCI-NC2. The

etailed demographic information is summarized in Table 1. For ref-

rence, we presented sample slices of MRI and PET for one typical

ubject belonging each class (AD, MCI, and NC) in Fig. 1.

.2. Image processing

We downloaded raw Digital Imaging and COmmunications in

edicine (DICOM) MRI scans from the ADNI website3. All structural

R images used in this work were acquired from 1.5T scanners. Data

ere collected across a variety of scanners with protocols individu-

lized for each scanner. Moreover, these MR images were already re-

iewed for quality, and automatically corrected for spatial distortion

aused by gradient nonlinearity and B1 field inhomogeneity. More-

ver, PET images were acquired 30–60 min post Fluoro-DeoxyGlucose

FDG) injection. They were then averaged, spatially aligned, interpo-

ated to a standard voxel size, intensity normalized, and smoothed to

common resolution of 8mm full width at half maximum.

The image processing for all MR and PET images was conducted by

ollowing the same procedures in Zhang and Shen (2012). Specifically,

e first performed anterior commissure-posterior commissure cor-

ection using MIPAV software4 for all images, and used the N3 algo-

ithm (Sled et al., 1998) to correct the intensity inhomogeneity. Sec-

nd, we extracted a brain on all structural MR images using a robust

kull-stripping method (Wang et al., 2013), followed by manual edi-

ion and intensity inhomogeneity correction. After removal of cere-

ellum based on registration (Tang et al., 2009; Wu et al., 2011; Xue

t al., 2006) and also intensity inhomogeneity correction by repeating

3 for three times, we used FAST algorithm in the FSL package (Zhang

t al., 2001) to segment the structural MR images into three different

issues: Gray Matter (GM), White Matter (WM), and CSF. Next, we

sed HAMMER (Shen and Davatzikos, 2002) to register the template

nto subject specific space for preserving local image volume of each

ubjects. We then obtained the Region-Of-Interest (ROI) labeled im-

ges using the Jacob template, which dissects a brain into 93 ROIs

Kabani, 1998). For each of all 93 ROIs in the labeled image of a sub-

ect, we computed the GM tissue volumes in ROIs by integrating the

M segmentation result of the subject. For each subject, we aligned

he PET images to their respective MR T1 images using affine registra-

ion and then computed the average intensity of each ROI. Therefore,

or each subject, we obtained 93 features for MRI and 93 features for

ET.

. Method

.1. Notations

In this paper, we denote matrices as boldface uppercase let-

ers, vectors as boldface lowercase letters, and scalars as normal

talic letters, respectively. For a matrix X = [xi j],its i-th row and j-th
onths and those who didn’t.
3 http://www.loni.usc.edu/ADNI.
4 http://mipav.cit.nih.gov/clickwrap.php.

ature selection method for joint regression and classification in AD
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Fig. 1. Example slices of MRI (left column) and PET (right column) for subjects belonging to different classes.
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olumn are denoted as xi and xj, respectively. Also, we denote the

robenius norm and �2,1-norm of a matrix X as ‖X‖F =
√∑

i ‖xi‖2
2

=∑
j ‖x j‖2

2
,and ‖X‖2,1 = ∑

i ‖xi‖2 = ∑
i

√∑
j x2

i j
,respectively. We

urther denote the transpose operator, the trace operator, and the in-

erse of a matrix X as XT, tr(X), and X−1,respectively.

.2. Relational regularization

Let X ∈ R
n×dand Y ∈ R

n×cdenote, respectively, the d neuroimaging

eatures and c clinical response values of n subjects or samples5. In

his work, we assume that the response values of clinical scores and

linical label6 can be represented by a linear combination of the fea-

ures. Then, the problems of regressing clinical scores and determin-

ng class label can be formulated by a least square regression model

s follows:

(W) = ‖Y − XW‖2
F

= ‖Y − Ŷ‖2
F

=
n∑

i=1

c∑
j=1

(yi j − ŷi j)
2 (1)
5 In this work, we have one sample per subject.
6 In this paper, we represented the class label with 0–1 encoding.
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Please cite this article as: X. Zhu et al., A novel relational regularization fe

diagnosis, Medical Image Analysis (2015), http://dx.doi.org/10.1016/j.med
here W ∈ R
d×cis a weight coefficient matrix and Ŷ = XW. While the

east square regression model has been successfully used in many

pplications, it is shown that the solution is often overfitted to the

ataset with small samples and high-dimensional features in its orig-

nal form, especially, in the field of neuroimaging analysis. To this end,

variety of its variants using different types of regularization terms

ave been suggested to circumvent the overfitting problem and find

more generalized solution (Suk et al., 2013; Yuan and Lin, 2006;

hang and Shen, 2012), which can be mathematically simplified as

ollows:

in
W

L(W) + R(W) (2)

here R(W) denotes a set of regularization terms.

From a machine learning point of view, a well-defined regulariza-

ion term can produce a generalized solution to the objective func-

ion, and thus results in a better performance for the final goal. In

his paper, we devise novel regularization terms that effectively uti-

ize various pieces of information inherent in the observations.

Note that since, in this work, we extract features from ROIs, which

re structurally or functionally related to each other, it is natural to

xpect that there exist relations among features. Meanwhile, if two

eatures are highly related to each other, then it is reasonable to

ave the respective weight coefficients also related. However, to the

est of our knowledge, none of the previous representation (or re-

ression) methods in the literature considered and guaranteed this
ature selection method for joint regression and classification in AD
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Fig. 2. An illustration of the relational information that can be obtained from the observations. The red solid rectangles, the blue dash rectangles, and the green dotted rectangles

denote, respectively, the ‘sample-sample’ relation, ‘feature-feature’ relation and ‘response-response’ relation.
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characteristic in their solutions. To this end, we devise a regulariza-

tion term with the assumption that, if some features, e.g., xi and xj in

the blue dash rectangles of Fig. 2, are involved in regressing the re-

sponse variables and are also related to each other, their correspond-

ing weight coefficients (i.e., wi and wj) should have the same or simi-

lar relation since the i-feature xi in X corresponds to the ith row wi in

W in our regression framework. We call this relation as the ‘feature-

feature’ relation in this work. To utilize the ‘feature–feature’ relation,

we penalize the loss function with the similarity between xi and xj

(i.e., mij) on ‖wi − wi‖2
2
. Specifically, we impose the relation between

columns in Xto be reflected in the relation between the respective

rows in W by defining the following embedding function:

R1(W) = 1

2

d∑
i, j

mi j‖wi − w j‖2
2 (3)

where mij denotes an element in the feature similarity matrix M =
[mi j] ∈ R

d×dwhich encodes the relation between features in the sam-

ples. With respect to the similarity measure between vectors of a and

b, throughout this paper, we first use a radial basis function kernel as

defined as follows:

f (a, b) = exp

(
−‖a − b‖2

2

2σ 2

)
(4)

where σ denotes a kernel width. As for the similarity matrix M, we

first construct a data adjacency graph by regarding each sample as a

node and using k nearest neighbors along with a heat kernel function

defined in Eq. (4) to compute the edge weights, i.e., similarities. For

example, if a sample xj is selected as one of the k nearest neighbors

of a sample xi, then the similarity mij between these two samples or

nodes is set to the value of f(xi, xj); otherwise, their similarity is set

to zero, i.e., mi j = 0.

In the meantime, given a feature vector xi, in our joint regression

and classification framework, we use a different set of weight coef-

ficients to regress the elements in the response vector yi. In other

words, the elements of each column in W are linked to the elements

of each column in Y via feature vectors. By taking this mathematical

property into account, we further impose the relation between col-

umn vectors in W to be similar to the relation between the respective

target response variables (i.e., respective column vectors) in Y, which

is called as ‘response-response’ relation as defined below:

R2(W) = 1

2

c∑
i, j

gi j‖wi − w j‖2
2 (5)

where gij denotes an element in the matrix G = [gi j] ∈ R
c×cwhich

represents the similarity between every pair of target response vari-

ables (i.e., every pair of column vectors).

We also utilize the relational information between samples, called

as ‘sample-sample’ relation. That is, if samples are similar to each

other, then their respective response values should be also similar to
Please cite this article as: X. Zhu et al., A novel relational regularization fe

diagnosis, Medical Image Analysis (2015), http://dx.doi.org/10.1016/j.med
ach other. To this end, we define a regularization term as follows:

3(W) = 1

2

n∑
i, j

si j‖ŷi − ŷ j‖2
2 (6)

here sij is an element in the matrix S = [si j] ∈ R
n×nwhich mea-

ures the similarity between every pair of samples. We should note

hat this kind of sample–sample relation has been successfully used

n many manifold learning methods (Belkin et al., 2006; Zhu et al.,

013b; 2013c). The elements of the matrices G and S can be computed

imilarly as in the computation of M as described above.

We argue that the simultaneous consideration of these newly

evised regularization terms, i.e., feature–feature relation, sample–

ample relation, and response–response relation, can effectively re-

ect the relational information inherent in observations in finding an

ptimal solution. Fig. 2 illustrates these relational regularizations in a

atrix form. Regarding feature selection, we believe that due to the

nderlying brain mechanisms that influence both the clinical scores

nd a clinical label, i.e., response variables, if one feature plays a role

n predicting one response variable, then it also devotes to the predic-

ion of the other response variables. To this end, we further impose to

se the same features across the tasks of clinical scores and clinical

abel prediction. Mathematically, this can be implemented by an �2,1-

orm regularization term on W, i.e., ‖W‖2,1 = ∑
i ‖wi‖2. Concretely,

wi‖2, the �2-norm of the ith row vector in W, is equally imposed

n the ith feature across different tasks, which thus forces the coef-

cients that weight the i-th feature for different tasks to be grouped

ogether. Earlier, Zhang and Shen (2012)considered the same regular-

zation term in their multi-task learning and validated its efficacy in

D/MCI diagnosis.

Finally, our objective function is formulated as follows:

in
W

L(W) + α1R1(W) + α2R2(W) + α3R3(W) + λ‖W‖2,1 (7)

here α1, α2, α3, and λ denote control parameters of the respec-

ive regularization terms, respectively. It is noteworthy that unlike

he previous regularization methods such as local linear embedding

Roweis and Saul, 2000), locality preserving projection (He et al.,

005; Zhu et al., 2013a; 2014c), and high-order graph matching (Liu

t al., 2013) that focused on the sample similarities by imposing

earby samples to be still nearby in the transformed space, the pro-

osed method utilizes richer information obtained from the obser-

ations for finding the optimal weight coefficients W. The matrices X

nd Y are used to obtain the similarities, where X and Y are composed

f MRI/PET features and target values, respectively. According to the

revious work in Zhu et al. (2014a), theoretically the loss function in

q. (1) can be designed to expect that the predictions of the model

hould be correlated for the similar subjects. But, in practice, it is not

uaranteed due to unexpected noises in features. In this regard, we

xplicitly impose such correlational characteristic (e.g., the proposed

hree kinds of relations) in the final objective function. Thus, it is
ature selection method for joint regression and classification in AD
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xpected that the proposed method can find a generalizable solution

obust to noise or outlier.

.3. Optimization

With respect to the optimization of parameters W, due to the

se of the similarity weights of mij in Eq. (3), gij in Eq. (5), and sij

n Eq. (6), it is beneficiary to transform the respective regularization

erms to the trace forms using Laplacian matrices (Belkin et al., 2006;

hu et al., 2012; 2015a). Let HM, HG, and HS, respectively, be diag-

nal matrices with their diagonal elements being the column-wise

r row-wise sum of the similarity weight matrices of M, G, and S,

.e., hM
ii

= ∑d
j=1 mi j,h

G
ii

= ∑c
j=1 gi j,and hS

ii
= ∑n

j=1 si j . The regulariza-

ion terms can be rewritten as follows:

1(W) = tr(WT LMW) (8)

2(W) = tr(WLGWT ) (9)

3(W) = tr((XW)T LS(XW)) (10)

here LM = HM − M,LG = HG − G,and LS = HS − S,which are called

aplacian matrices. Then our objective function in Eq. (7) can be

ewritten as follows:

in
W

L(W) + α1tr(WT LMW) + α2tr(WLGWT )

+ α3tr((XW)T LS(XW)) + λ‖W‖2,1. (11)

Note that Eq. (11) is a convex but non-smooth function. By setting

he derivative of the objective function in Eq. (11) with respect to W

o zero, we can obtain the form of

W + WB = Z (12)

here A = (XT X + α1LM + α3XT LSX + λQ),B = α2LG,Z = XT Y,and

∈ R
d×dis a diagonal matrix with the i-th diagonal element set to

ii = 1

2‖wi‖2

. (13)

ere, we should note that due to the possibility of being zero for wi

n Eq. (13), we add a small constant to the denominator in implemen-

ation, by following Nie et al.’s work (Nie et al., 2010).

In solving Eq. (12), it is not trivial to find the optimum solution

ue to the inter-dependence in computing matrices of W and Q. To

his end, in this work, we apply an iterative approach by alternatively

omputing Q and W. That is, at the t-th iteration, we first update the

atrix W(t) with the matrix Q(t − 1),and then update the matrix Q(t)

ith the updated matrix W(t). Refer to Algorithm 1 and Appendix A,

espectively, for implementation details and the proof of convergence

f our algorithm.
Algorithm 1: Pseudo code of solving Eq. (11).

Input: X ∈ R
n×d, Y ∈ R

n×c, α1, α2, α3, λ;

Output: W;

1 Initialize t = 0 and set Q(t) a random diagonal matrix;

2 repeat

3 Compute A, B, and Z in Eq. (12);

4 Factorize matrices A = PT × P and B = R × RT ;

5 Perform singular value decomposition on P and R;

6 Update W̃(t + 1) by Eq. (16) and Eq. (17);

7 Compute W(t + 1) by Eq. (18);

8 Update Q(t + 1) by Eq. (13);

9 t = t+1;

10 until Eq. (11) converges;
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Although there exists a general solver with this iterative ap-

roach7, its computational complexity is known to be cubic. In this

aper, we propose a simple but computationally more efficient algo-

ithm. In Eq. (12), since both A and B are positive semi-definite, we

an decompose them into two triangular matrices by Cholesky fac-

orization (Golub and Van Loan, 1996):

= PT × P

B = R × RT .

y applying a Singular Value Decomposition (SVD) on each of the tri-

ngular matrices, P and R, we can further decompose them as fol-

ows:

P = U1�1VT
1

= U2�2VT
2

here �1 and �2 are diagonal matrices whose elements corre-

pond to eigenvalues, and U1, U2, V1, and V2 are unitary ma-

rices, i.e., U1 × UT
1

= UT
1

× U1 = I,U2 × UT
2

= UT
2

× U2 = I,V1 × VT
1

=
T
1

× V1 = I,and V2 × VT
2

= VT
2

× V2 = I. Then, we can rewrite Eq.

12)as follows:

1�
T
1�1VT

1W + WU2�2�
T
2UT

2 = Z. (14)

y multiplying VT
1

and U2 to both sides of Eq. (14), we can obtain

T
1�1VT

1WU2 + VT
1WU2�2�

T
2 = VT

1ZU2. (15)

et �̃1 = �T
1
�1,�̃2 = �2�

T
2
,W̃ = VT

1
WU2,and E = VT

1
ZU2,then we

btain the form of

˜
1W̃ + W̃�̃2 = E. (16)

ote that both �̃1 =
[
σ̃ 1

ii

]
∈ R

d×dand �̃2 = [σ̃ 2
j j

] ∈ R
c×care diago-

al matrices. Therefore, it is straightforward to obtain W̃ =
[
w̃i j

]
∈

d×cas follows:

˜ i j = ei j

σ̃ 1
ii

+ σ̃ 2
j j

(17)

here eij denotes the (i, j)-th element in E. From the matrix W̃,we can

btain W by

= V1W̃UT
2 . (18)

t is noteworthy that, thanks to the decomposed diagonal matrices

btained by Cholesky factorization and SVD, we can greatly reduce

he computational cost in solving the optimization problem.

.4. Feature selection and model training

Because of using the �2,1-norm regularization term in our objec-

ive function, after finding the optimal solution with Algorithm 1, we

ave some zero or close to zero row vectors in W. In terms of least

quare regression, the corresponding features are not necessary in re-

ressing the response variables. Meanwhile, from the prediction per-

pective, the lower the �2-norm value of a row vector, the less infor-

ative the respective feature in our observation. To this end, we first

ort rows in W in a descending order based on the �2-norm value of

ach row, i.e., ‖w j‖2, j ∈ {1, . . . , d},and then select the features that

orrespond to the K top-ranked rows8.

With the selected features, we then train support vector ma-

hines, which have been successfully used in many fields (Suk and

ee, 2013; Zhang and Shen, 2012). Note that the selected features

re jointly used to predict two clinical scores and one clinical label.

pecifically, we build two Support Vector Regression (SVR) (Smola

nd Schölkopf, 2004) models to predict ADAS-Cog and MMSE scores,
7 For example, a built-in function ‘lyap’ in MATLAB.
8 In this work, the proposed optimization method (i.e., Algorithm 1) outputs many

ero-rows, which determine the value of K.

ature selection method for joint regression and classification in AD

ia.2015.10.008

http://dx.doi.org/10.1016/j.media.2015.10.008


6 X. Zhu et al. / Medical Image Analysis 000 (2015) 1–10

ARTICLE IN PRESS
JID: MEDIMA [m5G;December 7, 2015;7:5]

i

m

N

α

4

m

o

c

s

fi

P

m

a

M

N

T

c

fi

(

N

t

t

s

t

s

t

P

N

N

r

t

c

fi

t

m

4

c

t

4

A

t

o

r

s

o

p

c

b

R

m

C

b

s

respectively, and one Support Vector Classification (Burges, 1998)

model to identify a clinical label, via the public LIBSVM toolbox 9.

4. Experimental results

4.1. Experimental setting

We considered three binary classification problems: AD vs. NC,

MCI vs. NC, and MCI-C vs. MCI-NC. For MCI vs. NC, both MCI-C and

MCI-NC were labeled as MCI. For each set of experiments, we used

93 MRI features or 93 PET features as regressors, and 2 clinical scores

along with 1 class label for responses in the least square regression

model.

Due to the limited small number of samples, we used a 10-

fold cross-validation technique to measure the performances. Specif-

ically, we partitioned the data of each class into 10 disjoints sets,

i.e., 10 folds. Then we selected two sets, one from each class, for

testing while using the remaining 18 sets (e.g., 9 sets from AD and

9 sets from NC in the case of AD vs. NC classification) for training

in the binary classification task. We repeated the process 10 times

to avoid the possible bias occurring in dataset partitioning. The fi-

nal results were computed by averaging the repeated experiments.

For model selection, i.e., tuning parameters in Eq. (11) and SVR/SVC

parameters10, we further split the training samples into 5 subsets

for 5-fold inner cross-validation. In our experiments, we conducted

exhaustive grid search on the parameters with the spaces of αi ∈
{10−6, . . . , 102}, i ∈ {1, 2, 3},and λ ∈ {102, … , 108}. We empirically set

k = 3and σ = 1to calculate three kinds of similarity, such as mij in Eq.

(3), gij in Eq. (5), and sij in Eq. (6). The parameters that resulted in the

best performance in the inner cross-validation were finally used in

testing.

To evaluate the performance of all competing methods, we em-

ployed the metrics of Correlation Coefficient (CC) and Root Mean

Squared Error (RMSE) between the target clinical scores and the

predicted ones in regression, and also the metrics of classifica-

tion ACCuracy (ACC), SENsitivity (SEN), SPEcificity (SPE), Area Under

Curve (AUC), and Receiver Operating Characteristic (ROC) curves in

classification.

4.2. Competing methods

To validate the effectiveness of the proposed method, we per-

formed extensive experiments comparing with the state-of-the-art

methods. Specifically, we considered rigorous experimental condi-

tions: (1) In order to show the validity of the feature selection strat-

egy, we performed the tasks of regression and classification with-

out precedent feature selection, and considered them as a baseline

method. Hereafter, we use the suffix “N” to indicate that no feature

selection was involved in. For example, by MRI-N, we mean that ei-

ther the classification or regression was performed using the full

MRI features. (2) One of the main arguments in our work is to se-

lect features that can be jointly used for both regression and classi-

fication. To this end, we compare the multi-task based method with

a single-task based method, in which the feature selection was car-

ried out for regression and classification independently. In the fol-

lowing, the suffix “S” manifests a single-task based method. For ex-

ample, MRI-S represents single-task based feature selection on MRI

features. (3) We compare with two state-of-the-art methods: High-

Order Graph Matching (HOGM) (Liu et al., 2013) and Multi-Modal

Multi-Task (M3T) (Zhang and Shen, 2012). The former used a sample-

sample relation along with an �1-norm regularization term in an

optimization of single-task learning. The latter used multi-task learn-
9 Available at ‘http://www.csie.ntu.edu.tw/∼cjlin/libsvm/’.
10 C ∈ {2−5, . . . , 25}in our experiments.

C

o

M

f
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ng with an �2,1-norm regularization term only to select a com-

on set of features for all tasks of regression and classification.

ote that M3T is a special case of the proposed method by setting

1 = α2 = α3 = 0.

.3. Classification results

Table 2 shows the classification performances of the competing

ethods. We also compare the ROC curves of the competing meth-

ds on three classification problems in Fig. 3. From these results, we

an draw three conclusions. First, it is important to conduct feature

election on the high-dimensional features before training a classi-

er. The baseline methods with no feature selection, i.e., MRI-N, and

ET-N, reported the worst performances. The simple feature selection

ethod, i.e., MRI-S and PET-S, still helped increase the classification

ccuracy by 1.7% (AD vs. NC), 8.4% (MCI vs. NC), and 4.2% (MCI-C vs.

CI-NC) compared to MRI-N, and by 1.7% (AD vs. NC), 4.8% (MCI vs.

C), and 3.9% (MCI-C vs. MCI-NC) compared to PET-N, respectively.

he other more sophisticated methods further improved the accura-

ies. Note that the proposed method maximally enhanced the classi-

cation accuracies by 4.8% (AD vs. NC), 11.4% (MCI vs. NC), and 11.5%

MCI-C vs. MCI-NC) with MRI, and by 5.6% (AD vs. NC), 10.2% (MCI vs.

C), and 9.0% (MCI-C vs. MCI-NC) with PET, respectively, compared to

he baseline method.

Second, it is beneficial to use joint regression and classifica-

ion framework, i.e., multi-task learning, for feature selection. As

hown in Table 2, M3T and our method, which utilized the multi-

ask learning, achieved better classification performances than the

ingle-task based method. Specifically, the proposed method showed

he superiority to the single-task based method, i.e., MRI-S and

ET-S, improving the accuracies by 2.5% (AD vs. NC), 3.0% (MCI vs.

C), and 7.3% (MCI-C vs. MCI-NC) with MRI, and by 3.9% (AD vs.

C), 10.2% (MCI vs. NC), and 9.0% (MCI-C vs. MCI-NC) with PET,

espectively.

Lastly, based on the fact that the best performances over the

hree binary classifications were all obtained by our method, we

an say that the proposed regularization terms were effective to

nd class-discriminative features. It is worth noting that compared

o the state-of-the-art methods, the accuracy enhancements by our

ethod were 5% (vs. HOGM) and 4.7% (vs. M3T) with MRI, and

.6% (vs. HOGM) and 4.2% (vs. M3T) with PET for MCI-C vs. MCI-NC

lassification, which is the most important for early diagnosis and

reatment.

.4. Regression results

Regarding the prediction of two clinical scores of MMSE and

DAS-Cog, we summarized the results in Table 3 and presented scat-

er plots of the predicted ADAS-Cog scores with MRI against the target

nes in Fig. 4. In Table 3, we can see that, similar to the classification

esults, the regression performance of the methods without feature

election (MRI-N and PET-N) was worse than any of the other meth-

ds with feature selection. Moreover, our method consistently out-

erformed the competing methods for the cases of different pairs of

linical labels.

In the regression with MRI for AD vs. NC, our method showed the

est CCs of 0.669 for ADAS-Cog and 0.679 for MMSE, and the best

MSEs of 4.43 for ADAS-Cog and 1.79 for MMSE. The next best perfor-

ances in terms of CCs were obtained by M3T, i.e., 0.649 for ADAS-

og and 0.638 for MMSE, and those in terms of RMSEs were obtained

y HOGM, i.e., 4.53 for ADAS-Cog and 1.91 for MMSE. In the regres-

ion with MRI for MCI vs. NC, our method also achieved the best

Cs of 0.472 for ADAS-Cog and 0.50 for MMSE, and the best RMSEs

f 4.23 for ADAS-Cog and 1.63 for MMSE. For the case of MCI-C vs.

CI-NC with MRI, the proposed method improved the CCs by 0.092

or ADAS-Cog and 0.053 for MMSE compared to the next best CCs of
ature selection method for joint regression and classification in AD
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Table 2

Comparison of classification performances (%) of the competing methods. (ACCuracy (ACC), SENsitivity (SEN), SPEcificity (SPE), and Area Under Curve (AUC)).

Feature Method AD vs. NC MCI vs. NC MCI-C vs. MCI-NC

ACC SEN SPE AUC p-value ACC SEN SPE AUC p-value ACC SEN SPE AUC p-value

MRI MRI-N 89.5 85.7 89.3 93.3 <0.001 68.3 92.6 43.9 78.2 <0.001 60.3 15.5 92.3 68.7 <0.001

MRI-S 91.2 87.1 92.2 94.7 <0.001 76.7 93.3 47.6 81.5 <0.001 64.5 24.9 95.8 70.6 <0.001

HOGM 93.4 89.5 92.5 97.1 0.002 77.7 95.6 51.4 84.4 <0.001 66.8 36.7 95.0 72.2 <0.001

M3T 92.6 87.2 95.9 97.5 <0.001 78.1 94.5 54.0 83.1 <0.001 67.1 37.7 92.0 72.5 <0.001

Proposed 93.7 88.6 97.8 97.6 – 79.7 94.8 56.9 84.7 – 71.8 48.0 92.8 81.4 –

PET PET-N 86.2 88.5 87.8 90.2 <0.001 69.0 95.0 37.8 76.2 <0.001 62.2 21.6 93.1 71.3 <0.001

PET-S 87.9 89.7 91.9 93.1 <0.001 73.8 96.5 39.2 77.6 <0.001 65.1 31.0 95.5 73.5 <0.001

HOGM 91.7 91.1 92.8 95.6 0.003 74.7 96.5 43.2 79.3 <0.001 66.6 35.5 95.5 72.4 <0.001

M3T 90.9 90.5 93.1 96.4 <0.001 77.2 94.5 44.3 80.5 <0.001 67.0 39.1 93.2 73.1 <0.001

Proposed 91.8 91.5 93.8 96.9 – 79.2 97.1 45.3 80.8 – 71.2 47.4 93.0 77.6 –

Table 3

Comparison of regression performances of the competing methods in terms of Correlation Coefficient (CC) and Root Mean Square Error (RMSE).

Feature Method AD vs. NC MCI vs. NC MCI-C vs. MCI-NC

ADAS-Cog MMSE ADAS-Cog MMSE ADAS-Cog MMSE

CC RMSE CC RMSE p-value CC RMSE CC RMSE p-value CC RMSE CC RMSE p-value

MRI MRI-N 0.587 4.96 0.520 2.02 <0.001 0.329 4.48 0.309 1.90 <0.001 0.420 4.10 0.441 1.51 <0.001

MRI-S 0.591 4.85 0.566 1.95 <0.001 0.347 4.27 0.367 1.64 <0.001 0.426 4.01 0.482 1.44 <0.001

HOGM 0.625 4.53 0.598 1.91 <0.001 0.352 4.26 0.371 1.63 <0.001 0.435 3.94 0.521 1.41 <0.001

M3T 0.649 4.60 0.638 1.91 <0.001 0.445 4.27 0.420 1.66 <0.001 0.497 4.01 0.550 1.41 <0.001

Proposed 0.669 4.43 0.679 1.79 – 0.472 4.23 0.500 1.62 – 0.589 3.83 0.603 1.40 –

PET PET-N 0.597 4.86 0.514 2.04 <0.001 0.333 4.34 0.331 1.70 <0.001 0.382 4.08 0.452 1.50 <0.001

PET-S 0.620 4.83 0.593 2.00 <0.001 0.356 4.26 0.359 1.69 <0.001 0.437 4.00 0.478 1.48 <0.001

HOGM 0.600 4.69 0.515 1.99 <0.001 0.360 4.21 0.368 1.67 <0.001 0.430 4.03 0.523 1.41 <0.001

M3T 0.647 4.67 0.593 1.92 <0.001 0.447 4.24 0.432 1.68 <0.001 0.520 3.91 0.569 1.45 0.003

Proposed 0.671 4.41 0.620 1.90 – 0.513 4.13 0.485 1.66 – 0.526 3.87 0.570 1.37 –
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Fig. 3. Comparison of Receiver Operating Characteristic (ROC) curves for the competing methods on three binary classifications. The plots in the upper and the lower rows were,

respectively, obtained with MRI and PET.
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.497 for ADAS-Cog and 0.550 for MMSE by M3T. Note that the pro-

osed method with PET also reported the best CCs and RMSEs for

oth ADAS-Cog and MMSE over the three regression problems, i.e.,

D vs. NC, MCI vs. NC, and MCI-C vs. MCI-NC.

.5. Effects of the proposed regularization trms

In order to see the effects of each of the proposed regulariza-

ion terms, such as sample-sample relation, feature-feature relation,

nd response-response relation11, we further compared the perfor-

ances of the proposed method with those of its counterparts that

onsider one of the terms or a pair of them. We present the per-

ormances of the counterpart methods and the proposed method in
11 For example, we considered the feature-feature relation by setting α1 = 0and α2 =
in Eq. (11).

m

h

K

h

Please cite this article as: X. Zhu et al., A novel relational regularization fe

diagnosis, Medical Image Analysis (2015), http://dx.doi.org/10.1016/j.med
ig. 5. For better understanding, we also presented the performances

f M3T as baseline that doesn’t consider any of three regulariza-

ion terms. From the figure, we can observe the following that: (1)

method that utilizes any one of the three regularization terms is

till better than M3T; (2) The inclusion of more than two regulariza-

ion terms into the objective function resulted in better performances

han a single regularization, and ultimately the full utilization of the

hree relational characteristics achieved the best performances.

.6. Multiple modalities fusion

With respect to multi-modal fusion, it is known that different

odalities can provide complementary information, and thus can en-

ance the diagnostic accuracy (Cui et al., 2011; Hinrichs et al., 2011;

ohannim et al., 2010; Perrin et al., 2009; Suk and Shen, 2013; Wal-

ovd et al., 2010; Westman et al., 2012). For this reason, we also per-
ature selection method for joint regression and classification in AD
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Fig. 4. Scatter plots of the target ADAS-Cog scores against the predicted ones, which were obtained with MRI for AD vs. NC.
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formed experiments using both MRI and PET (MP for short). We con-

structed a new feature matrix X with a concatenation of MRI and PET

features at each row, but used the same response matrix Y as the

above-described experiments.

Tables 4 and 5 summarize the results of clinical label identifica-

tion and clinical scores estimation, respectively. In line with the pre-

vious researches, the modality fusion helped improve performances

in both classification and regression. Moreover, all the methods with

the modality fusion selected the aforementioned brain regions with

higher ‘Frequency’ than the corresponding methods with a single

modality, such as on average 99.2%, 93.1%, and 92.7%, respectively,

for our method, HOGM and M3T, on the data with the modality

fusion.

Finally, to check statistical significance, we conducted the paired

t-tests (Dietterich, 1998) (at 95% significance level) on the classifica-

tion and regression performances of our method and the competing

methods (including the experiments in Sections 4.3–4.6). Tables 2

and 4 show the p-values obtained from the values of ACC, while

a

Please cite this article as: X. Zhu et al., A novel relational regularization fe

diagnosis, Medical Image Analysis (2015), http://dx.doi.org/10.1016/j.med
ables 3 and 5 show the p-values computed from the values of CC.

ll these resulting p-values indicate that our method is statistically

uperior to the competing methods on the tasks of either predicting

linical scores (i.e., ADAS-Cog and MMSE) or identifying class label.

. Conclusions

In this work, we proposed a novel feature selection method

y devising new regularization terms that consider relational in-

ormation inherent in the observations for joint regression and

lassification in the computer-aided AD diagnosis. In our extensive

xperiments on the ADNI dataset, we validated the effectiveness of

he proposed method by comparing with the state-of-the-art meth-

ds for both the clinical scores (ADAS-Cog and MMSE) prediction

nd the clinical label identification. The utilization of the devised

hree regularization terms that consider relational information in

bservation, i.e., sample–sample relation, feature–feature relation,

nd response–response relation, were helpful to improve the perfor-
ature selection method for joint regression and classification in AD
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Table 4

Performance comparison among competing methods with multi-modal fusion. (ACCuracy (ACC), SENsitivity (SEN), SPEcificity (SPE), Area Under Curve (AUC), fusion of MRI and

PET (MP)).

Method AD vs. NC MCI vs. NC MCI-C vs. MCI-NC

ACC SEN SPE AUC p-value ACC SEN SPE AUC p-value ACC SEN SPE AUC p-value

MP-N 89.7 92.2 89.5 94.1 <0.001 71.6 96.1 43.9 82.7 <0.001 62.7 22.6 93.5 73.2 <0.001

MP-S 90.8 92.6 93.8 96.7 <0.001 76.3 97.0 49.9 83.4 <0.001 66.9 33.9 96.0 75.7 <0.001

HOGM 95.2 92.8 95.4 97.8 0.001 79.5 96.6 58.6 84.6 0.003 67.6 45.5 96.8 75.1 <0.001

M3T 94.0 92.0 96.3 98.0 <0.001 78.4 95.0 57.7 83.9 <0.001 67.9 47.0 93.3 75.7 <0.001

Proposed 95.7 96.6 98.2 98.1 – 79.9 97.0 59.2 84.9 – 72.4 49.1 94.6 82.9 –

Table 5

Comparison of regression performances of the competing methods in terms of Correlation Coefficient (CC) and Root Mean Square Error (RMSE) by fusing MRI and PET (MP).

Method AD vs. NC MCI vs. NC MCI-C vs. MCI-NC

ADAS-Cog MMSE ADAS-Cog MMSE ADAS-Cog MMSE

CC RMSE CC RMSE p-value CC RMSE CC RMSE p-value CC RMSE CC RMSE p-value

MP-N 0.626 4.80 0.587 1.99 <0.001 0.365 4.29 0.335 1.69 <0.001 0.431 4.09 0.455 1.47 <0.001

MP-S 0.634 4.83 0.585 1.92 <0.001 0.359 4.25 0.371 1.67 <0.001 0.449 4.00 0.496 1.41 <0.001

HOGM 0.633 4.64 0.602 1.83 <0.001 0.364 4.20 0.365 1.65 <0.001 0.450 3.93 0.531 1.40 <0.001

M3T 0.653 4.61 0.639 1.91 <0.001 0.450 4.23 0.433 1.64 <0.001 0.522 3.81 0.567 1.36 <0.001

Proposed 0.680 4.40 0.682 1.78 – 0.520 4.02 0.508 1.61 – 0.591 3.78 0.622 1.35 –
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ances in the JRC problem, and outperformed the state-of-the-art

ethods.

It should be noted that while the proposed method was success-

ul to enhance the performances for AD/MCI diagnosis, the current

ethod considered only the linear relationships inherent in the ob-

ervations. Therefore, it will be our forthcoming research issue to ex-

end the current work to the nonlinear formulation via the kernel

ethods.
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ppendix A

We prove that the proposed Algorithm 1 makes the value of the

bjective function in Eq. (11) monotonically decrease. We first give a

emma from (Nie et al., 2010) as follows, which will be used in our

roof.

emma 1. For any nonzero row vectors (w(t))i ∈ R
cand (w(t + 1))i ∈

c,where i ∈ {1, ���, d} and t denotes an index of iteration, the following

nequality holds:

d

i=1

((‖(w(t + 1))i‖2
2

2‖(w(t))i‖2

− ‖(w(t + 1))i‖2

)

−
( ‖(w(t))i‖2

2

2‖(w(t))i‖2

− ‖(w(t))i‖2

))
≥ 0. (A.1)

heorem 1. In each iteration, Algorithm 1 monotonically decreases the

bjective function value in Eq. (11).

roof. In Algorithm 1, we denote part of Eq. (11), i.e., with-

ut the last term λ‖W‖2,1, in the t-th iteration as L(t) =
Please cite this article as: X. Zhu et al., A novel relational regularization fe

diagnosis, Medical Image Analysis (2015), http://dx.doi.org/10.1016/j.med
Y − XW(t)‖2
F

+ α1tr((W(t))T LMW(t)) + α2tr(W(t)LG(W(t))T ) +
3tr((XW(t))T LSXW(t)). We also denote Q(t) as the optimal value

n the t-th iteration for Q. According to (Nie et al., 2010), optimizing

he non-smooth convex form ‖W‖2,1 can be transferred to iteratively

ptimize Q and W in tr(WTQW). Therefore, according to the steps of

ine 6 and 7 in Algorithm 1, we have

(t + 1) + λtr((W(t + 1))T Q(t)W(t + 1))

≤ L(t) + λtr((W(t))T Q(t)W(t)). (A.2)

By changing the trace form into the form of summation, we have

(t + 1) + λ
d∑

i=1

∥∥(w(t + 1))i
∥∥2

2

2
∥∥(w(t))i

∥∥
2

≤ L(t) + λ
d∑

i=1

∥∥(w(t))i
∥∥2

2

2
∥∥(w(t))i

∥∥
2

.

(A.3)

ith a simple modification, we can have

(t + 1) + λ
d∑

i=1

(‖(w(t + 1))i‖2
2

2‖(w(t))i‖2

− ‖(w(t + 1))i‖2 + ‖(w(t + 1))i‖2

)

≤ L(t) + λ
d∑

i=1

(
‖(w(t))i‖2

2

2
∥∥(w(t))i

∥∥
2

−
∥∥(w(t))i

∥∥
2

+
∥∥(w(t))i

∥∥
2

)
.

(A.4)

fter reorganizing terms, we finally have

(t + 1) + λ
d∑

i=1

‖(w(t + 1))i‖2 + λ
d∑

i=1

((‖(w(t + 1))i‖2
2

2‖(w(t))i‖2

− ‖(w(t + 1))i‖2

)
−

(
‖(w(t))i‖2

2

2
∥∥(w(t))i

∥∥
2

−
∥∥(w(t))i

∥∥
2

))

≤ L(t) + λ
d∑

i=1

∥∥(w(t))i
∥∥

2
. (A.5)

ccording to Lemma 1, the third term of the left side in Eq. (A.5) is

on-negative. Therefore, the following inequality holds

(t + 1) + λ
d∑

i=1

∥∥(w(t + 1))i
∥∥

2
≤ L(t) + λ

d∑
i=1

∥∥(w(t))i
∥∥

2
. (A.6)
�
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