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a b s t r a c t 

As an irreparable brain disease, Alzheimer’s disease (AD) seriously impairs human thinking and memory. 

The accurate diagnosis of AD plays an important role in the treatment of patients. Many machine learn- 

ing methods have been widely used in classification of AD and its early stage. An increasing number of 

studies have found that multi-modal data provide complementary information for AD prediction prob- 

lem. In this paper, we propose multi-modal rank minimization with self-paced learning for revealing the 

latent correlation across different modalities. In the proposed method, we impose low-rank constraint on 

the regression coefficient matrix, which is composed of regression coefficient vectors of all modalities. 

Meanwhile, we adaptively evaluate the contribution of each sample to the fusion model by self-paced 

learning (SPL). Finally, we utilize multiple-kernel learning (MKL) to classify the multi-modal data. Ex- 

periments on the Alzheimer’s disease Neuroimaging Initiative (ADNI) databases show that the proposed 

method obtains better classification performance than the state-of-the-art methods. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) [1–9] is a progressive nervous system

egenerative disease. The typical clinical characteristics of AD

nclude dysmnesia, aphasia, visuospatial impairment, executive 

ysfunction, etc. As life expectancy increases, AD is becoming a

erious health problem in the elder. There are many hypotheses

bout the pathogeny of AD, like familial inheritance, physical

isease, head trauma, etc. It is still an open problem of exploring

he biomarkers [4] and making accurate diagnosis of AD. 

In recent years, many machine learning methods have been

roposed for the diagnosis of AD and its prodromal stage, i.e.,

ild cognitive impairment (MCI). For example, by integrating the

lassifiers on different local patch subsets, Liu et al. [2] obtained

ore accurate classification performance on AD data. Sarraf and

ofighi adopted the convolutional neural network (CNN) to classify

D patient from normal control (NC) [10] . In the early research

ork, people tended to focus on classification methods based on

ingle-modal data [2–5] , such as structural Magnetic Resonance

maging (MRI) [5] and functional imaging (e.g., Positron Emission

omography, PET) [3] , and ignored the complementary information

rom other modalities. To alleviate this deficiency, Zhang and Shen

6] developed multi-modal fusion method combining different

odalities, including MRI, PET, and cerebrospinal fluid (CSF), for
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D diagnosis. Thung et al. proposed a deep learning model, which

ncorporates incomplete multi-modal AD data to improve the

lassification performance. Benefiting from utilizing the comple-

entary information among different modalities, multi-modal 

ased methods can achieve higher classification accuracy than

ingle-modal based methods [11] . 

These classification methods used in AD classification are

ainly based on the analysis of high dimensional feature, which

ay lead to the curse of dimensionality. Feature selection is an

ffective technique for dimensionality reduction by removing

he irrelevant features. At present, a number of feature selection

pproaches have been applied into AD classification methods in-

lude multi-task feature selection (MTFS) [7] , group lasso [12] and

rincipal component analysis (PCA) [13] . In the multi-modal meth-

ds, these selected features of each modality are often directly

ombined to predict the class label [14] . However, most recent

ffort s made on feature selection methods ignore two important

spects: (1) the intrinsic correlation among different modalities,

2) the difference of sample significances. 

For addressing these two problems, we proposed a novel multi-

odal classification model, which is optimized in feature and

ample levels simultaneously. For one AD patient or NC, it is rea-

onable to assume that the data of different modalities have some

ntrinsic correlation. The conventional multi-modal AD fusion

ethod often integrates the different modalities linearly [6,7,11] .

his approach may miss some latent important characteristics

f different modalities. As we know, rank is the powerful global

easure of matrix sparseness. Thus, in our proposed method,

https://doi.org/10.1016/j.neucom.2019.04.066
http://www.ScienceDirect.com
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we exploit low-rank technique [15–20] to effectively capture the

latent correlation of multi-modal AD data. In the aspect of esti-

mating the sample significance, we adopt the self-paced learning

(SPL) [21–25] to our method. As a cognitive driven model, SPL

can dynamically evaluate the learning difficulty of each sample,

and it gradually increases the training set by introducing more

hard-learning samples. In AD classification problem, some patients

may have many neurological diseases, it makes the diagnosis of

AD or MCI difficult. Therefore, we apply the SPL into processing

high-confidence samples, noise samples and outliers respectively

in AD data. In the multi-modal fusion process, sample significance

analysis is also helpful to describe and capture the relevance across

different modalities. These important samples will make a large

contribution in building the classifier decision boundary than those

insignificance and noise samples. In this way, the influence of noise

samples and outliers to the classification model can be suppressed.

In the AD classification problem, we need to handle several

tasks include AD vs. MCI, AD vs. NC etc. In our work, we use MTFS

to remove those irrelevant features to these tasks. After MTFS, the

usual practice is to directly connect those different f eature spaces

into one single matrix and then train a classifier. In our work, we

use the proposed novel MKL method to classify the multi-modal

data, which is effective to reveal the latent correlation among

different modalities and can offer a general framework for data

fusion. 

Overall, the proposed method mainly has the following contri-

butions: 

(1) The low-rank constraint is first employed to capture the

intrinsic correlation across different modalities. 

(2) The self-paced learning is first adopted to estimate the

sample significance of AD data. The SPL has been proven to

be robust to noise samples and can speed up the objective

function convergence. 

(3) The experimental results show that the proposed method

achieves promising performance in AD classification. 

The remaining parts are organized as follows. In Section 2 ,

some related works are presented. The proposed method and its

reasonability are given in Section 3 . Section 4 demonstrates the ex-

periment datasets and settings. The results are shown in Section 5 .

Finally, we draw the conclusion and future works in Section 6 . 

2. Related works 

2.1. Low-rank representation 

Low-rank technique can provide the intrinsic information

of data, and it has been successfully used in face recognition,

computer vision and other popular domains [15–20] . By using

low-rank method, Wang et al. [16] solved the problem of robust

face recognition, in which both training and test image data are

corrupted. Haeffele et al. [15] developed a novel matrix factor-

ization technique based on low-rank constraint, which is suitable

for large datasets. Liu et al. [17] proposed low-rank representation

(LRR) model which can capture the global structure of training

samples. He et al. [26] proposed a unified framework that pursuits

the low-rank subspace for hyperspectral image restoration. For the

problem of unsupervised domain transfer learning, in which no

labels are available in the target domain, Xu et al. [27] proposed

the model can preserve the structures information of source and

target data. In this way, their method can avoid potentially nega-

tive transfer and is more robust to different types of noise. These

research works have proven that low-rank method is effective for

matrix completion and recovering the global structure of the data.

Inspired by these methods, we apply low-rank method into the

AD data to capture the correlation among different modalities. 
.2. Self-paced learning 

Motivated by human learning, Bengio et al. proposed curricu-

um learning [28] whose main idea is to organize samples in an

asy-to-hard learning order. Self-paced learning is the extension

f curriculum learning, and it is more flexible and adaptive in

stimating the learning difficulty of sample [21–25] . Jiang et al.

21] proposed a novel re-ranking approach for multi-modal data

ased on self-paced learning. Kumar et al. [23] introduced the self-

aced learning to the latent variable models. Self-paced learning

teratively picks the easy-learning samples and updates the model

arameters till all samples participate in training. The self-paced

earning model can alleviate the problem of falling into a bad local

ptimum by presenting the data in an easy-to-hard learning order.

he self-paced learning model can be simply represented as:

in P P loss + f ( P ; k ) , where P denotes the self-paced weighting

atrix, k is the learning pace parameter, and loss denotes the

ample loss by the classifier. There are many types of self-paced

unctions, e.g., binary weighting scheme, linear weighting scheme,

ogarithmic weighting scheme, etc. No matter what kind of self-

aced function f ( P ; k ), it needs to satisfy the three conditions:

1) f ( P ; k ) is convex with respect to P ∈ [0, 1]; (2) the weight of

ach sample should be monotonically decreasing with respect to

ts relevant loss; and (3) the weight of each sample should be

onotonically decreasing with respect to the self-paced parameter

 . Inspired by self-paced learning, we dynamically estimate the

ontribution of each sample to the fusion model to avoid the

nfluence of noise samples and outliers in early learning stage. 

. Proposed method 

.1. Objective function 

In this paper, we propose self-paced sample weighting based

ulti-modal rank minimization (SPMRM) to construct a more

iscriminative and robust model for AD classification. In our

ork, we use multi-task feature selection (MTFS) [6,29,30] as data

re-processing method, which is used to coarsely select those

elevant features of each modality in AD data. We denote the

oarsely selected data m modalities as { X 

(1) , X 

(2) , . . . , X 

(m) } , and

ach modality has n label samples { x ( j) 
i 

, y i } n i =1 
, ( j = 1 , . . . , m ). After

TFS, the dimensionalities of these modalities may be different.

or addressing this problem, we proposed a novel multi-kernel

earning (MKL) framework to solve the heterogeneous data fusion

roblem. In addition, we can implicitly use feature space induced

y kernel function to improve the classification performance. MKL

ramework can combine the complementary information among

ll modalities. More details can be found in Section 3.3 . We use

apping function φ induced by kernel function to project each

odal data into high dimensional space. According to the practical

pplication, many kernel functions can be chosen, such as linear

ernel, polynomial kernel Gaussian kernel, etc. 

Then, we consider a linear regression model whose parameters

re determined by minimizing a regularized sum-of-squares error

unction [31] given by: 

in 

ω 

1 

2 

n ∑ 

i =1 

(
y i − ω 

T φ( x i ) 
)2 + 

λ

2 

ω 

T ω (1)

here n is the number of samples, y i is the label of i -th sample,

nd ω is a vector of parameters. The solution of Eq. (1) is 

 = 

1 

λ

n ∑ 

i =1 

(
y i − ω 

T φ( x i ) 
)
φ( x i ) = �T α (2)

here � is the matrix whose i th row is given by φ( x i ) 
T . And

= ( α1 , . . . , αn ) 
T , where αi = 

1 
λ
( y i − ω 

T φ( x i ) ) . Then we can
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ewrite the linear regression model using the dual representation

31] and reformulate the Eq. (1) in terms of the parameter α
nstead of working with the parameter vector ω. If we substitute

 = �T α into Eq. (1) , we obtain: 

in 

α

1 

2 

αT ��T ��T α − αT ��T y + 

1 

2 

y T y + 

λ

2 

αT ��T α (3) 

here y = ( y 1 , . . . , y n ) 
T . Then we define the Gram matrix

 = ��T , which is a n × n symmetric matrix with elements

 i, j = φ( x i ) 
T φ( x j ) = k ( x i , x j ) where i, j ∈ [1, n ]. Then the

q. (3) can be written as: 

in 

α

1 

2 

αT KK α − αT Ky + 

1 

2 

y T y + 

λ

2 

αT K α (4) 

Eq. (4) can be written as: 

in 

α

1 

2 

( y − K α) 
T 
( y − K α) + 

λ

2 

αT K α (5) 

Considering all the modalities in AD data, we use a ma-

rix A = [ α(1) , . . . , α(m ) ] to denote the parameter vectors of all

odalities in AD data, where α( j ) is the parameter vector of j th

odality. It can be assumed that the matrix A with low-rank con-

traint reserves the latent correlation information among different

odalities in multi-modal data. 

Therefore, we give the low-rank constraint based multi-modal

usion model: 

in 

A 

m ∑ 

j=1 

(
y − K 

(
X 

( j ) 
)
α( j ) 

)T (
y − K 

(
X 

( j ) 
)
α( j ) 

)

+ λS 

m ∑ 

j=1 

α( j ) T K 

(
X 

( j ) 
)
α( j ) + λR R ( A ) (6) 

here K ( X 

( j ) ) is the Gram matrix of j -th modality data. In our

ork, we adopt Gaussian kernel function, also known as radial

asis function (RBF), which is defined as k ( x i , x j ) = exp( −‖ x i −x j ‖ 2 
2 σ 2 ) .

S and λR are the regularization parameters. R( A ) denotes the rank

f parameter matrix A . 

In our work, we also measure the contribution of each sample

o the model. Specifically, we will select the most discriminative

amples, and employ them to construct a more robust multi-modal

lassification model. Therefore, we further improve the original

odel as follows: 

in 

A , P 

m ∑ 

j=1 

(
y − K 

(
X 

( j ) 
)
α( j ) 

)T 
P 

(
y − K 

(
X 

( j ) 
)
α( j ) 

)

+ λS 

m ∑ 

j=1 

α( j ) T K 

(
X 

( j ) 
)
α( j ) + λR R ( A ) + m f ( P ; k ) (7) 

here P is a diagonal matrix whose elements are the weight of

amples. In our work, we employ self-paced learning to estimate

he weight matrix. Specifically, we utilize a self-paced function

 ( P ; k ) that allocates weight to samples to controls the number

f samples considered in current learning stage. The parameter k

etermines the learning pace. Self-paced function can be defined

n various forms, which is discussed in Section 3.2 . 

.2. Optimization for SPMRM 

Considering solving Eq. (7) is an NP-hard problem, we use the

uclear norm ‖ A ‖ ∗ , which is the sum of the singular values of

atrix A, to replace R(A). Then we adopt the alternating direction

ethod of multipliers (ADMM) framework [32] to resolve the

roblem. After an auxiliary variable J is introduced, the objective

unction can be reformulated as: 
in 

A , P 

m ∑ 

j=1 

(
y − K 

(
X 

( j ) 
)
α( j ) 

)T 
P 

(
y − K 

(
X 

( j ) 
)
α( j ) 

)

+ λs 

m ∑ 

j=1 

α( j ) T K 

(
X 

( j ) 
)
α( j ) + λR ‖ 

J ‖ ∗ + m f ( P ; k ) (8) 

 . t . J = A 

The augmented Lagrangian function can be written as: 

 

(
A , J , λ, P 

)
= min 

A , J , λ, P 

m ∑ 

j=1 

(
y − K 

(
X 

( j ) 
)
α( j ) 

)T 
P 

(
y − K 

(
X 

( j ) 
)
α( j ) 

)

+ λS 

m ∑ 

j=1 

α( j ) T K 

(
X 

( j ) 
)
α( j ) + λR ‖ 

J ‖ ∗

+ 〈 λ, A − J 〉 + 

ρ

2 

‖ 

A − J ‖ 

2 
F + m f ( P ; k ) (9) 

here λ∈ R d × m is Lagrange multiplier, and 〈 X 1 , X 2 〉 denotes the

race of X 

T 
1 X 2 . 

The parameters of above problem are updated by: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A ← argmin 

A 

L 
(
A , J , λ, P 

)

J ← argmin 

J 

L 
(
A , J , λ, P 

)

λ ← λ + ρ( A − J ) 

P ← argmin 

P 

L 
(
A , J , λ, P 

)
(10) 

Each sub-problem of the original problem is convex, and we

an obtain its optimal solution. The solutions of A , J and P are

erived as follows: 

(1) The solution of A : 

min 

A 
L 
(
A , J , λ, P 

)
= min 

A 

m ∑ 

j=1 

(
y −K 

(
X 

( j ) 
)
α( j ) 

)T 
P 

(
y −K 

(
X 

( j ) 
)
α(

+ λS 

m ∑ 

j=1 

α( j ) T K 

(
X 

( j ) 
)
α( j ) + 〈 λ, A − J 〉 

+ 

ρ

2 

‖ 

A − J ‖ 

2 
F (1

= min 

A 

m ∑ 

j=1 

(
y − K 

(
X 

( j ) 
)
α( j ) 

)T 
P 

(
y − K 

(
X 

( j ) 
)
α( j ) 

)

+ λS 

m ∑ 

j=1 

α( j ) T K 

(
X 

( j ) 
)
α( j ) + λT 

v 
(
α( j ) − J v 

)
+ 

ρ

2 

∥∥α( j ) − J v 
∥∥2 

2 

(12) 

here J v is the column vector of J . The above problem can be

ivided into m sub-problems regarding α(j) , j = 1 , 2 , . . . , m . 

in 

α( j ) 

(
y − K 

(
X 

( j ) 
)
α( j ) 

)T 
P 

(
y − K 

(
X 

( j ) 
)
α( j ) 

)

+ λS α
( j ) T K 

(
X 

( j ) 
)
α( j ) + λT 

v 
(
α( j ) − J v 

)
+ 

ρ

2 

∥∥α( j ) − J v 
∥∥2 

2 
(13) 

Eq. (13) is a convex problem with respect to α( j ) , which can

e easily solved by gradient descent method. Then, we obtain the

atrix A by normalizing each row. 

(2) The solution of J 

According to the augmented Lagrange multipliers (ALM) [32] ,

e solve J as: 

 = argmin 

J 

λR ‖ 

J ‖ ∗ + 〈 λ, A − J 〉 + 

ρ

2 

‖ 

A − J ‖ 

2 
F = U S θ[ S ] V 

T (14)
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Fig. 1. Comparison of different weighting schemes ( k = 4 . 8 , k = 1 . 2 ). 

Algorithm 1 SPMRM. 

Input : Training data { x j 
1 
, x j 

2 
, . . . , x j n } m j=1 

, self-paced par ameters k, k ′ , par ameters 

λS , λR . 

Output: parameter J , self-paced weighted matrix P . 

1: Initialize λ0 , self-paced k, k ′ and t = 0 . 

2: while ( t � = the threshold) do 

3: for j ← { 1 , . . . , m } do 

4: ( α(1) , . . . , α(m ) ) t+1 ← solution by Eq. (13) . 

5: (P ) t+1 ← solution by Eq. (21) . 

6: end for 

7: J t+1 ← solution by Eq. (14) . 

8: Update λt to λt+1 in Eq. (10) . 

9: end while 

10: = J t+1 , P = P t+1 

w  

w  

p  

c

m  

3

 

t  

c  

k  

W  

t  

l  

t  

m  

b  

w  

o  

E

3

 

a  

A  

d  

m  
where θ = λR /ρ , and USV 

T is the results of singular value decom-

position (SVD) of A − λ/ρ . 

(3) The solution of P : 

min 

P 

m ∑ 

j=1 

(
y −K 

(
X 

( j ) 
)
α( j ) 

)T 
P 

(
y−K 

(
X 

( j ) 
)
α( j ) 

)
+ m f ( P ; k ) 

(15)

Before introducing the self-paced function, we first discuss a

most common weighting scheme, the binary weighting (also called

hard weighting). In binary weighting, f ( P ; k ) is defined based on

the L 1 - norm of P ∈ [0, 1] n : 

f ( P ; k ) = −1 

k 
‖ 

P ‖ 1 = −1 

k 

n ∑ 

i =1 

p i (16)

where P is a diagonal matrix, whose diagonal elements are

{ p 1 , . . . , p n } , and the other elements of P are all zeros. Substitut-

ing Eq. (16) into Eq. (15) , the solution of p i can be calculated as: 

p i = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

1 

1 

m 

m ∑ 

j=1 

� i j < 

1 

k 

0 

1 

m 

m ∑ 

j=1 

� i j ≥
1 

k 

(17)

where � ij is the squared loss of i th sample in j th modality. 

The sample weight will be set 0 if the squared loss is higher

than the threshold value 1/ k ; otherwise it will be set 1. It should

be noted that this weighting scheme is sensitive to sample loss.

For example, when the threshold is 0.35 and the squared loss of

sample m1 and m2 are 0.34 and 0.36, respectively, the weight

of m1 is 1 whereas the weight of m2 is 0. Obviously, the binary

weighting scheme is unreasonable in above case. To alleviate this

deficiency, in our work, we adopt mixture weighting scheme to

assign weights of samples. Mixture weighting scheme is the com-

bination of soft weighting scheme and binary weighting scheme.

The sample weight assigned by soft weighting can reflect the im-

portance of sample more faithfully, e.g. linear weighting scheme,

logarithmic weighting scheme etc. Specifically, in mixed weighting

scheme, if the loss is either too small or too large, the binary

weighting is applied. Otherwise, the soft weighting is applied in

the middle area. The mixed weighted scheme is defined as: 

f 
(

p i ; k ; k ′ 
)

= −ξ
n ∑ 

i =1 

log ( p i + ξk ) (18)

where ξ = 1 / ( k ′ − k ) , k ′ is an auxiliary parameter ( k ′ > k > 0). Then

the derivation of p i in Eq. (15) is: 

∂L 

∂ p i 
= 

m ∑ 

j=1 

� i j −
mξ

p i + kξ
(19)

Let Eq. (20) be 0, the closed-form optimal solution of p i can be

calculated by: 

p i = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

1 

m 

m ∑ 

j=1 

� i j ≤
1 

k ′ 

0 

1 

m 

m ∑ 

j=1 

� i j ≥
1 

k 

mξ

�m 

j=1 
� i j 

− kξ otherwise 

(20)

Fig. 1 shows the comparison of binary weighting and mixture

weighting. Comparing with soft weighting scheme, the mixture

weighting can tolerate some errors in loss function. In our work,
e first set k = 4 . 8 , and gradually decrease the value of k to 1.2. As

e can see from Fig. 1 , when k = 4 . 8 , only a small part of samples

articipate in model. When k = 1 . 2 , almost all the samples are

onsidered. Then the Eq. (15) can be denoted as: 

in 

P 

m ∑ 

j=1 

(
y −K 

(
X 

( j ) 
)
α( j ) 

)T 
P 

(
y −K 

(
X 

( j ) 
)
α( j ) 

)
−mξ log ( P + ξk ) (21)

.3. Multi-modal data fusion for classification 

According to Algorithm 1 , we can obtain the parameter J and

he weight matrix P. We also need to calculate the regression

oefficient of the fusion data. It is easy to extend the single

ernel linear regression to multiple-kernel linear regression.

e denote ( x a , x b ) = 

∑ 

j β j k 
( j) ( x ( j) 

a , x 
( j) 
b 

) as a mixed kernel be-

ween the multi-modal training samples x a and x b . Meanwhile,

et k ( x a , x c ) = 

∑ 

j β j k 
( j) ( x ( j) 

a , x 
( j) 
c ) as a mixed kernel between

he multimodal training sample x a and the test sample x c . Our

ethod integrates multiple kernels into one kernel, which can

e regarded as an approach to kernel combination. In our work,

e adopt grid search with the constraint 
∑ 

j β j = 1 to find the

ptimal combination parameters. Substituting the mixed kernel to

q. (13) , we can get the regression coefficient of the fusion data. 

.4. Advantages of our proposed model 

We utilize the matrix A to store the regression coefficients of

ll modalities. By imposing the low-rank constraint on the matrix

 , our model can better capture the latent correlation among

ifferent modalities. Based on the intrinsic structure of different

odalities, we can construct a more discriminative classifier for
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Fig. 2. Illustration of the proposed SPMRM model. After image pre-processing, we can obtain data matrices from the MRI, PET images and CSF biomarkers. By solving problem 

of Eq. (13) , we can get the parameter vector α of each modal data. In the feature level, the potential correlation among the parameter vectors of different modalities in AD 

data can be extracted. The process is shown in the lower left corner of Fig. 2 . Meanwhile, in the sample level, as the value of k decreases, we gradually introduce those 

hard-learning samples into the model. Finally, all samples are considered in building the model. Therefore, the influence of noise samples and outliers can be suppressed 

in early learning stage. The self-paced weight matrix P contains the weights of the samples, whose the elements p i ( i = 1 , 2 , . . . , n ) are inversely proportional to sample 

residual. The process is shown in the lower right corner of Fig. 2 . 
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D classification problem. Meanwhile, we introduce the self-paced

earning to our model, which benefits the robustness of the opti-

ization algorithm. We define a diagonal weight matrix P whose

iagonal elements indicate the importance of samples to the fu-

ion model. Motivated by the human learning process, self-paced

earning will adaptively learn the model from “easy” samples to

ore complicated samples. The main idea of self-paced learning

s to determine the “easy” samples. In our work, AD classification

roblem is the supervised model. We employ the difference be-

ween predicted values and label to determine the “easy” samples.

n the training process, we first select those small residual samples

o construct the model. Gradually, we add the samples with larger

esiduals to train the model till all samples are considered. Our

roposed model can be views as a framework of two parameter

odels. (1) When the self-paced learning is not considered, the

odel can be regarded as the multi-modal low-rank minimization

ased method (MRM-based model); (2) when the low-rank is

ot considered, the model can be regarded as the self-paced

earning based method for multi-modal data (SP-based model).

t is worth pointing out that our method is not the combination

f two independent parameter models. In our method, these two

odels promote each other. The exploring of latent correlation

mong different modalities helps determining the real weights in

PL. Meanwhile, SPL considering the contribution of each sample
lso benefits the optimization of low-rank problem. The Fig. 2

emonstrates the framework of the proposed SPMRM method. 

. Experiments 

.1. Datasets 

The data used in the experiments were obtained from the

lzheimer’s Disease Neuroimaging Initiative (ADNI) dataset ( www.

oni.ucla.edu ). A total of 202 subjects in the ADNI (202-ADNI) with

RI, PET and CSF modalities are used in the study, which includes

0 AD subjects, 53NCs, and 99 MCI subjects. The 99 MCI patients

an be further divided into two types, MCI converts and MCI not-

onverts. Specially, MCI converts (MCI-C) will develop to AD pa-

ients within 18 months whereas the MCI non-converts (MCI-NC)

ill maintain the original status. Meanwhile, another AD database

913-ADNI) is also involved in the experiment. This dataset

ontains five modalities, ID (serial number), single nucleotide

olymorphism (SNPdata), voxel based morphometry (VBM), flu-

rodeoxyglucose positron emission tomography (FDG) and F-18

orbetapir PET scans amyloid imaging (AV45) with AD, MCI and

C, which includes 160 ADs, 542 MCIs and 211 NCs. The 542 MCI

atients have three phases, like significant memory concern (SMC),

arly mild cognitive impairment (EMCI) and late mild cognitive

http://www.loni.ucla.edu
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Table 1 

Demographic Characteristics of the Studied Sample in the 913-ADNI Database. (The values are denoted as mean ± standard deviation. NC = Normal Control, SMC = Significant 

Memory Concern, EMCI = Early Mild Cognitive Impairment, LMCI = Late Mild Cognitive Impairment, AD = Alzheimer’s disease.). 

Subjects HC SMC EMCI LMCI AD 

Number 210 82 272 187 160 

Gender(M/F) 109/101 33/49 153/119 108/79 95/65 

Age 76.13 ± 6.54 72.45 ± 5.67 71.51 ± 7.11 73.86 ± 8.44 75.18 ± 7.88 

Education 16.44 ± 2.62 16.78 ± 2.67 16.07 ± 2.62 16.38 ± 2.81 15.86 ± 2.75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

MCI-C vs. MCI-NC classification results of two independent parameter models and 

SPMRM on 202-ADNI dataset. 

Method Modality MCI-C vs. MCI-NC 

ACC (%) SEN (%) SPE (%) AUC (%) 

SP-based MRI 69.89 44.76 88.15 58.93 

PET 62.89 30.00 70.00 61.25 

CSF 62.56 50.89 63.39 59.88 

CONCAT 72.78 66.37 79.82 72.92 

MRM-based MRI 70.89 40.00 60.00 66.90 

PET 70.89 40.00 60.00 64.58 

CSF 68.89 60.29 73.57 67.78 

CONCAT 77.89 62.74 77.32 77.87 

SPMRM MRI 70.89 40.00 60.00 69.98 

PET 71.89 40.00 62.50 69.85 

CSF 72.89 68.63 78.57 74.13 

CONCAT 78.89 74.40 83.99 76.91 
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impairment (LMCI). The ID is the unique attribute of the patient

and the SNPdata is gene dataset. In our work, we just select the

VBM, FDG and AV modalities to construct our model. Table 1 lists

the demographic characteristics of subjects in 913-ADNI dataset. 

4.2. Image preprocessing 

In our experiment, we perform image pre-processing to all

MR and PET image on 202-ADNI dataset. Firstly, the anterior

commissure (AC) – posterior commissure (PC) correlation on all

images is implemented on all images, and then the N3 algorithm

[33] is employed to correct the intensity inhomogeneity. Next, we

combine the brain surface extractor (BSE) [34] and brain extraction

tool (BET) [35] to perform skull-stripping on structural MR images.

The skull-stripping results were further manually to ensure clean

skull. After removal of cerebellum, FAST in the FSL package [36] is

used to divide structural MR images into three different tissues:

grey matter (GM), white matter (WM) and cerebrospinal fluid

(CSF). Afterward, we utilize the 4D HAMMER [37] which is a

fully automatic 4-dimensional atlas warping method to obtain

the subject-labeled image based on a template with 93 manually

labeled ROIs [38] . Then, all images based on the 93 labeled ROIs in

the template can be labeled. For each region of the 93 ROIs in the

labeled MR image, we compute the volume of GM as a feature.

For PET image, we first align it to its respective MR image of the

same subject using a rigid transformation, and then compute the

average intensity of each ROI region in the PET image as a feature.

Finally, for each subject, we can achieve 93 features in MRI image,

93 features in PET image, and 3 features in CSF image. 

For 913-ADNI database, we aligned the preprocessed multi-

modality image data (VBM, FDG, AV45) to same visit scan. Then,

in the standard Montreal Neurological Institute (MNI) space as

2 × 2 × 2 mm 

3 voxels, we created normalized gray matter density

maps from MRI data, and registered the FDG-PET and AV45-PET

scans into same space by SPM software package [39] . Based

on the MarsBaR AAL atlas [40] , 116 ROI level measurements of

mean gray matter densities. The FDG-PET glucose utilization, and

AV45 amyloid values were further extracted. After removing of

cerebellum, the imaging measures on each modality (VBM, FDG,

and AV45) with 90 ROIs were used as quantitative traits (QTs) in

our experiments. 

4.3. Experimental settings 

To evaluate the effectiveness of our proposed model, we

perform two sets of experiments. In the first set of experiment,

we aim to validate if the effectiveness of our proposed model

is influenced by the combination of the two independent pa-

rameter models. We calculate four statistical measures, including

the accuracy (ACC), sensitivity (SEN), specificity (SPE) and area

under the receiver operating characteristic curve (AUC). Then, we

separately use the two independent parameter models to build the

classification models. To evaluate the performance of our proposed

method, we adopt a 10-fold cross validation strategy to calculate

these measures. Specifically, we first divide the dataset D into ten

same size mutually exclusive subsets, like D = D ∪ D ∪ . . . ∪ D .
1 2 10 
n each experiment, we select the union of 9 subsets as training

et and the remaining subset is viewed as the test set. Then, we

an conduct 10 times training and test based on the ten groups of

raining and test sets. The mean of 10 times test results is treated

s the final test result. 

In the second set of experiment, we compare our model with

ther existing baselines in AD classification. Similar to the above

xperiment, we adopt 10-fold cross-validation in calculating the

our statistical measures, ACC, SEN, SPE and AUC. We conduct the

omparative experiment on the single-modal and the multi-modal

ata. In each classification task, we also perform the two indepen-

ent parameter models (MRM-based model and SP-based model)

nd our proposed model SPMRM on the dataset. 

. Results and discussion 

.1. Comparisons with independent parameter models and SPMRM 

Tables 2 and 3 list the comparison results of single-modal

nd multi-modal of the two independent parameter models and

PMRM on 202-ADNI dataset. Specifically, Table 2 shows the MCI-C

s. MCI-NC task, and Table 3 shows the AD vs. NC and MCI vs.

C tasks. Fig. 4 (a) demonstrates the ROC curves of single-modal

nd the multi-modal of SPMRM model in the MCI-C vs. MCI-NC

ask. Obviously, the performance of multi-modal model is superior

o the single-modal model. Meanwhile, compared to the two

ndependent parameter models, the SPMRM model obtains the

etter experiment results. In 913-ADNI dataset, we perform two

lassification tasks, AD vs. NC and MCI vs. NC. Table 4 lists the

xperiment results. As we can observe from the Table 4 , we get

he similar experiment results as on 202-ADNI dataset. 

.2. Performance with different combinations schemes 

Fig. 3 shows the performance of our proposed method on dif-

erent combination of weights, i.e., βMRI , βPET and βCSF , in MCI-C

s. MCI-NC task. In the condition of βMRI + βPET + βCSF = 1 , we

llot all the possible values, changing from 0 to 1 at a step of 0.1.

ccording to above constraint condition, only the upper triangular
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Table 3 

AD vs. NC and MCI vs. NC classification results of two independent parameter models and SPMRM on 202-ADNI dataset. 

Method Modality AD vs. NC MCI vs. NC 

ACC (%) SEN (%) SPE (%) AUC (%) ACC (%) SEN (%) SPE (%) AUC (%) 

SP- 

based 

MRI 89.23 86.00 92.75 91.14 78.25 81.56 71.14 85.02 

PET 90.23 90.00 90.57 93.44 74.25 85.67 51.71 75.74 

CSF 87.46 88.33 86.57 87.33 74.21 77.56 66.57 77.05 

CONCAT 91.23 92.00 90.57 92.04 78.92 83.89 70.86 77.43 

MRM- 

based 

MRI 87.46 82.00 93.14 86.92 74.33 84.44 53.71 74.64 

PET 90.69 90.33 91.14 90.91 76.92 91.89 48.86 70.61 

CSF 88.46 88.33 88.57 91.52 70.87 74.56 50.86 73.71 

CONCAT 92.49 92.33 92.57 92.46 80.21 96.00 62.57 75.72 

SPMRM MRI 90.23 86.00 94.57 88.99 78.33 87.33 59.14 80.27 

PET 93.69 94.33 93.14 91.25 81.54 91.00 64.86 72.88 

CSF 89.23 88.33 90.00 92.42 72.21 77.56 60.57 75.50 

CONCAT 95.46 96.33 94.57 96.61 83.54 95.00 62.86 78.15 

Table 4 

Classification results of different parameter models and SPMRM on 913-ADNI dataset. 

Methods Modality AD vs. NC MCI vs. NC 

ACC (%) SEN (%) SPE (%) AUC (%) ACC (%) SEN (%) SPE (%) AUC (%) 

SP- 

based 

VBM 80.55 88.17 71.79 95.73 82.14 93.84 48.78 81.79 

FDG 77.49 84.66 67.67 94.04 83.40 93.48 52.20 88.23 

AV 81.09 88.23 73.37 94.15 81.61 92.48 45.00 84.61 

CONCAT 84.09 90.25 76.48 96.11 83.47 93.98 53.29 88.64 

MRM- 

based 

VBM 85.06 92.28 75.10 96.20 82.61 90.81 52.24 84.01 

FDG 79.08 85.97 70.16 95.23 82.47 91.78 50.34 84.79 

AV 84.88 93.06 75.79 95.73 80.01 90.15 44.51 84.02 

CONCAT 85.65 93.58 76.46 96.31 82.93 92.28 53.74 85.71 

SPMRM VBM 87.76 90.78 78.23 95.25 82.14 88.75 40.45 86.23 

FDG 79.78 86.87 69.67 93.88 83.47 94.30 52.50 80.65 

AV 86.79 92.68 75.77 96.43 82.41 89.94 49.95 88.89 

CONCAT 88.02 94.14 80.00 97.21 84.14 94.31 55.26 89.10 

Fig. 3. MCI classification results with respect to different combing weights of MRI, PET and CSF. 
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arts have valid values. In Fig. 3 , the better experiment results

ather around the inner squares of the upper triangular parts.

t demonstrates the multi-modal data provide complementary

nformation for AD classification. In other words, each modality in

ur model is essential to achieve good classification. 

.3. Comparison of other AD classification methods 

To demonstrate the superiority of our algorithm, we compare

he SPMRM with nine baseline algorithms in AD classification,

.e., Canonical Correlation Analysis (CCA) [41] , Naïve Bayesian

NB) [42] , Random Forest [43] , Multi-kernel learning (MKL) [44] ,

parse representation classification (SRC) [45] , Locality Preserving

rojections (LPP) [46] , Sparsity Preserving Projections (SPP) [47] ,

ocally Linear Embedding (LLE) [48] , Stacked auto-encoders (SAE)

49] , Stacked denoising sparse auto-encoder (DSAE) [50] , deep
onvolutional auto-encoder (DCAE) [51] and convolutional neural

etwork (CNN) [10,52] . Through imposing linear transformation

or two variables, CCA method can maximize the correlation in

he subspace. LPP, SPP and LLE are the typical manifold feature

xtraction methods. MKL can construct a fusion classification

odel by integrating the features in different modalities. Random

orest is a sort of Ensemble Learning (EL), integrating a number

f decision trees. A sample will have n classification results based

n the n decision trees. Random Forest integrates all the results

nd specifies the major labels as the output. SRC method is the

lassifier based on sparse representation. Naïve Bayesian classifier

an calculate the probability of each category it belongs to and

icks the maximum probability category as the final label. Stacked

uto-encoders (SAE) is a deep learning algorithm which analyzes

ultiple classes in one setting with a few labeled samples. DSAE

nd DCAE are two variations of auto-encoder. CNN is one of the
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Table 5 

Classification results (ACC and AUC) of baselines and SPMRM on 202-ADNI dataset. 

Tasks 

Methods 

AD vs. NC MCI vs. NC MCI-C vs. MCI-NC 

ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) 

MKL 87.23 88.08 72.25 83.66 70.00 63.91 

SRC 87.46 92.19 74.17 80.74 63.67 61.00 

Random Forest 86.46 95.71 70.29 81.52 64.89 63.37 

Naïve Bayes 85.46 91.06 71.54 72.90 67.78 59.55 

LPP 85.23 79.26 72.96 71.62 75.89 70.64 

SPP 76.00 69.95 72.88 72.60 70.89 67.65 

LLE 79.69 76.40 70.25 73.89 72.67 69.64 

KCCA 74.92 81.67 71.46 78.15 58.89 62.33 

SAE 91.40 92.89 82.10 83.88 75.00 68.59 

DSAE 88.73 82.45 80.91 75.98 75.86 68.31 

DCAE 87.47 90.22 78.47 70.37 75.19 65.14 

CNN 94.50 88.52 76.60 78.32 74.20 69.37 

SPMRM 95.46 96.61 83.54 88.43 78.89 76.91 

Table 6 

Classification results between baselines and our proposed model SPMRM on 913-ADNI dataset. 

Tasks 

Methods 

AD vs. NC MCI vs. NC 

ACC (%) SEN (%) SPE (%) AUC (%) ACC (%) SEN (%) SPE (%) AUC (%) 

MKL 79.89 93.93 42.23 92.08 81.34 92.23 40.80 86.44 

SRC 74.36 81.95 66.58 88.77 68.55 72.04 54.56 88.15 

Random Forest 79.83 86.57 74.12 96.55 82.54 94.26 45.21 89.08 

Naïve Bayes 80.27 86.20 72.43 95.09 82.68 91.80 54.91 88.24 

LPP 86.27 93.70 78.28 95.99 83.21 89.68 45.84 85.14 

SPP 88.02 94.14 80.00 97.21 75.20 83.89 54.96 82.14 

LLE 76.33 81.53 71.29 91.12 81.47 93.59 46.30 76.16 

KCCA 74.03 90.21 46.76 86.89 79.47 88.43 42.09 82.44 

SAE 87.79 87.32 78.47 88.74 77.90 92.92 49.46 73.85 

DSAE 81.44 75.21 76.31 80.19 75.19 79.07 50.59 65.32 

DCAE 83.05 75.97 78.43 82.33 75.43 64.46 51.69 63.44 

CNN 83.80 83.63 74.88 81.97 69.51 74.12 51.41 70.28 

SPMRM 89.20 95.56 81.27 99.48 84.14 94.31 55.26 89.10 

Fig. 4. (a) The ROC curves of three single-modal and the multi-modal methods. (b) The ROC curves of our algorithm and other baselines on 202-ADNI. 
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Fig. 5. Comparisons on baselines and our model on ADNI dataset. 
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ost popular models in deep learning and has been applied in AD

lassification problem in recent years. 

The experiment results (the mean of accuracy and AUC) of

hirteen algorithms on 202-ADNI dataset are listed in Table 5 and

ig. 5 . Table 6 shows the results on 913-ADNI dataset. For different

lgorithms, we list the highest mean of accuracy (ACC) and area

nder curve (AUC) in bold. Fig. 4 (b) demonstrates the ROC curves

f our algorithm and baselines in the task MCI-C vs. MCI-NC on

02-ADNI dataset. In three different tasks, AD vs. NC, MCI vs.

C, and MCI-C vs. MCI-NC, our algorithm obtains all the best

erformance on accuracy and AUC. Specifically, our proposed
Fig. 6. The objective function values w
odel achieves the best classification accuracy of 95.46%, 83.54%

nd 78.89% for the three different tasks in multi-modal data. The

ighest AUC obtained by our model are 96.61%, 88.43% and 76.91%,

espectively. 

Compared to baseline algorithms on AD classification problem,

ur proposed method obtains the higher results in the three tasks.

or deep learning models, they usually show superiority over large

atasets, such as the recognition of high-definition images. How-

ver, the AD classification problem is based on small sample data

nd it makes the large number of parameters in the deep learning

odel cannot be optimized, which constraints the effectiveness of
ith the self-paced parameter k. 
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Fig. 7. The classification results of SPMRM with the combination of λS and σ . 
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deep learning models. In our follow-up work, we will adjust some

deep learning models to fit our domain. 

5.4. The influence of parameters 

As the value of k decreases, the model becomes more mature.

To visualize this change, we show the changes of the objective

function value as k decreases in Fig. 6 . We set the initial value of

k to 4.8 and the decrease step is 0.4. Obviously, as the value of k
Fig. 8. Top 10 brain regions selected for AD class

Fig. 9. The convergence property of the propos
ification detected from VBM, FDG and AV. 

ed algorithm on three classification tasks. 

ecreases, the value of the objective function also decreases.

his also shows that with more and more complicated samples

re considered into the model, the objective function tends to

onvergence. 

In SPMRM, λS and λR are the regularization parameters. In

his paper, we employ radial basis function (RBF) to map the

riginal data to a feature space, and the parameter σ is the

idth parameter of RBF. To evaluate the parameters effect on our

lgorithm, we measure different combinations of parameters λS ,

R and σ . Specifically, λS varies from 10 −i ( i = −6 , −5 , −4 , −3 ) ,

R varies from 0 , 5 , . . . , 5 × n ( n = 0 , . . . , 10 ) and σ changes from

 

−i ( i = −6 , −5 , . . . , 0 ) . From the analysis of experiment results,

ur method is not sensitive to parameter λR , and the change of

arameter λR almost does not produce any effect on the results.

n our work, we fix the parameter λR to 10. Fig. 7 shows the

xperiment results under the influence of parameters λS and σ . 

.5. The performance of our model with respect to the number of 

elected ROI features 

The above results have shown the effectiveness of our proposed

odel based on the whole brain ROI features in the AD classifi-

ation problem. In this section, we will visually demonstrate the

ost important feature subsets. Specifically, we employ the value

f regression coefficient vector of each modality to measure the

mportance of each brain region. After performing 10 times 10-fold

ross-validation, we can obtain the mean value of the ten regres-

ion coefficient vectors, denote as ω 

∗. By normalizing the value of

ector ω 

∗ to [0, 1] and sorting it in descending order, we select the

op 10 significant brain regions. Fig. 8 shows the top 10 significant

rain regions (ROIs) detected from the FDG, VBM and AV modality

f AD classification problem in the template space. From Fig. 8 ,

hese selected brain regions, i.e., hippocampal, Wernicke, amygdale
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nd para-hippocampal regions, have proved to be related to the

D. For example, the changes of the hippocampal will damage the

emory of human, which is always affected in AD patients. 

.6. Convergence study 

In the theoretical analysis of previous section, the objective

unction of SPMRM will converge to the local optimum in certain

teps. In this section, we will show the convergence iterations

teps of the proposed method. Fig. 9 demonstrates the variation

f objective function value on 202-ADNI dataset in the three

lassification tasks, AD vs. NC, MCI vs. NC, and MCI-C vs. MCI-NC.

t can be found that SPMRM can converge to a determined value

ithin fairly few iterations. 

. Conclusion 

This study proposed SPMRM method for multi-modal AD

lassification problem. Compared to other methods, our model

ntroduces two novel aspects: (1) imposing low-rank representa-

ion on AD data to capture the intrinsic latent structure across

ifferent modalities and (2) self-paced learning is adopted to

daptively measure the importance of sample to the fusion model.

xperiment results demonstrate that our model achieves better

erformance in accuracy and AUC compared with other state-

f-the-art methods on 202-ADNI dataset and 913-ADNI dataset.

enefiting from above two aspects, our proposed algorithm can

onstruct a more discriminative and robust model. In future, we

ill investigate how to extend the proposed method to solve the

ncomplete multi-modal AD classification problem. 
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