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The human brain appears organized in compartments characterized by seemingly

specific functional purposes on many spatial scales. A complementary functional

state binds information from specialized districts to return what is called integrated

information. These fundamental network dynamics undergoes to severe disarrays in

diverse degenerative conditions such as Alzheimer’s Diseases (AD). The AD represents a

multifarious syndrome characterized by structural, functional, and metabolic landmarks.

In particular, in the early stages of AD, adaptive functional modifications of the brain

networks mislead initial diagnoses because cognitive abilities may result indiscernible

from normal subjects. As a matter of facts, current measures of functional integration

fail to catch significant differences among normal, mild cognitive impairment (MCI) and

even AD subjects. The aim of this work is to introduce a new topological feature called

Compression Flow (CF) to finely estimate the extent of the functional integration in

the brain networks. The method uses a Monte Carlo-like estimation of the information

integration flows returning the compression ratio between the size of the injected

information and the size of the condensed information within the network. We analyzed

the resting state connectomes of 75 subjects of the Alzheimer’s Disease Neuroimaging

Initiative 2 (ADNI) repository. Our analyses are focused on the 18FGD-PET and functional

MRI (fMRI) acquisitions in several clinical screening conditions. Results indicated that CF

effectively discriminate MCI, AD and normal subjects by showing a significant decrease

of the functional integration in the AD and MCI brain connectomes. This result did not

emerge by using a set of common complex network statistics. Furthermore, CF was

best correlated with individual clinical scoring scales. In conclusion, we presented a

novel measure to quantify the functional integration that resulted efficient to discriminate

different stages of dementia and to track the individual progression of the impairments

prospecting a proficient usage in a wide range of pathophysiological and physiological

studies as well.
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INTRODUCTION

The human brain exhibits an incredibly large repertoire of
computations. From the spinal cord and the retina, most of
input flows along subcortical regions and to cortices. Stages
of data processing come in succession in a parallel and
distributed manner that is yet mostly debated. One of the major
insights in this thread claims that the human brain appears
organized in sections defined by rather specific function in
a complex architecture that span several spatial scales from
neuronal to regional levels. In a concurrent and fundamental
functional state, the human brain combines information from
the specialized districts exhibiting what is called functional
information integration (Tononi et al., 1994).

The level of information integration rises and falls during
sleep and wakefulness and in many other physiological and
pathological conditions. Since its formulation (Tononi et al.,
1994), the information integration has received a plethora of
supporting evidences and many methods to measure it have been
proposed. The most accepted formulation defines the human
brain network in terms of the average shortest path length among
all possible node couples, a concept called characteristic path
length (L) (Watts and Strogatz, 1998). Despite the very intuitive
and simple definition, the characteristic path length suffers from
many limitations and pitfalls. Two among all, it considers all
paths as equiprobable neglecting preferential routes fostered by
the topology and, secondary, it averages over all non-infinite
paths underestimating the contribution of unconnected nodes.

Functional integration as well as other fundamental network
dynamics undergoes to severe disarrays in a number of diverse
pathological and degenerative conditions such as epilepsies,
Parkinson or Alzheimer’s Diseases (AD). In the current view,
the AD represents a composite syndrome characterized by
structural, functional, and metabolic landmarks (Brier et al.,
2014a). Indeed, atrophy and hypometabolism accompanying
cascades of intervening degenerations eventually leading to
full blown dementia (Chase, 2014). However, clear etiological
features at the level of brain connectome still miss. In particular,
in the early stages of AD when occur a relevant amyloid
accumulation, adaptive functional modifications of the brain
networksmislead initial diagnoses because cognitive abilitiesmay
result indiscernible from normal subjects (Lim et al., 2014). As
a matter of facts, current measures of functional integration fail
to catch significant differences among normal, mild cognitive
impairment (MCI) and even AD subjects.

The aim of this work is to introduce a new topological
feature called Compression Flow (CF) able to finely estimate
the extent of the functional integration in the brain networks.
The method produces a set of random walks driven by
network centrality criteria that would represent inferred routes
of information the information processing flow. The estimation
of the information integration is obtained as the compression
ratio between the size of the injected information generating the
random walks and the size of the condensed information within
the network.

To verify the efficacy of proposed method, we compared
and analyzed CF and L values on two models of brain-like

networks where we simulated a sort of structural degeneracy by
progressively removing edges by chance.

Subsequently, we analyzed the functional connectomes of
75 subjects of the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) repository (http://adni.loni.usc.edu/). Since recent
specific literature suggests that [18F]2-fluoro-2-deoxyglucose
Positron Emission Tomography (18FDG-PET) and the resting-
state functional magnetic resonance imaging (fMRI) carry out
consistent and complementary characterization of AD and its
prodromal stages, our analyses are focused on both the 18FGD-
PET and the fMRI acquisitions in the four different conditions of
normal (CR), early MCI (EMCI), late MCI (LMCI), and AD.

Results indicated that CF can effectively discriminate
MCI, AD, and normal subjects by showing a significant
decrease of the functional integration in the AD and MCI
brain connectomes. Furthermore, AD connectomes showed
lower functional integration capability in comparison to MCI
connectomes accordingly to the phenomenological severity of
the disease progression. More importantly, CF could track the
disease progression within each of three pathological classes
(EMCI, LMCI, AD), a property that we did not observe with
other standard complex network statistics. In conclusion, we
presented an in silico biomarker to quantify the functional
integration that resulted efficient to discriminate different stages
of dementia and to differentiate the follow-up groups in AD,
EMCI, and LMCI and would be proficiently applied into a
wider range of pathophysiological and physiological studies
as well.

MATERIALS AND METHODS

Subject Data
Data used in the preparation of this article were obtained
from the ADNI database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W.Weiner, MD. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of MCI and early
Alzheimer’s disease (AD). For up-to-date information, see
www.adni-info.org. We selected participants subject to the
protocol ADNI2 that involves the scanning modalities of the
functional neuroimaging such as the 18FDG-PET and the
functional Magnetic Resonance Imaging (fMRI). From the
second version of the ADNI (ADNI2), we selected 75 subjects
by applying the following criteria: (i) the subject had at least two
functional acquisitions (18FDG-PET or fMRI) in time; (ii) each
functional acquisition was related to an anatomical acquisition
within a maximum period of 2 months. After the above selection,
we had a total of 75 subjects, 24 Normal, 18 EMCI, 16 LMCI, and
17 AD.

Longitudinal Analysis
According to the ADNI acquisition guidelines, due to risks
associated to the contrast medium, subjects can receive a 18FDG-
PET acquisition once a couple of year with a tolerance of few
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weeks. Instead, fMRI acquisition can be achieved up to twice
a year again with few weeks of tolerance. At the time of our
analyses, ADNI dataset provided subjects (irrespective to the
initial screening assessment) with up to two 18FDG-PET sessions
(year 0, year 2) and up to five fMRI sessions (months 0, month 6,
month 12, month 18, month 24).

Signal Processing
Data were preprocessed and analyzed using SPM12 (Statistical
Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm/software/
spm12, Wellcome Department of Cognitive Neurology, London,
UK). Prior to analysis, all images for four sessions underwent a
series of preprocessing steps according to a stable pipeline (see
Figure 1).

Anatomical volumes were segmented in order to extract the
gray matter probabilistic map also saving the bias corrected
map for the subsequent gray matter image normalization. Since
volumes were processed in the MNI space, we selected the
“forward deformation” as deformation field. We used a sampling
distance of 1mm with the respect to the smallest dimension
of voxel that was of 1.05mm. All other parameters were set to
the default values of the “Segment” module of SPM12. After
segmentation, we normalized the gray matter probabilistic map
by using the deformation field with a uniform voxel size of
4mm. Finally, in this gray matter space, we selected voxels with
probability equal to 1 which constituted the gray matter mask for
the functional volumes.

Volumes obtained from the fMRI (140 for each recording
session, cutting off possible longer acquisitions, with typical
voxel size 3.31 × 3.31 × 3.31mm) essentially underwent to
three preprocessing steps. First, all volumes passed through
a realignment phase to correct spatial effects primarily due
to head movements during the scanning. Subsequently, an
unwarping stage reduces unwanted variances caused by the
effects of the magnetic field inhomogeneities (Andersson et al.,
2001). Realignment used a separation distance of 1mm and
the estimation procedure required the best available quality
(“Quality” equal to 1). Then, we co-registered the obtained
images by using the original anatomical image as reference and
the mean of realigned/unwarped images as source (Andersson
et al., 2001). At last, we normalized the co-registered images by
means of the anatomical deformation field by using a voxel size
of 4mm.

Although the better achievable resolution was 3.31mm, after
a preliminary analysis, we chosen the resolution of 4mm because
3.31mm voxels typically produces more than 10.000 gray matter
voxels thatmade the subsequent computation of functional graph
statistics unfeasible for our computational setups (see Discussion
for considerations).

All 18FDG-PET volumes (six for each recording session)
were acquired with a typical voxel size of 2 × 2 × 2mm
and underwent to similar preprocessing pipeline except for the
estimation procedure of realignment that used a smoothness of
7mm for the Gaussian kernel. In addition, PET images were

FIGURE 1 | The preprocessing pipeline of the images. (A) First we performed a brain segmentation on the MRI anatomical volumes keeping the gray matter

probabilistic map. Subsequently, the gray maps were spatially normalized onto a MNI space of 4× 4 × 4mm voxels. (B,B’) Resting-state fMRI volumes underwent to

several processing phases (alignment and unwarping, coregistration with anatomical volumes, spatial normalization) to extract the Pearson’s correlation matrices (D),

the counterpart of weighted graphs (E). A similar preprocessing procedure was performed for 18FDG-PET volumes (C,C’).

Frontiers in Computational Neuroscience | www.frontiersin.org 3 December 2015 | Volume 9 | Article 148

http://www.fil.ion.ucl.ac.uk/spm/software/spm12
http://www.fil.ion.ucl.ac.uk/spm/software/spm12
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zippo et al. Estimation of Alzheimer’s Disease Connectome Impairments

registered to the mean of the images instead of to the first images
as in the fMRI processing.

Functional Connectivity Estimation
Once the gray matter voxels have been extracted from the
functional volumes, we reshaped the 4D signals into bi-
dimensional matrices where the m rows represented the time
slots and the n columns represented the voxel IDs. For each
acquisition, the estimation of the Pearson correlation coefficient
returned a symmetric squarematrixM = ([0, 1] ⊆ R)n×n where
the (i, j) element indicated the strength of the functional
connection between nodes i and j. Since we computed the
statistical significance of each extracted correlation coefficient,
we kept only those that had a p-value smaller than 0.05. The
matrixM was the adjacency matrix of the resulting graph G, the
functional connectome of interest. All graphs were maintained
in their weighted form. We analyzed the functional connectivity
graphs with a set of common network statistics preferring to keep
graphs in their original weighted form avoiding thresholding
techniques which produce loss of information, complicate
analyses because of the introduction of the threshold parameter
and are used when the network statistics of interest cannot be
applied to weighted graphs (Rubinov and Sporns, 2011).

Complex Network Statistics
For the analysis of these graphs, we introduced a set of common
statistics from the Complex Network Theory able to estimate
the network extent to integrate and segregate information and
many other relevant network features (see Table 1). Functional
segregation and integration in networks can be measured by
two statistics: the clustering coefficient (C) and the characteristic
path length (L). The former measures how close the neighbors
of a node are to being a clique. The latter estimates the
average shortest path length in the graph, i.e., how much the
nodes are accessible. Computationally, analyses on the extracted
functional brain networks were performed inMatlab by the Brain
Connectivity Toolbox (BCT; Rubinov and Sporns, 2010) and by
other routines developed in our lab.

The functional graphs obtained by our analysis were further
characterized to study the information workflow. To this aim, we
estimated the network centrality with the notions of betweenness
and eigenvector centrality (Gould, 1967; Freeman, 1979). Because
it can be interpreted as a measure of the importance of a node
within the network, the distribution of node centrality highlights
how the information workflow is distributed among nodes.

We further studied the modularity and the community
structure of our graphs but preliminary analyses performed with
the two most used community detection algorithms (Newman,
2006; Blondel et al., 2008) reported modularity values close
to zero nullifying the validity of the computed partitions. The
problem was due to the well-known tendency of such algorithms
to prefer clusters of big size. Therefore, we decided to tweak
the multi-resolution parameter in order to force the Louvain
algorithm to produce modules of smaller dimension (gamma =
1.15 in all analyses). By using this trick, we obtained better values
of modularity and we proceeded with inferences.

Ultimately, we analyzed networks that evolved in time
potentially dropping and recruiting nodes and connections
that come from different experimental conditions. Such a
methodology requires the discussion of potential issues. We
performed network analyses on the original weighted version
of graphs instead of using binarization techniques for several
reasons. First, unconnected nodes can be rare but could
occur especially after adjacency matrices binarization. Network
comparisons with different number of nodes require hard
statistical analyses and to discard incompatible networks (for
instance those with too few nodes or with more than one
strongly connected component) from observations. Second,
graph thresholding produces inevitably loss of information.
Hence the selective removal of portions of weights almost surely
will reduce the power of the consequent network statistics.
Third, when thresholding graphs, it is necessary to repeat
computations for a discrete range of subjective values thus
producing a considerable increase of the overall computational
complexity (see Discussion in the main manuscript). Last, all
network statistics that we needed for our analyses have a weighted
counterpart (Rubinov and Sporns, 2011).

Compression Flow
The aim of this work was to propose a new measure of
information integration able to catch dynamical features of the
brain network information flow. Despite the large amount of
proposed methods, an accurate metrics able to track substantial
changes in the in information integration capability is still
missing.

We proposed a complementary measure of information
integration inspired by fundamental theoretical tenets:

i The human brain processes information by means of a crucial
step, the functional integration. In a computational perspective
information integration is a data compression operation
where raw input data from senses produce or recollect high-
order cognitions. Since, functional integration represents one
of the essential stages of the brain processing, the extent of
functional integration should be directly proportional to the
brain ability to process information.

ii The human brain network is the product of an intricate
evolutionary optimization process that is largely unknown.
Recent works has shown that human brain networks have a
natural propensity to fault tolerance. Hence, node or edge
ablation produces small effects if the cutting is limited and
distributed. However, other evidences show that in many
cases, structural damages of the brain network produce
cascades of modifications in order to compensate the
incoming failures, a phenomenon also known as diaschis.

iii Physical connections are more reliable than functional ones
that rely on strong statistical assumptions. In addition,
scanning modalities for structural connections are more
spatially accurate and reproducible. Many recent efforts were
focused on the structural-to-functional relationship of brain
networks. Among the proposed theories and methodologies,
the network centrality appears a good candidate for the
structural-to-functional network mapping. Namely, given a
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TABLE 1 | The set of subjects selected from the ADNI2 repository.

ADNI ID Diagnosis Modalities Age FAQ GDSCALE CDR MMSE

002_S_4213 Normal rs-fMRI, 18FDG-PET 78.09 0 1 0 28

002_S_4237 EMCI rs-fMRI, 18FDG-PET 80.98 0 1 0.5 29

002_S_4270 Normal rs-fMRI 74.73 0 3 0 28

002_S_4473 EMCI rs-fMRI 74.91 0 2 0.5 27

002_S_4654 LMCI rs-fMRI, 18FDG-PET 75.47 3 0 0.5 29

002_S_4219 LMCI rs-fMRI 79.50 0 1 0.5 30

006_S_4150 Normal rs-fMRI 73.97 0 0 0 28

006_S_4153 AD rs-fMRI, 18FDG-PET 79.39 4 1 0.5 22

006_S_4192 AD rs-fMRI, 18FDG-PET 82.38 4 2 0.5 19

006_S_4515 LMCI 18FDG-PET 74.72 8 2 0.5 26

006_S_4867 AD 18FDG-PET 74.51 24 2 1 23

006_S_5153 AD 18FDG-PET 79.06 1 3 0 25

010_S_4442 Normal 18FDG-PET 74.34 0 0 0 30

011_S_4120 Normal 18FDG-PET 81.87 0 0 0 30

011_S_4222 Normal 18FDG-PET 82.38 0 1 0 30

018_S_2180 EMCI rs-fMRI 77.82 2 2 0.5 30

018_S_4313 Normal rs-fMRI, 18FDG-PET 77.15 0 0 0 25

018_S_4399 Normal rs-fMRI, 18FDG-PET 78.00 0 0 0 28

018_S_4733 AD rs-fMRI 75.37 26 1 1 26

018_S_4809 EMCI rs-fMRI 78.33 0 1 0.5 24

018_S_4868 EMCI rs-fMRI 77.21 0 0 0.5 27

018_S_4889 LMCI rs-fMRI 75.69 2 1 0.5 28

019_S_4252 AD rs-fMRI 86.58 27 1 1 22

019_S_4285 EMCI rs-fMRI 74.08 0 2 0.5 29

019_S_4477 AD rs-fMRI 82.21 16 0 1 21

019_S_4548 LMCI rs-fMRI, 18FDG-PET 84.85 0 2 0.5 26

019_S_4549 AD rs-fMRI 79.11 3 1 0.5 21

019_S_4835 Normal rs-fMRI 79.39 0 0 0 26

019_S_5012 AD rs-fMRI 76.36 6 3 0.5 25

024_S_4158 Normal 18FDG-PET 84.41 0 2 0 30

024_S_4392 EMCI 18FDG-PET 82.60 3 2 0.5 29

033_S_4179 Normal 18FDG-PET 83.04 0 1 0 30

036_S_4430 LMCI 18FDG-PET 80.07 4 0 0.5 24

037_S_4071 Normal 18FDG-PET 84.67 3 0 0 24

037_S_4302 LMCI 18FDG-PET 76.14 3 2 0.5 25

053_S_4557 EMCI rs-fMRI, 18FDG-PET 83.42 4 6 0.5 27

073_S_0311 Normal 18FDG-PET 78.19 0 0 0 30

073_S_0746 LMCI 18FDG-PET 73.91 2 2 0.5 30

073_S_4300 LMCI 18FDG-PET 80.61 0 1 0.5 26

073_S_4382 Normal 18FDG-PET 75.92 0 0 0 28

116_S_4043 Normal 18FDG-PET 82.14 0 0 0 29

130_S_2373 EMCI rs-fMRI 79.13 1 1 0.5 29

130_S_2403 EMCI rs-fMRI 79.30 9 2 0.5 29

130_S_4250 LMCI rs-fMRI, 18FDG-PET 78.58 10 2 0.5 29

130_S_4294 LMCI rs-fMRI, 18FDG-PET 75.42 0 1 0.5 28

130_S_4343 Normal rs-fMRI, 18FDG-PET 79.72 0 0 0 30

130_S_4352 Normal rs-fMRI, 18FDG-PET 83.70 0 0 0 29

130_S_4415 EMCI rs-fMRI, 18FDG-PET 75.28 11 1 0.5 28

130_S_4417 EMCI rs-fMRI 74.52 0 3 0.5 30

130_S_4542 LMCI rs-fMRI 79.36 20 4 0.5 25

130_S_4589 AD rs-fMRI 75.20 15 1 1 26

(Continued)
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TABLE 1 | Continued

ADNI ID Diagnosis Modalities Age FAQ GDSCALE CDR MMSE

130_S_4605 LMCI rs-fMRI 84.77 7 2 0.5 29

130_S_4660 AD rs-fMRI, 18FDG-PET 77.30 8 1 0.5 24

130_S_4730 AD rs-fMRI 81.17 16 1 1 21

130_S_4883 EMCI rs-fMRI 76.18 3 3 0.5 29

130_S_4925 LMCI rs-fMRI 75.10 8 1 0.5 27

130_S_4971 AD rs-fMRI 76.54 18 2 1 21

130_S_4990 AD rs-fMRI 75.19 19 1 1 25

130_S_5142 AD rs-fMRI 76.42 0 1 0 30

130_S_5175 EMCI rs-fMRI 79.58 0 0 0 30

135_S_4281 EMCI 18FDG-PET 77.56 0 1 0.5 27

135_S_4406 LMCI 18FDG-PET 78.96 3 3 0.5 29

135_S_4566 Normal 18FDG-PET 83.52 0 0 0 29

136_S_0186 Normal rs-fMRI 80.53 0 2 0 27

136_S_4433 Normal rs-fMRI 76.92 0 0 0 30

137_S_4211 AD 18FDG-PET 81.01 3 3 1 22

137_S_4258 AD 18FDG-PET 75.95 10 1 0.5 24

137_S_4299 EMCI 18FDG-PET 76.93 1 3 0.5 25

137_S_4331 EMCI 18FDG-PET 75.43 2 2 0.5 29

137_S_4466 Normal 18FDG-PET 79.85 0 2 0 30

137_S_4482 Normal 18FDG-PET 77.31 0 0 0 28

137_S_4536 EMCI 18FDG-PET 77.98 0 1 0.5 28

141_S_1004 LMCI 18FDG-PET 74.08 20 4 0.5 27

941_S_4100 Normal 18FDG-PET 78.62 0 1 0 28

941_S_4365 Normal 18FDG-PET 80.36 0 0 0 29

The first column represents the univocal ID assigned at each subject. The second column indicates the clinical diagnosis at the time of the initial screening. The third column shows the

modalities of acquisition of the functional volumes. The fourth column represents the age at the initial screening. The total score of the Functional Assessment Questionnaire (FAQ) test

is reported at column fifth. The total score of the Geriatric Depression Scale (GDSCALE) test is reported at column sixth. The global score of the Clinical Dementia Rating (CDR) test is

indicated at column seventh and the total score of the Mini-Mental State Examination (MMSE) test is showed in the last column.

set of physical connections among nodes, the node and edge
centralities are able to predict the load of node and edges
within the information processing flow.

As a first step, we evaluated a small set of network centrality
measures divided into two classes: the first one estimates node
centrality through local network features (e.g., the node degree
of the neighbor nodes), the second one approximates node
centrality by using information of the entire network. Among the
local centrality measures we preferred the node degree centrality,
a quantitative measure of the number of node connections,
whereas, for the measures of global centrality, we chose the
betweenness (BC) and the eigenvector centralities (EC). The
former measures the number of times a node is bridging
neighboring or far nodes. The latter assigns a greater centrality
to a preeminent node (a richly connected node) than to a poorly
connected one.

By analyzing the distribution of centrality in network
topologies coherent with brain networks (see next section),
we found that BC and EC showed heavy-tailed distributions
(Figures 2A,B). The degree centrality on the contrary appeared
normally distributed with a slight positive skewness (0.11).
These results suggested that node loads were inhomogeneously
distributed among nodes identifying groups of nodes that

likely process a much higher amount of information than
other ones.

For these reasons we assumed that betweenness centrality
represents a predictor of the network information processing
loads and we used it to predict the information flow from the
periphery to the network core nodes. In this way, we created a
direction for the random walks initiated from peripheral nodes
and convergent to the network central nodes. The number
of initially (and simultaneously) activated nodes corresponds
to the input information size. Once activated, nodes prefer
edges by randomly selecting one of its edges with a probability
proportional to the edge weight (weighty edges have higher
probability to be selected) and then the walk proceed to the
inward node that became activate and the random selection starts
again. In the random selection are excluded the inward edge that
has activated the node itself in order to prevent loops along the
random walk. Each walk ends when there are no more outward
edges with a weight greater than the inward edge which indicates
that further steps will get the walk out of the network center.

In more formal presentation, the following statements can
introduce the algorithm:

Algorithm: Input: the adjacency matrixM = ([0, 1] ⊆ R)n×n

of the graph G = 〈V,E〉 with vi ∈ {1, · · · , n} and E =
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FIGURE 2 | Empirical explanation of the Compression Flow (CF) architecture. (A) A comparison of the distributions of global centrality measures

(Betweenness BC or Edge Betweenness EBC) vs. a local measure of centrality (Degree DC). Box-Whisker plots highlight the different nature of the metrics because

the BC and the EBC present a heavy-tailed distribution while the DC shows a Gaussian-like distribution. (B) By generalizing from reports in (A), global centrality

measures appear to tripartite the node set by assigning to a first node subset small values of centrality (network periphery), to a second node subset large centrality

values (network middle) and to a last node subset very large centrality values (network core). (C) A toy network with 32 nodes where edge and node colors indicate

the centrality values. (D) Initially, the proposed algorithm randomly select a putative peripheral node (in red) and then it begins to walk by choosing the edge with a

probability proportional to the edge weight. (E–G) Three steps of the random walk where selected nodes are colored with red and edges in black.

{(

i, j
)

|i, j ∈ V
}

, the node betweenness centrality (BC) of G, the
edge betweenness centrality (EBC) of G

Output: the extent of compression flow CF for the graph G

1. Set a pivot value ϑ in the BC distribution, usually a low
percentile of the BC distribution (values from 5 to 10 do not
affect results);
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2. Establish which nodes have a BC lower than ϑ , thus obtaining
the subset ϕ ⊂ V with |ϕ| = kof the putative most peripheral
nodes of G;

3. For t = 1, · · · , k compute and collect the random walks rt
from the periphery to the network center for each input load t;
at each step the t activated nodes are randomly chosen from ϕ;

4. For t = 1, · · · , k estimate the compression ratio by
computing (through the c function) and counting the number
of connected components |c(Ĝ)| of the graph provisional Ĝ
obtained by the collection of all edges encountered in all paths

of rt ; the compression ratio is set to ρt =
t

n−|c(Ĝ)|

′
;

5. Sum up the obtained compression ratios CF =
∑k

i=1 ρi.

The algorithm was written in Matlab and the code is publicly
available at (https://sites.google.com/site/antoniogiulianozippo/
codes). The rationale is illustrate by the toy example in
Figures 2C–G and 3.

Synthetic Network Models
Within the set of assumptions that brought us to develop the
proposed method, we declared the working hypothesis that is the
extent of what is ontologically defined as “functional information
integration” could not be captured by the characteristic path
length. Therefore, to validate the efficacy of the proposedmethod,
we exert the CF and the L against two classes of network models.
The first contained two brain-like topologies and the second
contained two null model networks. Specifically, the former
included the Watts-Strogatz model (WS) and the Barabasi-
Albert model (BA) to generate respectively small-world and core-
periphery networks (Senden et al., 2014). The latter included the
Erdos-Renyi (ER) and the ring-lattice (RL) models to generate
totally random and purely deterministic networks representing
the null hypotheses.

RESULTS

In this work we aimed to propose a biomarker, the CF, of
the AD able to quantify the severity of the impairment at
different stages: early and late mild cognitive impairment (MCI,
respectively EMCI and LMCI). To this purpose we considered
the ADNI2 population endowed by functional modalities of
neuroscanning, in particular we were interested in the 18FDG-
PET and the resting-state fMRI. We selected functional volumes
because one of the fundamental assumptions of the proposed
method was that functional modifications of the whole-brain
network occur before they appear in their structural imaging
counterparts. Furthermore, with our approach we computed
the whole-brain voxel-wise functional connectomes because we
sustained that structural damages of the brain network produce
non-local modifications even observable in apparently unrelated
brain areas, an old theory named diaschisis proposed one century
ago that has recently found many experimental supports (von
Monakow, 1914; Carrera and Tononi, 2014; Fornito et al., 2015).

One of the fundamental dynamics of the human brain
information processing is the functional integration. According
to this theory the brain is able to collect and integrate
information from many districts achieving representations of

FIGURE 3 | Estimation of the information compression capability of a

graph. In the pictures, a graph layout that prefers edge visualization is

adopted. In the final stage, the algorithm that estimates the CF, takes into

consideration the random walks for each activation level (i.e., the number of

randomly selected activated peripheral nodes). If there are many and small

connected components then there are few convergent walks and so a poor

compression capacity. (A) A network with a relatively small CF value is

supported by the high number of connected component of the graph. Vice

versa a newtwork with large CF has many less connected components (C).

(B) An intermediate case. Edge colors represent the edge betweenness

centrality intensity.

high order concepts and abstractions. As a strictly necessary
effect, information undergoes to a sort of lossy data compression.

Consistently, the rationale of the proposed method is
that since the human brain acts as proficient information
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compression device as expression of the fundamental ability
to integrate information, altered connections due to amyloid
accumulation should affect the compression capability. Starting
from this assumption we estimated, for each functional
connectome, the number of information compressing paths
by means of a Monte Carlo-like approximation. With further
steps, we subsequently obtained the CF, an estimation of the
compression capability of the analyzed connectome.

We selected within the ADNI2 dataset, subjects that satisfied
a cohort of conditions (see Materials and Methods) classified
according to the initial clinical screening in one of the
four classes: control (CR), early MCI (EMCI), late MCI
(LMCI), and Alzheimer’s disease (AD). The extracted whole
brain voxel-wise connectomes were characterized both by a
set of complex network statistics, namely the characteristic
path length (L), the clustering coefficient (C), the modularity
(Q), the node strength distribution (�), the number of
network nodes (#Nodes), the node (BC), and the edge (EBC)
betweenness centralities and by the proposed measure CF (see
Table 2).

Validation on Simulated Network
Prior to apply our method on the selected ADNI2 population,
we validated its goodness in two kinds of synthetic brain-
like networks which underwent to incremental edge removal,
a rough simulation of the brain tissue degeneration produced
by amyloid accumulation. Specifically, we produced two groups
of network models, one that contains two network models
consistent with brain topologies and the other one contains
two null networks as hypotheses to be rejected. Specifically, we

considered the Watts-Strogatz model (WS) and the Barabasi-
Albert model (BA) to generate respectively small-world and
core-periphery networks (Senden et al., 2014). On the other
hand, we examined Erdos-Renyi (ER) and the ring-lattice (RL)
models to generate totally random and purely deterministic
networks representing the null hypotheses. All network models
had 210 nodes (a size comparable to the observed connectomes)
and the results of each model were averaged on 1000 runs
to reduce the effects of randomness. We eventually compared
results obtained with the CF measure with the classical
statistics of functional integration L (the characteristic path
length).

We found that L statistically detected deteriorations of
network information integration capabilities in the WS
(P = 0.000, N = 1000, Kruskal-Wallis test) model of brain
network (Figure 4A) and in the RL (P = 0.000, N = 1000,
Kruskal-Wallis test) and ER (P = 0.000, N = 1000, Kruskal-
Wallis test) null models. However, L was unable to recognize the
decline of information integration in the BA brain-like network
(P = 0.326, N = 1000, Kruskal-Wallis test). Importantly, by
using L we did not observe any statistical significance in the
slight grow of L even when half of nodes were lost. This result
indicated that the classical measure of information integration
can be inadequate to disclose a fundamental dynamical feature
in the brain network information processing.

Instead, we found that in WS and BA networks (Figure 4B),
the CF fell down during edge removals (WS: P = 0.000,
N = 1000, Kruskal-Wallis test; BA: P = 0.000, N = 1000,
Kruskal-Wallis test), an effect more remarkable in BA than
in WS. In fact, by removing half of nodes, WS networks
lost 34% of compression capabilities whilst BA lost 46% of

TABLE 2 | The complex network statistics used in this work.

Measure Definition Interpretation

Node strength �i =
∑

j∈N

aij Number of edges connected to a given node i. Nodes

with relatively high values of k are called hubs

Shortest path length dij =
∑

afg ∈ ri↔j

1/afg where ri↔j is the shortest path between i and

j

The number of edges encountered in the shortest path

between node i and j

Characteristic path length L = 1
n

∑

i∈N

Li =
1
n

∑

i∈N

∑

j∈N,j 6=i dij
n−1 Measure of network integration

Clustering coefficient C = 1
n

∑

i∈N Ci =
1
n

∑

i∈N

2ti
ki (ki−1)

, with ti =
1
2

∑

j,h∈N
3
√

aijaihajh Measure of fine-grain network segregation. It counts

the average number of triangles t (three-node fully

connected graphs) present in the network

Modularity Q = 1
l

∑

u,v∈N

[

auv −
�i�j
l

]

δmi
δmj

, where l is the sum of all

weights of V (whose elements are called modules) and mi is the

module containing the node i and δmi
δmj

= 1 if mi = mj and 0

otherwise.

It evaluates the tendency of the network to be reduced

in independent (or scarcely dependent) modules

Betweenness Centrality BCi =
1

(n−1) (n−2)

∑

h,j∈N,h 6=j,h 6=i,i 6=j

ρhj (i)

ρhj
, where ρhj is the number

of shortest paths between h and j, and ρhj (i) is the number of

shortest paths between h and j that pass through i

It is the amount of shortest paths that pass through the

node i. It roughly indicates how much information

burdens the node i

We reported the weighted versions of each statistics. Weights are assumed to span from 0 to 1.
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FIGURE 4 | Behavior of CF and L on synthetic networks. In networks with brain-like topologies, the L values (that is inversely proportional to the information

integration) (A) falls down, as effect of the random node removal, only in small-world network and not in the core-periphery Barabasi networks. (B) While by using the

CF index, brain-like topologies abundantly lose values as effect of random node removals. Furthermore, this result also shows how brain-like networks became more

and more inefficient to integrate information as the connections among nodes are lost as in diverse neurodegenerative diseases.

CF. Collaterally we observed also that CF was much higher
in BA networks (+87%, P = 0.000, N = 1000, non-
parametric Wilcoxon ranksum test) than in WS. In addition,
we found that ER models reported a slower downfall of
CF (-22%, P = 0.000, N = 1000, Kruskal-Wallis test).
Eventually, the node removal altered the CF in RL networks
(P = 0.000, N = 1000; Kruskal-Wallis tests) even when we

randomly dropped only 6–7% of nodes, the CF decreased of
almost 67% indicating that RL networks are scarcely tolerant to
faults.

These results confirmed that on toy models of the human
brain network the CF is able to detect the decline of information
processing, a fact that did not always emerge by using the
standard measure L.
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TABLE 3 | Average values (and standard deviations) of the complex network statistics for the 18FDG-PET volumes.

C L Q � BC EBC CF #Nodes

CR 0.450 ± 0.023 2.582 ± 0.188 0.333 ± 0.017 0.119 ± 0.012 4766 ± 377 2.260 ± 0.525 433 ± 23 3718 ± 193

EMCI 0.454 ± 0.025 2.579 ± 0.189 0.332 ± 0.017 0.123 ± 0.013 4468 ± 362 2.255 ± 0.518 405 ± 24 3456 ± 184

LMCI 0.459 ± 0.022 2.579 ± 0.181 0.334 ± 0.017 0.123 ± 0.013 3955 ± 336 2.170 ± 0.502 394 ± 21 3458 ± 187

AD 0.409 ± 0.021 2.730 ± 0.164 0.379 ± 0.020 0.071 ± 0.008 5291 ± 405 2.588 ± 0.556 377 ± 20 3191 ± 161

C, indicates the clustering coefficient; L, the characteristic path length; Q, the modularity; �, the average node strength; BC, the betweenness centrality; EBC, the edge betweenness

centrality; CF, the proposed measure called Compression Flow; and #Nodes represents the number of nodes.

TABLE 4 | P-values of all the pairwise comparison of the classes (rows) of Table 3.

C L Q �

CR EMC LMC AD CR EMC LMC AD CR EMC LMC AD CR EMC LMC AD

CR 1 0.877 0.832 0.012 1 0.894 0.711 0.000 1 0.972 0.986 0.003 1 0.909 0.837 0.000

EMCI 0.877 1 0.978 0.007 0.894 1 0.995 0.000 0.972 1 0.998 0.001 0.909 1 0.999 0.001

LCMI 0.832 0.978 1 0.000 0.711 0.995 1 0.000 0.986 0.998 1 0.000 0.837 0.999 1 0.000

AD 0.012 0.007 0.000 1 0.000 0.000 0.000 1 0.003 0.001 0.000 1 0.000 0.001 0.000 1

BC EBC CF #Nodes

CR 1 0.328 0.010 0.012 1 0.626 0.011 0.000 1 0.003 0.012 0.001 1 0.000 0.009 0.000

EMCI 0.328 1 0.006 0.007 0.626 1 0.005 0.000 0.003 1 0.004 0.001 0.000 1 0.792 0.001

LCMI 0.010 0.006 1 0.000 0.011 0.005 1 0.000 0.012 0.004 1 0.000 0.009 0.792 1 0.000

AD 0.012 0.007 0.000 1 0.000 0.000 0.000 1 0.001 0.001 0.000 1 0.000 0.001 0.000 1

The non-parametric Wilcoxon ranksum test with Bonferroni correction was used in all comparisons (bold ones are significant). C, indicates the clustering coefficient; L, the characteristic

path length; Q, the modularity; �, the average node strength; BC, the betweenness centrality; EBC, the edge betweenness centrality; CF, the proposed measure called Compression

Flow; and #Nodes represents the number of nodes.

18FDG-PET
By analyzing the complex network statistics, we concluded that
measures such as C, L, Q, and the node strength were only able
to discriminate AD group from CR group, but they misclassified
EMCI and LMCI subjects into the CR groups. Specifically, the
average clustering coefficient (C) was significantly higher in the
CR (Tables 3, 4, ranksum tests with Bonferroni correction),
EMCI, and LMCI groups than in the AD group whilst C did not
differ between CR and EMCI, CR, and LCMI or between EMCI
and LMCI. A similar result has been observed for Q while we
found an opposite trend for L and � but the same discernibility
of classes. Interestingly, the EBC and the BC were able to better
separate groups by discriminating CR from LMCI subjects but
failing to discern CR from EMCI patients. A similar behavior was
found for the number of nodes (#Nodes) which discerned CR
and AD but not EMCI from LMCI showing however a gradual
decrease of the gray matter voxels. Remarkably, CF progressively
decreased from CR to AD, significantly discriminate each class
of the ADNI repository. These results revealed that the CF
measure served as a biomarker of the dementia progression for
the selected ADNI2 population in the three stages of the disease
progression, from EMCI to AD.

Once established that CF was able to statistically separate
each of the ADNI2 classes, we continued the investigation by
analyzing CF values in the two times of scanning each class: at the
initial screening and at after 2 years (Figure 5). In normal subjects

we no found any statistical significance between network features
at the two different times (non-parametric Wilcoxon ranksum
test). In the group of EMCI patients, we observed significance for
BC (P = 0.002, N = 18, ranksum test) and for CF (P = 0.000,
N = 18, ranksum test). Namely, the betweenness centrality and
the CF decreased in the 18FDG-PET connectomes acquired after
2 years of the initial screening. In the group of LMCI participants,
we found again significance for CF (P = 0.000,N = 16, ranksum
test) and for Q (P = 0.027,N = 16, ranksum test). Eventually the
AD group revealed several significances: BC (P = 0.000, N = 17,
ranksum test), EBC (P = 0.000, N = 17, ranksum test), CF
(P = 0.001, N = 17, ranksum test) and #Nodes (P = 0.040,
N = 17, ranksum test). Results of this section showed that CFwas
the only measure able to monotonically follow the impairment
progression. Other measures like BC showed significance in
EMCI and AD but not in LMCI.

Resting-State fMRI
To assess the efficacy of the proposed biomarker CF to
discriminate the dementia states, we repeated the same
computational framework by replacing the 18FDG-PET
functional volumes with the resting-state fMRI volumes
(rs-fMRI).

Similarly, classical complex network statistics was able to
distinguish CR from AD but failed to separate EMCI and LMCI
from CR (C, L, Q, and �, Tables 5, 6). According to the previous
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FIGURE 5 | Network statistics in the follow-up analysis of 18FDG-PET volumes. The ranksum test shows that only CF is able to distinguish the two times of

investigation (initial screening and after 2 years) in all three pathological classes (EMCI, LMCI, AD). For detailed significance see the Results section. C, indicates the

clustering coefficient; L, the characteristic path length; Q, the modularity; �, the average node strength; BC, the betweenness centrality; EBC, the edge betweenness

centrality; CF, the proposed measure called Compression Flow; and #Nodes represents the number of nodes.
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TABLE 5 | Average values (and standard deviations) of the complex network statistics for the rs-fMRI volumes.

C L Q � BC EBC CF #Nodes

CR 0.267 ± 0.013 3.237 ± 0.139 0.116 ± 0.009 0.240 ± 0.016 2951 ± 227 1.6939 ± 0.461 889 ± 42 4267 ± 217

EMCI 0.254 ± 0.011 3.327 ± 0.124 0.116 ± 0.008 0.238 ± 0.016 2930 ± 238 1.6954 ± 0.448 811 ± 37 4006 ± 202

LMCI 0.248 ± 0.010 3.389 ± 0.135 0.119 ± 0.011 0.230 ± 0.015 2629 ± 194 1.7428 ± 0.460 770 ± 28 3923 ± 189

AD 0.381 ± 0.037 2.794 ± 0.097 0.087 ± 0.008 0.358 ± 0.017 2643 ± 199 1.7502 ± 0.473 655 ± 24 3788 ± 170

C, indicates the clustering coefficient; L, the characteristic path length; Q, the modularity; �, the average node strength; BC, the betweenness centrality; EBC, the edge betweenness

centrality; CF, the proposed measure called Compression Flow; and #Nodes represents the number of nodes.

TABLE 6 | P-values of all the pairwise comparison of the classes (rows) of Table 5.

C L Q �

CR EMC LMC AD CR EMC LMC AD CR EMC LMC AD CR EMC LMC AD

CR 1 0.877 0.832 0.012 1 0.894 0.711 0.000 1 0.972 0.986 0.003 1 0.909 0.837 0.000

EMCI 0.877 1 0.978 0.007 0.894 1 0.995 0.000 0.972 1 0.998 0.001 0.909 1 0.999 0.001

LCMI 0.832 0.978 1 0.000 0.711 0.995 1 0.000 0.986 0.998 1 0.000 0.837 0.999 1 0.000

AD 0.012 0.007 0.000 1 0.000 0.000 0.000 1 0.003 0.001 0.000 1 0.000 0.001 0.000 1

BC EBC CF #Nodes

CR 1 0.328 0.010 0.012 1 0.626 0.011 0.000 1 0.003 0.012 0.001 1 0.000 0.009 0.000

EMCI 0.328 1 0.006 0.007 0.626 1 0.005 0.000 0.003 1 0.004 0.001 0.000 1 0.792 0.001

LCMI 0.010 0.006 1 0.000 0.011 0.005 1 0.000 0.012 0.004 1 0.000 0.009 0.792 1 0.000

AD 0.012 0.007 0.000 1 0.000 0.000 0.000 1 0.001 0.001 0.000 1 0.000 0.001 0.000 1

The non-parametric Wilcoxon ranksum test with Bonferroni correction was used in all comparisons (bold ones are significant). C, indicates the clustering coefficient; L, the characteristic

path length; Q, the modularity; �, the average node strength; BC, the betweenness centrality; EBC, the edge betweenness centrality; CF the proposed measure called Compression

Flow; and #Nodes represents the number of nodes.

results obtained with 18FDG-PET, BC, and EBC both added a
finer characterization by discriminating CR from LMCI subjects
but failing again to discern CR from EMCI patients.

By using rs-fMRI, CF progressively and significantly decreased
in each analyzed conditions (CR, EMCI, LMCI, AD, respectively)
confirming that CF can represent a proficient biomarker of
the AD progression. In addition, we compared the significance
levels obtained from 18FDG-PET and rs-fMRI analyses and we
concluded that rs-fMRI was more accurate than 18FDG-PET
with each network statistics.

We further wondered whether CF was able to followed the
impairment progression at the five times available in the selected
ADNI2 subset: at initial screening, after 6 months, after 12
months, after 18 months, and after 24 months (Figure 6). In
normal subjects we no found any statistical significance between
network features at the five different times (non-parametric
Mann-Kendal monotonic trend test) although CF appeared to
monotonically decrease after the 6 months (P = 0.009, N = 24,
Mann-Kendal test). In the group of EMCI patients, we observed
significance for CF (P = 0.000, N = 18, ranksum test). Namely,
the CF progressively decreased in the rs-fMRI connectomes
acquired along the 2 years of the initial screening. In the group of
LMCI participants, we also found significance for CF (P = 0.000,
N = 16, ranksum test). Eventually the AD group revealed further
significance only for CF (P = 0.000, N = 17, ranksum test).
These last results indicated that CF was the only measure able to
monotonically follow the impairment progression.

DISCUSSIONS

In this work we surveyed data from a database, the ADNI
repository (version 2), and analyzed them in the light of a novel
measure, the CF by which a finely detailed estimate of large brain
network functional integration is attained. On the voxelwise
18FDG-PET and resting-state fMRI (rs-fMRI) connectomes, the
CF, diversely from many common complex network statistics,
was able to statistically discriminate each of the considered
clinical states (normal CR, early mild cognitive impairment
EMCI, late mild cognitive impairment LMCI, and Alzheimer’s
Disease AD). Furthermore, CF was also able to characterize the
progression of the disease within each pathological class (EMCI,
LMCI, and AD) finely following the extent of the impairment. To
the best of our knowledge, this measure can be considered as a
promising AD non-invasive biomarker.

The Neurophysiological Inheritance of AD
Functional imaging from fMRI and 18FDG-PET acquisitions
were related onto the structural MRI counterparts. The study
had the aim to identify hidden or previously undetected signs
of functional degeneration still unexpressed at the clinical
phenomenological level in AD or MCI patients. We selected
strongly restrictive statistical requirements in order to reduce
the “noise” introduced necessarily by large data arrays. The
CF measure allowed for discriminating EMCI, LMCI, AD, and
normal subjects just starting from the sole brain connectomics.
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FIGURE 6 | Network statistics in the follow-up analysis of rs-fMRI volumes. The Mann-Kendal monotonic trend test shows that only CF is able to distinguish

the two times of investigation (initial screening and after 2 years) in all three pathological classes (EMCI, LMCI, AD). For detailed significance see the Results section. C,

indicates the clustering coefficient; L, the characteristic path length; Q, the modularity; �, the average node strength; BC, the betweenness centrality; EBC, the edge

betweenness centrality; CF, the proposed measure called Compression Flow; and #Nodes represents the number of nodes.
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More importantly, MCI and full expressed ADs were similarly
distinguishable, a previously unattained estimate with heavy
prognostic and therapeutic value. These results have special
interest. As first it is assumable that the abstract space of
prodromal neurodegenerative signs, incorporating a multiform
semiological palette of emblems of cognitive degeneration,
is richer than thought of different, and clinically relevant,
hues. Additionally, this aggregate aside those subsets expressing
conditions naturally evolving to AD, yet shows others with
distinguishable structures and different outcomes from AD, all
factors that deserve to be further investigated. It goes no saying
that these neurodynamical signs must be matched with finer
clinical investigations and with biochemical data but they can
represent a step forward to a more robust prognostic and
therapeutic strategy.

The measure has a strong dynamic flavor taking into
consideration the information workflow both in terms of global
network centrality. The procedure itself for measuring CF
asks for an arbitrary setting of a pivot in a node within the
betweenness centrality distribution with the observation of a
centrality-driven development of a random walk, a method
that doesn’t represent a necessary or preliminary privilege of
some already chosen trajectory. This strategy allows a more
natural estimate of implicit functional properties of the network
dynamics.

Cautions must be taken into consideration. While fMRI
measures are implicitly related on actual local measures of BOLD
signal (a measure that delivers the ratio between hemoglobin
oxygenation levels), images from FDG-PET measures are
weighted over a mean estimate of glucose consumption,
an assumption that doesn’t meet the actual finding that
different cerebral regions may display very diverse blood vessel
architectures and related dynamics (Zippo and Castiglioni,
2015). This implies an implicit misalignment between fMRI and
FDG-PET data. However, due to the still missing fine grained
observation at the dynamic level, the imbalance can be still
tolerated. The prognostic value of the proposed technique instead
deserves a deeper appraisal. It could become one of the key points
to decide for a therapeutic choice. In the future, the use (or less) of
drugs relenting the development of a full-blown AD syndrome or
disease could be decided on the preliminary diagnostic appraisal
well partitioning the space of AD/nonAD neurodegeneration
dominions.

Besides the clinical involvements of the CF as neuroimaging
biomarker, the fundamental assumptions on which the method
is based could shed new insights in the comprehension of AD
(Rinaldi et al., 2015). The integration of information represents
one of the most important information processing stage of the
brain and aberrations of information integration are reported in
a plethora of diseases. Because CF is an alternative estimator of
the information integration, we have previously concluded that
AD and its prodromal stages are significant marked by a strong
impairment of information integration. Although information
integration is unlikely the cause of the AD progression but
rather one of the many halfway consequences, the mere
restoration through pharmacological of electrical intervention
could temporarily and partially restore information transmission

efficiency toward physiological levels. Indeed, recently, a latent
feature of antidepressants have been found by Schaefer et al.
(2014) which reported that antidepressants enhance and promote
the functional integration of the brain, a short-term effect
that eventually boost the neurogenesis and the white matter
development. Apparently in accordance with this speculation
another recent study of Sheline and collegues showed that
a specific antidepressant molecule (citalopram) decreases the
production of CSF amyloid beta (Aβ) in humans (Sheline et al.,
2014).

Past Works
The analysis of brain networks with complex network statistics is
field largely debated. Wang and colleagues recently showed that
AD patients can be easily distinguished from normal subjects
by network properties extracted from electroencephalographic
functional connectomes (Wang et al., 2014). Other authors
found that functional connectivity strength of AD are reduced
and a weaker correlation with MCI patients can be observed
(Zhou et al., 2015). Furthermore, the classical information
integration statistics L has been observed to be worsen in AD
patients while the clustering coefficient C resulted invariant
(Stam et al., 2007). An apparently contradictory results because
C and L are usually correlated in brain-like topologies (Wang
et al., 2007; Catricalà et al., 2015). From a more purely
topological perspective, a recent work indicates that the only
measure of small-worldness encloses the discriminability power
between normal and AD subjects (Supekar et al., 2008).
More specifically, other authors found that AD can be the
result of the removal of important nodes called hubs (nodes
with higher degree that typically have also higher centrality;
Buckner et al., 2009; Sheline and Raichle, 2013; Brier et al.,
2014a,b).

LIMITATIONS AND CONCLUSIONS

There is a latent necessity in the proposed approach to consider
only large-scale networks. Themethod of CF better approximates
the compression-based functional integration through random
centrality-driven walks and for network of less than one hundred
nodes the estimation results meaningless. This drawback
represents a clear drawback of the approach and also justifies the
choice to use voxelwise connectomes instead of ROI-based which
are limited to few hundreds of parceled regions. The computation
of the edge and node betweenness centrality could represent a
consequential limitation because the algorithm leads to a cubic
computational complexity slowing down the analyses of large sets
of volumes. Nonetheless, promising suboptimal algorithms has
been recently introduced by enhancing the computational times
also with the aid of parallel computing architectures (Geisberger
et al., 2008; Bonneau et al., 2009; Chan et al., 2009; Kourtellis
et al., 2013).

In conclusion this work claims that a novel measure of
information integration based on an intuitive approximation of
the network compression capabilities through random centrality-
driven walks is able to fully characterize both the single CR,
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EMCI, MCI, and AD classes and the times of disease progression
in 18FDG-PET and rs-fMRI volumes.

Eventually, since the synthesis of the CF method has been
driven by several fundamental theoretical tenets, it could be used
in other neurological, psychiatric and psychological conditions
as well as in fundamental neuroscientific studies about the
information integration in the human brain networks.
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