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Label-aligned multi-task feature learning for multimodal
classification of Alzheimer’s disease and mild cognitive
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Abstract Multimodal classification methods using different
modalities of imaging and non-imaging data have recently
shown great advantages over traditional single-modality-
based ones for diagnosis and prognosis of Alzheimer’s disease
(AD), as well as its prodromal stage, i.e., mild cognitive im-
pairment (MCI). However, to the best of our knowledge, most
existing methods focus on mining the relationship across mul-
tiple modalities of the same subjects, while ignoring the po-
tentially useful relationship across different subjects.
Accordingly, in this paper, we propose a novel learning meth-
od for multimodal classification of AD/MCI, by fully explor-
ing the relationships across both modalities and subjects.
Specifically, our proposed method includes two subsequent
components, i.e., label-aligned multi-task feature selection
and multimodal classification. In the first step, the feature
selection learning from multiple modalities are treated as dif-
ferent learning tasks and a group sparsity regularizer is im-
posed to jointly select a subset of relevant features.

Furthermore, to utilize the discriminative information among
labeled subjects, a new label-aligned regularization term is
added into the objective function of standard multi-task fea-
ture selection, where label-alignment means that all multi-
modality subjects with the same class labels should be closer
in the new feature-reduced space. In the second step, a multi-
kernel support vector machine (SVM) is adopted to fuse the
selected features from multi-modality data for final classifica-
tion. To validate our method, we perform experiments on the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base using baseline MRI and FDG-PET imaging data. The
experimental results demonstrate that our proposed method
achieves better classification performance compared with sev-
eral state-of-the-art methods for multimodal classification of
AD/MCI.

Keywords Alzheimer’s disease .Mildcognitive impairment .

Label alignment .Multi-task learning . Feature selection .

Multimodal classification

Introduction

Alzheimer’s disease (AD) is a physical disease that affects the
brain and is the most common cause of dementia. There were
more than 26.6 million people worldwide with AD in 2010,
and it is predicted that 1 in 85 people will be affected by 2050
(Brookmeyer et al. 2007). So far, there is no treatment for the
disease, which worsens as it progresses, and eventually leads
to death. Thus, it is very important to accurately identify AD,
especially for its early stage also known as mild cognitive
impairment (MCI) which has a high risk of progressing to
AD (Petersen et al. 1999).

Existing studies have shown that AD is related to the struc-
tural atrophy, pathological amyloid depositions, andmetabolic
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alterations in the brain (Jack et al. 2010; Nestor et al. 2004). So
far, multiple biomarkers have been shown to be sensitive to
the diagnosis of AD and MCI, i.e., structural MR imaging
(MRI) for brain atrophy measurement (Leon et al. 2007; Du
et al. 2007; Fjell et al. 2010; Mcevoy et al. 2009), functional
imaging (e.g., FDG-PET) for hypometabolism quantification
(De et al. 2001; Morris et al. 2001), and cerebrospinal fluid
(CSF) for quantification of specific proteins (Bouwman et al.
2007;Mattsson et al. 2009; Shaw et al. 2009; Fjell et al. 2010).

In recent years, machine learning and pattern classification
methods, which can learn a model from training subjects to
predict class label (i.e., patient or normal control) on unseen
subject, have been widely applied to studies of AD and MCI
based on single modality of biomarkers. For example, re-
searchers have extracted the features from the structural
MRI, such as voxel-wise tissue (Desikan et al. 2009; Fan
et al. 2007; Magnin et al. 2009), cortical thickness (Desikan
et al. 2009; Oliveira et al. 2010) and hippocampal volumes
(Gerardin et al. 2009; MJ et al. 2004) for AD and MCI clas-
sification. Besides structural MRI, some researchers also used
fluorodeoxyglucose positron emission tomography (FDG-
PET) (Chételat et al. 2003; Foster et al. 2007; Higdon et al.
2004) for AD or MCI classification.

Different imaging modalities provide different views of
brain structure or function. For example, structural MRI re-
veals patterns of gray matter atrophy, while FDG-PET mea-
sures the reduced glucose metabolism in the brain. It is report-
ed that MRI and FDG-PET provide different sensitivity for
memory prediction between disease and health (Walhovd
et al. 2010). Using multiple biomarkers may reveal hidden
information that could be overlooked by using single modal-
ity. Researchers have begun to integrate multiple modalities to
further improve the accuracy of disease classification (Leon
et al. 2007; Fjell et al. 2010; Foster et al. 2007; Walhovd et al.
2010; Apostolova et al. 2010; Dai et al. 2012; Gray et al. 2012;
Hinrichs et al. 2011; Huang et al. 2011; Landau et al. 2010;
Westman et al. 2012; Yuan et al. 2012; Zhang et al. 2011). For
instance, Hinrichs et al. (2011) used two modalities (including
MRI and FDG-PET) for AD classification. Zhang et al. (2011)
combined MRI, FDG-PET and cerebrospinal fluid (CSF) for
classifying patients with AD/MCI from normal controls. Dai
et al. (2012) integrated structural MRI (sMRI) and functional
MRI (fMRI) for AD classification. Gray et al. (2012) used
MRI, FDG-PET, CSF and categorical genetic information
for AD/MCI classification.

Although promising results were achieved by existing
multimodal classification methods, the problem of small
number of subjects and large feature dimensions limits
further performance improvement of the above methods.
For neuroimaging data, even after feature extraction, the
dimension of feature is still relatively high compared to
the size of subject. Also, there may exist redundant or
irrelevant features for subsequent classification task.

Thus, those irrelevant and redundant features need to be
removed for reducing feature dimension by feature selec-
tion. In the literature, most existing feature selection
methods are often performed for each modality individu-
ally, which ignores the potential relationship among dif-
ferent modalities. To the best of our knowledge, only a
few studies focus on jointly selecting features from multi-
modality neuroimaging data for AD/MCI classification.
For example, Huang et al. (2011) proposed a sparse com-
posite linear discriminant analysis model (SCLDA) for
identification of disease-related brain regions of early
AD from multi-modality data. Zhang and Shen (2012)
proposed a multi-modal multi-task learning for joint fea-
ture selection for AD classification and regression. Liu
et al. (2014) proposed inter-modality relationship
constrained multi-task feature selection for AD/MCI clas-
sification. Jie et al. (2015) presented a manifold regular-
ized multi-task feature selection method for multimodal
classification of AD/MCI. However, except for Jie
et al.’s work, most of the existing multi-modality feature
selection methods focus on using multi-modality informa-
tion from the same subjects, while ignoring the intrinsic
relationship across different subjects, which may also con-
tain useful information for further improving the classifi-
cation performance. Different from Jie et al.’s method, the
proposed approach not only considers the information of
each modality, but also regards the relationship across
different modalities as extra information. Hence, Jie
et al.’s method can be regarded as a special case of our
proposed method.

In this paper, we propose a novel learning method that
can fully explore the relationships across both modalities
and subjects through mining and fusing discriminative
features from multi-modality data for AD/MCI classifica-
tion. Specifically, our proposed learning method includes
two major steps: 1) label-aligned multi-task feature selec-
tion, and 2) multimodal classification. First, we treat the
feature selections from multi-modality data as different
learning tasks and adopt a group sparsity regularizer to
ensure a subset of relevant features to be jointly selected
from multi-modality data. Moreover, to utilize the dis-
criminative information among labeled subjects, we intro-
duce a new label-aligned regularization term into the ob-
jective function of standard multi-task feature selection.
Here, label-alignment means that all multi-modality sub-
jects with the same class label should be closer in the new
feature-reduced space. Then, we use a multi-kernel sup-
port vector machine (SVM) to fuse the selected features
from multi-modality data for final classification. The pro-
posed method has been evaluated on the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database, dem-
onstrating better results compared to several state-of-the-
art multi-modality-based methods.
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Method

Neuroimaging data

We use the data obtained from the Alzheimer’s disease
Neuroimaging Initiative (ADNI) database (www.loni.usc.
edu) in this paper. The ADNI was launched in 2003 by the
National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a $60 million, 5-
year public-private partnership. Determination of sensitive
and specific markers of very early AD progression is intended
to aid researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as lessen the time
and cost of clinical trials. The initial goal of ADNI was to
recruit approximately 200 cognitively normal older individ-
uals to be followed for 3 years, 400MCI patients to be follow-
ed for 3 years, and 200 early AD patients to be followed for
2 years.

We use imaging data from 202 ADNI participants with
corresponding baselineMRI and FDG-PET data. In particular,
it includes 51 AD patients, 99 MCI patients and 52 normal
controls (NC). The MCI patients were divided into 43 MCI
converters (MCI-C) who have progressed to AD with
18 months and 56 MCI non-converters (MCI-NC) whose di-
agnoses have still remain stable within 18 months. Table 1
lists the clinical and demographic information for the study
population. A detailed description on acquiring MRI and PET
from ADNI as used in this paper can be found in (Zhang et al.
2011). All structural MR scans were acquired from 1.5 Tscan-
ners. Raw Digital Imaging and Communications in Medicine
(DICOM) MRI scans were downloaded from the public
ADNI site (adni.loni.usc.edu), reviewed for quality, and auto-
matically corrected for spatial distortion caused by gradient
nonlinearity and B1 field inhomogeneity. PET images were
acquired 30–60 min post-injection, averaged, spatially
aligned, interpolated to a standard voxel size, intensity

normalized, and smoothed to a common resolution of 8 mm
full width at half maximum.

Image pre-processing and feature extraction are performed
for all MR and PET images by following the same procedures
as in (Zhang et al. 2011). First, we do anterior commissure
(AC)-posterior commissure (PC) correction on all images, and
use the N3 algorithm (Sled et al. 1997) to correct the intensity
inhomogeneity. Next, we do skull-stripping on structural MR
images using both brain surface extractor (BSE) (Shattuck
et al. 2001) and brain extraction tool (BET) (Smith and
Stephen 2002), followed by manual edition and intensity in-
homogeneity correction. After removal of cerebellum, FAST
in the FSL package (Zhang et al. 2001) is used to segment
structural MR images into three different tissues: gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF).
After registration using HAMMER (Shen and Davatzikos
2002), we obtain the subject-labeled image based on a tem-
plate with 93 manual labels. Then, we compute the GM tissue
volume of each region as a feature. For PET image, we first
align it to its respective MR image of the same subject using a
rigid transformation, and then compute the average intensity
of each ROI in the PET image as a feature. Therefore, for each
subject, we totally obtain 93 features from MR image and
another 93 features from PET image.

Label-aligned multi-task feature learning

In this section, we will first briefly introduce the conventional
multi-task feature selection (Evgeniou and Pontil 2004;
Kumar and Daume Iii 2012; Obozinski et al. 2006, 2010;
Yuan and Lin 2006), and then derive our proposed label-
aligned multi-task feature selection model, as well as the cor-
responding optimization algorithm. Finally, we use the multi-
kernel support vector machine for classification. Figure 1
gives the overview of the proposed classification method.

Multi-task feature selection

Denote Xm=[x1
m,…,xi

m,…,xN
m]T∈ℝN×d as the training data

matrix on the m -th modality, where xmi represents the corre-
sponding (column) feature vector of the i -th subject, d is the
dimension of features, and N is the number of subjects. Let
Y=[y1,…,yi,…,yN]

T∈ℝN be the label vector corresponding to
N training samples, where the value of yi is +1 or −1 (i.e.,
patient or normal control). Then, the objective function of
multi-task feature selection (MTFS) model is as follows
(Yuan and Lin 2006):

min
W

1

2

XM
m¼1

Y−Xmwmk k22 þ λ1

��Wk2;1 ð1Þ

where wm∈ℝd is the regression coefficient vector for them -th
modality and the coefficient vectors for allM modalities form

Table 1 Subject information

Characteristics AD (n=51) MCI (n=99) NC (n=52)

Mean SD Mean SD Mean SD

Age 75.2 7.4 75.3 7.0 75.3 5.2

Education 14.7 3.6 15.9 2.9 15.8 3.2

MMSE 23.8 2.0 27.1 1.7 29.0 1.2

CDR 0.7 0.3 0.5 0.0 0.0 0.0

The numbers refer to baseline data

AD Alzheimer’s Disease, MCI Mild Cognitive impairment, NC Normal
Control,MMSEMini-Mental State Examination,CDRClinical Dementia
Rating
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a coefficient matrix, W=[w1,…,wm,…, wM]∈ℝd×M, and
M is the total number of modalities. In (1), Wk k 2;1 is
the ℓ2,1-norm of matrix W defined as ‖W‖2,1=∑i = 1

d ‖wj‖2,
where wj is the j -th row of matrix W. Here, λ1 is a
regularization parameter controlling the relative contri-
butions of the two terms.

The ℓ 2;1 -norm Wk k 2;1 can be seen as the sum of the
ℓ2 -norms of the rows of matrix W (Yuan and Lin 2006),
which encourages the weights corresponding to the same
feature across different modalities to be grouped together
and then a small number of common features will be
jointly selected. So, the solution of MTFS results in a
weight matrix W whose elements in many rows are all
zeros for the characteristic of ‘group sparsity’. It is worth
noting that when there is only one modality (i.e., M =1),
the MTFS model will degenerate into the least absolute
shrinkage and selection operator (LASSO) model
(Tibshirani 1994).

Label-aligned multi-task feature selection

One limitation of the standard multi-task feature selection
model is that only the relationship between modalities of the
same subjects is considered, while ignoring the important re-
lationship among labeled subjects. To address this issue, we

introduce a new term called label-aligned regularization term,
which minimizes the distance between within-class subjects in
the feature-reduced space as follows:

Ω ¼
XN
i; j

XM
p;q p≤qð Þ

wpð ÞTxpi − wqð ÞTxqj
��� ���2

2
Si j ð2Þ

where, Si j is defined as:

Si j ¼ 1; if xpi and xqj are from the same class
0; otherwise

�
ð3Þ

The regularization term (2) can be explained as follows.
‖(wp)Txi

p−(wq)Txj
q‖2

2Sij measures the distance between xi
p and

xj
q in the projected space. It implies that if xi

p and xj
q are from

the same class, the distance between them should be as small
as possible in the projected space. It is worth noting that 1)
when p ¼ q the local geometric structure of the samemodality
data is preserved in the feature-reduced space; 2) when p < q
the complementary information provided from different mo-
dalities are used to guide the estimation of the feature-reduced
space. Therefore, the Eq. (2) preserves the intrinsic label re-
latedness among multi-modality data and also explores the
complementary information conveyed by different modalities.
Generally speaking, the goal of (2) is to preserve label relat-
edness by aligning paired within-class subjects from multiple
modalities.

By incorporating the regularizer (2) into (1), we can obtain
the objective function of our label-aligned multi-task feature
selection model as below:

min
W

1

2

XM
m¼1

Y−Xmwmk k22 þ λ1

��Wk2;1

þλ2

XN
i; j

XM
p;q p≤qð Þ

wpð ÞTxpi − wqð ÞTxqj
��� ���2

2
Si j

ð4Þ

where λ1 and λ2 are the two positive constants that control
the sparseness and the degree of preserving the distance
between subjects, respectively. From (4), we can not only
jointly select a subset of common features from multi-
modality data, but also preserve label relatedness by
aligning paired within-class subjects. Figure 2 illustrates
the used relationships among modalities and subjects in
our proposed model as compared with the traditional
multi-modality methods. In Fig. 2a, traditional multimod-
al methods only concern the relationships of different mo-
dalities (i.e., the single line connecting MRI and PET)
from the same subject. As we can see from Fig. 2b, our
proposed method can preserve not only the multi-modality
relationship from the same subject, but also the correla-
tion across modalities between different subjects.

Features Extraction Features Extraction 

Label-aligned  
Multi-Task Feature Selection 

Compute Kernel Matrix Compute Kernel Matrix 

Kernel 
Combination 

Template MRI data PET data

SVM Classifier 

Fig. 1 Schematic illustration of the proposed classification pipeline
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Optimization algorithm

At present, there are several algorithms developed to
solve the optimization problem in (4). Here, we choose
the widely applied Accelerated Proximal Gradient
(APG) method (Nesterov 2003; Chen et al. 2009) to
get the solution of our proposed method. Specifically,
we separate the objective function in (4) to the smooth
part:

f Wð Þ ¼ 1

2

XM
m¼1

Y−Xmwmk k22

þλ2

XN
i; j

XM
p;q p≤qð Þ

wpð ÞTxpi − wqð ÞTxqj
��� ���2

2
Si j

ð5Þ

and non-smooth part:

g Wð Þ ¼ λ1 Wk k2;1 ð6Þ

Then, the following function is constructed for approximat-
ing the composite function f(W)+g(W):

Ωl W ;W kð Þ ¼ f W kð Þþ < W−W k ;∇ f W kð Þ >
þ l

2
∥W−W k∥2

F þ g Wð Þ ð7Þ

where ⋅k k F is the Frobenius norm, ∇ f W kð Þ is the
gradient of f Wð Þ at point Wk of the k -th iteration,

and l is the step size. Finally, the update step of AGP
algorithm is defined as:

W kþ1 ¼ argmin
W

1

2
W−U kk k2F þ 1

l
g Wð Þ ð8Þ

where l can be determined by line search, and U k ¼ W k

− 1
l ∇ f W kð Þ.
The key of AGP algorithm is how to solve the update step

efficiently. The study in (Liu and Ye 2010) shows that this
problem can be decomposed into d separate subproblems,
and the analytical solutions of these sub-problems can be eas-
ily obtained.

In addition, according to the technique in (Chen et al.
2009), instead of computing (7) based on Wk, we use Qk to
calculate Ωl W ;Qkð Þ and the search point Qk is defined as:

Qk ¼ W k þ ηk W k−W k−1ð Þ ð9Þ

where ηk ¼ 1−γk−1ð Þγk
γk−1

and γk ¼ 2
kþ3. The algorithm for Eq. (4)

can achieve a convergence rate of O 1=K2
� �

, where K is the
maximum iteration.

Multi-kernel support vector machine

Multi-kernel SVM can effectively integrate data frommultiple
modalities for classification of Alzheimer’s disease (Zhang
et al. 2011). Given a set of training subjects, m=1,…M,km(z-

i
m,zj

m)=ϕm(zi
m)Tϕm(zj

m) is the kernel function for the subjects
zi
m and zj

m of the m -th modality. Linear combined kernel, k(zi,
zj)=∑m=1

M βmk
m(zi

m,zj
m) is adopted for fusing information from

different modalities. Here βm is the combining weight of them
-th kernel and∑m=1

M βm=1. In our experiments, the optimal βm

is determined via a coarse-grid search through cross-
validation on the training set.

Experiments and results

We test the performance of the proposed method on 202
ADNI participants with corresponding baseline MRI and
FDG-PET data. Classification performance is assessed be-
tween three clinically relevant pairs of diagnostic groups
(AD vs. NC, MCI vs. NC, and MCI-C vs. MCI-NC). The
proposed method is compared with three existing multi-
kernel-based multimodal classification methods, including
multi-kernel method (Zhang et al. 2011) without performing
feature selection (denoted as Baseline), multi-kernel method
with LASSO feature selection performed independently on
single modalities (denoted as SMFS), and multi-kernel meth-
od using multi-modal feature selection method (denoted as
MMFS) proposed in (Zhang and Shen 2012). We also directly
concatenate 93 features fromMRI and 93 features from FDG-

MRI 

PET 

MRI 

PET 

(a) 

(b) 

Class 1 Class 2 

Class 1 Class 2 

Fig. 2 Illustrations on the relationship among modalities and subjects in
a traditional multi-modality methods and b proposed method in
identifying subjects in class 1 and class 2. Circles and rectangles
represent MRI and PET data, respectively. Red and blue denote
different classes
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PET into a 186 dimensional vector, and then perform t-test and
LASSO as feature selection methods, followed by the stan-
dard SVM with linear kernel for classification (with the cor-
responding methods denoted as t-test and LASSO, respective-
ly). It is worth noting that the same training and test subjects
are used in all methods for fair comparison.

Validation

In our experiments, we use a 10-fold cross-validation strategy
to evaluate the effectiveness of our proposed method.
Specifically, the whole set of subject samples are equally
partitioned into 10 subsets. For each cross-validation, the nine
subsets are chosen for training and the remaining subjects are
used for testing. The process is independently repeated 10
times to avoid any bias introduced by randomly partitioning
the dataset in cross-validation. We evaluate the performance
of different methods by computing the classification accuracy
(ACC), as well as the sensitivity (SEN), the specificity (SPE)
and the area under receiver operating characteristic (ROC)
curve (AUC). Here, the accuracy measures the proportion of
subjects correctly classified among the whole population, the
sensitivity represents the proportion of AD or MCI patients
correctly classified, and the specificity denotes the proportion
of normal controls correctly classified. The SVM classifier is
implemented using the LIBSVM toolbox (Chang and Lin
2007), with a linear kernel and a default value for the param-
eter C (i.e., C ¼ 1 ). The optimal values of regularization
parameters λ1, λ2 and the weights in the multi-kernel classifi-
cation method are determined by another 10-fold cross-vali-
dation on the training subjects.

Results of AD/MCI vs. NC classification

The classification results of AD vs. NC and MCI vs. NC
produced by different methods are listed in Table 2. As can
be seen from Table 2, our proposed method consistently
achieves better performance than other methods for the clas-
sification between AD/MCI patients and normal controls.

Specifically, for classifying AD from NC, our proposed meth-
od achieves a classification accuracy of 95.95 %, while the
best accuracy of other methods is only 92.25 % (obtained by
SMFS). In addition, for classifying MCI from NC, our pro-
posed method achieves a classification accuracy of 80.26 %,
while the best accuracy of other methods is only 74.34 %
(obtained by Baseline). Furthermore, we perform the signifi-
cance test using paired t-test on the classification accuracies
between our proposed method and other compared methods,
with the corresponding results given in Table 2. From Table 2,
we can see that our proposed method is significantly better
than the compared methods (i.e., the corresponding p values
are very small).

For further validation, in Fig. 3 we plot the ROC curves of
four multi-modality based classification methods for AD/MCI
vs. NC classification. Figure 3 shows that our proposed meth-
od consistently achieves better classification performances
than other multi-modality based methods for both AD vs.
NC and MCI vs. NC classifications. Specifically, as can be
seen from Table 2, our method achieves the area under the
ROC curve (AUC) of 0.97 and 0.81 for AD vs. NC and MCI
vs. NC classifications, respectively, showing better classifica-
tion ability compared with other methods.

Results of MCI conversion prediction

The classification results forMCI-C vs.MCI-NC are shown in
Table 3. As can be seen from Table 3 and Fig. 4, our proposed
method consistently outperforms other methods in MCI-
converter classification. Specifically, our proposed method
achieves a classification accuracy of 69.78 %, while the best
one of other methods is only 61.67 %, which is obtained by
SMFS. The classification accuracy of our proposed method is
significantly (p<0.001) higher than any compared methods.

Figure 4 plots the corresponding ROC curves of four multi-
modality based methods for MCI-C vs. MCI-NC classifica-
tion. We can see from Fig. 4 that the superior classification
performance is obtained by our proposedmethod. Table 3 also
lists the area under the ROC curve (AUC) of different

Table 2 Comparison of performance of different methods for AD vs. NC and MCI vs. NC classifications, respectively

Method AD vs. NC MCI vs. NC

ACC(%) SEN(%) SPE(%) AUC p-value ACC(%) SEN(%) SPE(%) AUC p-value

LASSO 91.02 90.39 91.35 0.95 <0.0001 73.44 76.46 67.12 0.78 <0.0001

t-test 90.94 91.57 90.00 0.97 <0.0001 73.02 78.08 63.08 0.77 <0.0001

Baseline 91.65 92.94 90.19 0.96 <0.0001 74.34 85.35 53.46 0.78 <0.0001

SMFS 92.25 92.16 92.12 0.96 0.0001 73.84 77.27 66.92 0.77 <0.0001

MMFS 92.07 91.76 92.12 0.95 <0.0001 74.17 81.31 60.19 0.77 <0.0001

Proposed 95.95 95.10 96.54 0.97 – 80.26 84.95 70.77 0.81 –

The best result of each column is denoted in bold face
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classification methods. As can be seen from Table 3, AUC
achieved by our proposed method is 0.69 for MCI-C vs.
MCI-NC classification, while the best one of other methods
is only 0.64, obtained by t-test, indicating the outstanding
classification performance of our proposed method.

The most discriminative brain regions

The most discriminative regions are defined as those that are
most frequently selected in cross-validation. For each selected

discriminative feature, the standard paired t-test is performed
to evaluate its discriminative power between patients and nor-
mal control groups. Top 10 ROIs detected from both MRI and
FDG-PET data for MCI classification are listed in Table 4.
Figure 5 plots these regions in the template space. As can be
seen from Table 4 and Fig. 5, the most important regions for
MCI classification include hippocampal, amygdale, etc.,
which are in agreement with other recent AD/MCI studies
(Sole et al. 2008; Derflinger et al. 2011; Al 2008; Poulina
et al. 2011; Wolf et al. 2003).

Discussion

In this paper, we proposed a novel label-aligned multi-
task feature learning method for multimodal classifica-
tion of Alzheimer’s disease and mild cognitive impair-
ment. The experimental results on the ADNI database
show that our proposed method achieves high classifi-
cation accuracies of 95.95, 80.26, and 69.78 % for AD
vs. NC, MCI vs. NC and MCI-C vs. MCI-NC classifi-
cations, in comparison with several state-of-the-art mul-
timodal AD/MCI classification methods.
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Fig. 3 ROC curves of four multi-modality based methods. a
Classification of AD vs. NC, b Classification of MCI vs. NC

Table 3 Comparison of performance of different methods for MCI-C
vs. MCI-NC classification

Method MCI converters vs. MCI non-converters

ACC(%) SEN(%) SPE(%) AUC p-value

LASSO 58.44 52.33 63.04 0.60 <0.0001

t-test 59.11 53.49 63.57 0.64 <0.0001

Baseline 59.67 46.28 69.64 0.60 <0.0001

SMFS 61.67 54.19 66.96 0.61 0.0001

MMFS 61.61 57.21 65.36 0.62 <0.0001

Proposed 69.78 66.74 71.43 0.69 –

The best result of each column is denoted in bold face
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Fig. 4 ROC curves of four multi-modality based methods for
classification of MCI converters

Table 4 Top 10 ROIs selected by the proposed method for MCI
classification

Selected ROIs MRI FDG-PET

Entorhinal cortex left p<0.0001 p=0.0286

Hippocampal formation left p<0.0001 p=0.0109

Angular gyrus left p=0.0309 p<0.0001

Amygdala right p<0.0001 p=0.0352

Precuneus left p=0.0001 p=0.0005

Hippocampal formation right p<0.0001 p=0.0309

Cuneus left p=0.0741 p=0.0626

Temporal pole left p=0.0004 p=0.0624

Middle temporal gyrus left p<0.0001 p=0.0816

Occipital pole left p=0.1638 p=0.0390
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Multi-task learning

Multi-task learning is a recently developed technique in ma-
chine learning field, which can jointly learn multiple tasks via
a shared representation. Because the domain information or
some commonality is contained in the learning tasks, multi-
task learning can usually improve the performances by learn-
ing classifiers for multiple tasks together.

Recently, multi-task learning has been introduced into
medical imaging field. For example, Zhang et al. (Zhang and
Shen 2012) applied multi-task learning for joint prediction of
both regression variables (i.e., clinical scores) and classifica-
tion variable (i.e., class labels) in Alzheimer’s disease. In their
method, multi-task feature selection was first used to select the
common subset features corresponding to different tasks, and
thenmulti-kernel SVMwas performed for final regression and
classification. It is worth noting that the feature selection step
in (Zhang and Shen 2012) was performed separately for each
modality, while ignoring the potential relationship among dif-
ferent modalities. Afterwards, Liu et al. (2014) considered the
inter-modality relationship within each subject to preserve the
complementary information among modalities. However, in
their method only information corresponding to individual

subject is concerned. Suk et al. (2014) first assumed the data
classes were multipeak distribution, and then formulated a
multi-task learning problem in a l-2,1 framework with new
label encodings obtained by clustering. However, the method
in (Suk et al. 2014) still did not consider the potential infor-
mation across different modalities. More recently, Jie et al.
(2015) proposed a manifold regularized multi-task feature
learning method, which only considered the manifold infor-
mation in each modality separately and thus cannot reflect the
information across different modalities. It is worth noting that
our proposed method and Jie et al.’s method are developed
based on different considerations. Jie et al.’s method only
concerns preserving the manifolds existing in each modality
of the data. Different from Jie et al.’s method, the proposed
approach not only takes the structure information of each mo-
dality into account, but also regards the relationship across
different modalities as extra information. Hence, Jie et al.’s
method can be regarded as a special case of our proposed
method. Although our proposed method has a more general
feature selection framework compared with Jie et al.’s ap-
proach, the objective function of our method is still convex.
Thus, the optimal solution can still be obtained, i.e., by using
Accelerated Proximal Gradient (APG) method.

In contrast, our proposed label-aligned multi-task feature
learning method can preserve the relationships not only across
different modalities in the same subjects but also among dif-
ferent modalities in different subjects. Our proposedmethod is
evaluated on the ADNI database using baseline MRI and
FDG-PET data for three clinical groups classifications includ-
ing AD vs. NC, MCI vs. NC andMCI-C vs. MCI-NC, and the
experimental results demonstrate the effectiveness of our pro-
posed method.

Comparison with existing methods

To compare our proposed method with existing methods, in
this section we perform the comparisons between the results
of our proposed method and those of existing state-of-the-art
multi-modality methods, as shown in Table 5. As can be seen
from Table 5, Hinrichs et al. (2011) used 48 AD subjects and
66 NC subjects, and obtained an accuracy of 87.6 % by using

Fig. 5 Top 10 ROIs selected by the proposed method for MCI

Table 5 Comparison of classification accuracy of different multi-modality methods

Method Subjects Modalities AD vs. NC MCI vs. NC MCI-C vs. MCI-NC

Hinrichs et al. 2011 48 AD + 66NC MRI + PET 87.6 % – –

Huang et al. 2011 49 AD + 67NC MRI + PET 94.3 % – –

Gray et al. 2012 37 AD + 75MCI + 35NC MRI + PET + CSF + genetic 89.0 % 74.6 % 58.0 %

Jie et al. 2015 51 AD + 99MCI + 52NC MRI + PET 95.03 % 79.27 % 68.94 %

Liu et al. 2014 51 AD + 99MCI + 52NC MRI + PET 94.37 % 78.80 % 67.83 %

Proposed 51 AD + 99MCI + 52NC MRI + PET 95.95 % 80.26 % 69.78 %

The best result of each column is denoted in bold face
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two modalities (MRI + PET). Huang et al. (2011) used 49 AD
patients and 67 NC with MRI and PET modalities for AD
classification, achieving an accuracy of 94.3 %. In (Gray
et al. 2012), authors used 37 AD patients, 75 MCI patients
and 35 NC and reported classification accuracies of 89.0, 74.6
and 58.0 % for AD, MCI and MCI-converter classification,
respectively, using four different modalities (MRI + PET +
CSF + genetic). Jie et al. (2015) achieved the accuracies of
95.03, 79.27 and 68.94 % for classification of AD/NC, MCI/
NC and MCI-C/MCI-NC, respectively. Liu et al. (2014) ob-
tained the accuracies of 94.37, 78.80 and 67.83 % for AD,

MCI and MCI-converter classifications, respectively. It is
worth noting that the dataset used in (Jie et al. 2015) and
(Liu et al. 2014) are the same as that in the current study.
Table 5 indicates that our proposed method consistently out-
perform other methods, which further validate the efficacy of
our proposed method for AD diagnosis.

The effect of regularization parameters

In our method, there are two regularization items, i.e., the
sparsity regularizer λ1 and label-aligned regularization term

Fig. 6 The classification accuracy with regularization parameters λ1 and λ2. a AD classification, b MCI classification, and c MCI conversion
classification. Each curve denotes the performance for different selected value for λ1. X-axis represents diverse values for λ2
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λ2. The two parameters control the relative contribution of
those regularization terms. Here, the values of λ1 and λ2 are
set from 0 to 50 at a step size of 10, respectively, to observe the
effect of the regularization parameters on the classification
performance of our proposed method. Figure 6 shows the
classification results with respect to different values of λ1
and λ2. When λ1 ¼ 0, all features extracted from MRI and
FDG-PET data are used for classification, and thus our meth-
od will degenerate to multi-kernel method proposed in (Zhang
et al. 2011). Also, when λ2=0, no label-aligned regularization
item is introduced, and thus our method will degenerate to the
MMFS method proposed in (Zhang and Shen 2012).

As we can observe from Fig. 6, under all values of λ1 and
λ2, our proposed method consistently outperforms the MMFS
methods on three classification tasks (i.e., AD vs. NC, MCI
vs. NC, and MCI-C vs. MCI-NC), which further indicates the
advantage of using label-aligned regularization term. Also,
Fig. 6 shows that when fixing the value of λ1, the curves
corresponding to different values of λ2 are very smooth on
three classification tasks, which shows our method is relative-
ly robust to the regularization parameter λ2. Finally, as can be
seen from Fig. 6, when fixing the value of λ2, the results on
three classification tasks are largely affected with different
values of λ1, which implies that the selection of λ1 is very
important for final classification results. This is reasonable
since λ1 controls the sparsity of model and thus determines
the size of the optimal feature subset.

The effect of weights for multimodal classification

We investigate how the two combining kernel weights βMRI

and βPET affect the classification performance of our proposed
method. The combining kernel weights are set from 0 to 1 at a
step size of 0.1, with the constraint of βMRI+βPET=1. Figure 7
shows the classification accuracy and AUC value under dif-
ferent combination of kernel weights of MRI and PET. As we
can observe from Fig. 7, the relative high classification per-
formance is obtained in the middle part, which demonstrates
the effectiveness of combining two modalities for classifica-
tion. Moreover, the intervals with higher performance mainly
lie in a larger interval of [0.2, 0.8], implying that each modal-
ity is indispensable for achieving good classification
performances.

Limitations

There are several limitations that should be further considered
in the future study. First, in the current study, we only inves-
tigated binary classification problem (i.e., AD vs. NC, MCI
vs. NC, and MCI-C vs. MCI-NC), and did not test the ability
of the classifier for the multi-class classification of AD, MCI
and normal controls. Although multi-class classification is
more challenging than binary-class classification, it is very

important to diagnose different stage of dementia. Second,
the proposed method requires the same number of features
from different modalities. Other modalities in ADNI database,
such as CSF and genetic data, which have different feature
numbers, may also carry important pathological information
that can help further improve the classification performance.
Finally, longitudinal data may contain very important infor-
mation for classification, while our proposed method can only
deal with the baseline data.

Conclusion

This paper proposed a novel multi-task feature learning meth-
od for jointly selecting features from multi-modality neuroim-
aging data for AD/MCI classification. By introducing the
label-aligned regularization term into the multi-task learning
framework, the proposed method can utilize the relationships
across both modalities and subjects to seek out the most dis-
criminative features subset. Experimental results on the ADNI
database demonstrate that our proposed method outperforms
the state-of-the-art methods for multimodal classification of
AD/MCI.
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