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Abstract Indexing and classification tools for Content Based Visual Information

Retrieval (CBVIR) have been penetrating the universe of medical image analy-

sis. They have been recently investigated for Alzheimer’s disease (AD) diagnosis.

This is a normal ”knowledge diffusion” process, when methodologies developed

for multimedia mining penetrate a new application area. The latter brings its

own specificities requiring an adjustment of methodologies on the basis of domain

knowledge. In this paper, we develop an automatic classification framework for AD

recognition in structural Magnetic Resonance Images (MRI). The main contribu-

tion of this work consists in considering visual features from the most involved
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region in AD (hippocampal area) and in using a late fusion to increase precision

results. Our approach has been first evaluated on the baseline MR images of 218

subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

and then tested on a 3T weighted contrast MRI obtained from a subsample of

a large French epidemiological study : ”Bordeaux dataset”. The experimental re-

sults show that our classification of patients with AD versus NC (Normal Control)

subjects achieves the accuracies of 87% and 85% for ADNI subset and ”Bordeaux

dataset” respectively. For the most challenging group of subjects with the Mild

Cognitive Impairment (MCI), we reach accuracies of 78.22% and 72.23% for MCI

versus NC and MCI versus AD respectively on ADNI. The late fusion scheme

improves classification results by 9% in average for these three categories. Results

demonstrate very promising classification performance and simplicity compared

to the state-of-the-art volumetric AD diagnosis methods.

Keywords Content Based Visual Indexing · Visual features · Circular Harmonic

Functions descriptors · SVM · Bag-of-Visual-Words · Late Fusion · Hippocampus ·

CSF

1 Introduction

Due to an enormous increase of the diversity and of the volume of biomedical im-

age collections and the large range of image modalities getting available nowadays,

there is a need for providing automated tools to index medical information. Index-

ing of medical images using their visual content has shown its efficiency relative to

textual approaches [24]. Image content analysis and classification methodologies

are now more and more used for medical information mining and retrieval [23] [18]

with the aim of Computer-Aided Diagnosis (CAD).

With the aging of population in developed countries, the dementia diseases

become a major problem of public health. Alzheimer’s disease (AD) is one of the

most frequent pathologies and its early detection is very important to achieve delay
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in the disease progression. Since AD affects brain cells and causes their degener-

ation, advances and evolution of medical imaging techniques allow for studying

structural changes in human brain and their relationship with clinical diagnosis

of AD. Medical information from Magnetic Resonance Imaging (MRI) is used for

detecting structural abnormalities of the human brain. In particular, structural

MRI measurements help in detecting and tracking the evolution of brain atro-

phy which is considered as a marker of AD process. In AD, the most common

pronounced change in the brain structure is the reduction of the volume of the

hippocampus [38]. Several works in the literature use extracted features from the

hippocampus region of interest (ROI) for the purpose of diagnosis [15] [9] [13]

[16]. Most of the recently proposed approaches do not take into account the vi-

sual morphological changes in brain regions, which is our goal. Furthermore, the

most of proposed methods for AD diagnosis are time consuming. They require a

clinician intervention and suffer from ROI segmentation’s errors [15][10], as they

are built on the basis of a fine image segmentation. However, hippocampus is not

sufficient for the separation of subject with MCI and AD. Other features derived

from known biomarkers can be of help. Recent studies on AD diagnosis found that

the quantity of cerebrospinal fluid (CSF) in hippocampal region is a biomarker

of AD [31]. Indeed, smaller hippocampal volume is associated with greater CSF

amount. Also, the authors in [40] proved that the combination of CSF amount and

MRI biomarkers provides better prediction than either MRI or CSF alone.

The multimodal nature of multimedia data yielded an active research in fu-

sion of heterogeneous data for classification purposes [4]. Nevertheless, an efficient

application of image classification methods in Computer-Aided Diagnosis of AD

is not straightforward. Indeed, the specific nature of MRI collections vs general

purpose image databases requires an in-depth study of the specific features that

explain visible and invisible abnormalities for the diagnosis process. Despite MR

image comparison techniques have been proposed in this area, visual features ex-

traction methods have not been yet fully exploited to describe such data. Hence,
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in this work we propose an automatic content based framework for recognition of

Alzheimer’s disease using MRI scans. There are 3 different categories of subjects to

recognize: Normal Control (NC), Alzheimer’s Disease (AD) patients and the most

challenging group Mild Cognitive Impairment (MCI). We propose to automatically

extract visual information from MRI using the approximation of image signal by

Circular Harmonic Functions (CHF) [34]. To effectively represent content infor-

mation extracted from the hippocampus ROI, we use the Bag-of-Visual-Words

(BoVW)approach [12] . We propose a late fusion scheme, where the probabilistic

outputs of classifies on both local features and the amount of CSF are fused to

perform the final classification of the MRI scans.

The rest of the paper is organized as follows: Section 2 presents the related

works. In section 3, we describe the extraction of visual features with its particu-

larities for this kind of data. In section 4 we present the Late Fusion scheme. In

section 5, we present experiments and results and the final section concludes the

work and outlines its perspectives.

2 Related work

MRI classification task plays an important role in medical image retrieval, which

is a part of decision making in medical image analysis. It involves grouping MRI

scans into pre-defined classes or finding the class to which a subject belongs. There

have been several attempts in the literature to automatically classify structural

brain MRI as AD, MCI or NC. Among of the most common methods we find Voxel

Based Morphometry (VBM)[3] which is an automatic tool. It allows an exploration

of the differences in local concentration of gray matter and white matter. Tensor

Based Morphometry (TBM) [39] was proposed to identify local structural changes

from the gradients of deformations fields. Object Based Morphometry (OBM) [21]

was introduced to perform shape analysis of anatomical structures and recently,

features based morphometry (FBM) [35] was proposed as a method for relevant

brain features comparison using a probabilistic model on local image features in
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scale-space. Some other studies focused on measuring morphological structure of

a Region of Interest (ROI) known to be affected by AD such as the hippocam-

pus region. In research studies that analyze hippocampus atrophy,we can identify

the following image analysis methods. In [9] [11] [19], the authors automatically

segment the hippocampus and use its volume for the classification. In addition

to volumetric methods, several surface-based shape description approaches have

been proposed to understand the development of AD. In [15] [16] [13], shape in-

formation in the form of spherical harmonics (SH) has been used as features in

the support vector machine (SVM) classifier. In [32], Statistical Shape Models

(SSMs) have been used to model the variability in the hippocampal shapes among

the population. Hence, the image-based diagnostic of AD relies mainly on analy-

sis of hippocampus. Nevertheless, the overall volumetric or shape analysis of the

hippocampus does not describe the local change of its structure, which is helpful

for diagnosis. ROI-based methods are time consuming and observer-dependent.

Moreover, most of the approaches cited above were proposed for group analysis

and cannot be used to classify individual patients. In order to overcome all these

limitations, computer vision tools and visual image processing techniques have

been developed to allow an automated detection of atrophy in the ROI.

Recently, Content Based Visual Information Indexing methods have been widely

used for medical image analysis. But, few are the works that address the visual

content of brain scans to extract information relative to AD. In [1], the authors

are focusing on integrating different kinds of information, including textual data,

image visual features extracted from scans as well as direct user (doctor) input. In

general, features can contain coefficients of a spectral transform of image signal,

e.g. Fourier or Discrete Cosine Transform coefficients (DCT), statistics on image

gradients [29] [14], etc. Features used in [1] to describe brain images are local

binary patterns (LBP) and DCT. [2] uses visual image similarity to help early

diagnosis of Alzheimer. [2] [28] prove the performance of user feedback for brain

image classification. In the related work [22], Circular Harmonic Functions and
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Scale Invariant Features Transform (SIFT)[20] descriptors are computed around

the hippocampus region. Then several modes of classification are used to compare

images. In [37], the authors propose a ROI retrieval method for brain MRI, they

use the LBP and Kanade-Lucas-Tomasi features to extract local structural infor-

mation. Some works [14] [29] on MRI classification for AD diagnosis evaluate the

suitability of the Bag-of-Visual-Words (BoVW) approach for automatic classifica-

tion of MR images in the case of Alzheimer’s disease. In [14], the authors use SIFT

descriptors extracted from the whole subject’s brain to classify between brain with

and without AD. In [29], the authors show that the Bag-of-Features (BOF) ap-

proach is able to describe the visual information for discriminating healthy brains

from those suffering from the AD. However, both works do not address the MCI

case which has become an important construct in the study of AD. The BoVW

model represents a whole brain scan or a ROI as a histogram of occurrence of

quantized visual features, which are called visual words. The latter received the

name of visual signature of an image/ROI.

The choice of the initial description space (features) is of a primary impor-

tance as it has to be adapted to the nature of the images. Indeed, despite the

good performances of SIFT features reported in [29], there is still place for an

intensive investigation of the descriptors choice. SIFT or their approximated ver-

sion SURF[5], widely used in classification of general purpose image data sets,

are not optimal for MRI with the lack of pronounced high frequency texture and

clear structural models. Here, based on the work of [22] [6], we resort to Circular

Harmonic Functions (CHF) which give interesting approximations of blurred and

noisy signal as we have it in MRI. As shown in [34], these descriptors in some cases

are superior to SIFT which is a current benchmark. Furthermore, these features as

computed on patches inside the ROI or selected on the whole brain, convey local

structural information of image signal.

Pattern recognition techniques are widely used in the context of AD diagnosis

and in particular Support Vector Machines (SVM) classifiers have proven to be
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efficient. High recognition rates are achievable (SVM) focused on brain ROI [15][13]

[16] [17]. In this paper, we propose a pattern recognition framework to detect

Alzheimer’s disease from structural MR images. We extract only visual features

from the hippocampal region to emphasize the difference or similarity of subjects

with respect to AD. Two kinds of features are extracted : visual local descriptors

using the Circulars Harmonic Functions and the amount of CSF pixels in the

hippocampal area. These features are of different nature. Hence, it is appropriate

to deploy the multimedia fusion approaches, such as reported in [4] despite we are

working with the same imaging modality.

3 Visual content description

3.1 Extraction of visual features from hippocampal area

Visual features extraction is a common step in the overall processing chain yielding

image interpretation and classification. Applied to MRI, it has to be populated

by particular techniques already in use for brain MRI analysis. As the visual

information has to be extracted from a specific anatomical region, an atlas-based

selection of this region has to be performed. In brain image analysis, such an atlas

called Automated Anatomical Labeling (AAL) [36] does exist for a normalized

”statistical ” brain, a so-called ”template” MNI 1. Hence, the first step as depicted

in Figure 1, consists in normalizing the brain image to be analyzed with regard to

this template.

3.1.1 Image normalization

The normalization of the available 3D brain data is an adjustment of overall size

and orientation to the template MNI. Linear (affine) and non-linear alignment is

possible. In our work, we choose to apply an affine registration because we look for

preserving a specific pattern of the ROI and avoiding features deformation. Affine

1 http://www.mni.mcgill.ca/
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Fig. 1 Visual feature extraction from the hippocampal ROI

registration is done using the Montreal Neurological Institute template (MNI)512.
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Statistical Parametric Mapping (SPM)2 and the VBM toolbox 3 are used to fulfill

the registration.

3.1.2 Hippocampus ROI extraction

To extract the hippocampus ROI, we use the AAL Atlas. The template-aligned 3D

MRI of a brain is superimposed on the 3D atlas and only voxels which are labeled

in AAL as hippocampal are selected (see the second block in Figure 1). Once the

hippocampal region has been roughly delimited, the features can be extracted and

signature built.

3.1.3 Signature generation

After brain alignment and ROI’s selection, we compute image features. As it was

already noted, we need to extract only those features, which contain visual informa-

tion related to the presence or absence of the AD. In this work, Circular Harmonic

Functions (CHF) were used for selection of contrasted patterns in brains as it is

the case in [6].

Circular Harmonic Functions (CHF)

Gauss-Laguerre Harmonic Functions are complex-valued radial profile functions

multiplied by complex exponent:

Ψ(r, θ;σ) = Ψ
|α|
n (

r2

σ
)eiαθ (1)

Their radial profiles are Laguerre functions:

Ψ
|α|
n (x) =

1
√

n!Γ (n+ α+ 1)
x

α
2 e

−x

2 L
α
n(x) (2)

2 (Welcome Laboratory of the Department of Cognitive Neurology, Institute of Neurology,
London, United Kingdom, http://www.fil. ion.ucl.ac.uk./spm/)

3 http://dbm.neuro.uni-jena.de/vbm
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where n = 0, 1, ...;α ± 1,±2... and Lα
n(x) are Laguerre polynomials. r, θ are

polar coordinates, σ is a scale parameter and Γ is a gamma function.

L
α
n(x) = (−1)nx−α expx d

dxn
(xn+α

e
−x) (3)

LG-CHF is complete orthogonal set of functions on the real plane. Thus, the

image I(x, y) can be expanded in the analysis point x0 , y0 for fixed scale σ in

Cartesian system. The coefficients of the partial expansion of local neighborhood

can be used as a feature descriptor. The advantages of these features are such that

they capture both the direction and smoth variations of image signal. Their draw

back is in a rather slow convergence, hence a sufficient number of coefficients has

to be retained for image description. The number of coeficients retained define the

dimensionnality of the descriptor. The reasonable dimensionality of 150 coefficients

(see [6][22] ) was used in the present work. Hence the dimension of the descriptor is

comparable with that one of conventional SIFT. More mathematical details about

the CHF descriptors can be found in [33] [34].

Fig. 2 Illustrating of feature placement of local CHF features on the hippocampus ROI
(axial, coronal and sagittal projections) of an MRI scan from the ADNI dataset

Figure 2 shows an illustration of CHF features extraction on hippocampus. The

extracted feature points ”support areas” (i.e. where the descriptors are computed)

are denoted with yellow circles. Here, the scans are densely sampled in a selected
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hippocampal ROI by a grid of circular patches and the signal decomposition on

a CHF basis is computed for each patch. We perform selection sampling and 2D

CHF transform computation on a slice-by-slice basis. Hence the whole description

of the hippocampal volume is a collection of 2D CHF descriptors for each slice

and each projection of the selected volume. The CHF coefficients extracted from

several areas overlapping with the mask are different and depend on the signal

presented in the ROI (atrophy or not).

Recently, Bag-of-Visual-Words (BoVW) approach has shown its power in this

field, modeling the hippocampus ROI as a set of local features[6]. The role of

BoVW model is to cluster extracted features from hippocampus in order to build

a visual vocabulary. The region’s shape differs from one projection to another.

Thus, we choose to perform clustering 3 times from different projections (sagittal,

axial and coronal) and to generate one visual vocabulary per projection. Firstly,

all features fs
n,i , here n and i stand respectively for slice and feature indexes, are

extracted from the ROI on all slices for the sagittal projection then features are

clustered by k-means algorithm. The same is done for axial and coronal projections.

All features fs
n,i, f

a
n,i , fc

n,i and centers of clusters csk ,cak, cck obtained by k-

means (where K is the codebook size) here have the same dimensionality of the

descriptor being used. In case of SIFT it is 128 and for CHF it is 150. According to

the BoVW approach, we then call cluster centers ”visual words”. Once the visual

words have been determined, the image signature per projection is generated.

Each feature is assigned to closest visual word using the distance d(fs
n,i, cs) , in

our case the Euclidean distance is used. Then each projection is represented by

a normalized histogram of occurrence of visual words. The image signature h is

built by concatenating the histograms from all projections h = [hshahc].

3.2 CSF volume computation

The increased quantity of CSF in the hippocampal region is an important visual

biomarker for AD diagnosis. Indeed in the case of AD, the hippocampus shrinks
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and the liberated volume is filled with CSF. To analyze the shrinkage, we count

the CSF voxels in the region of the hippocampus. In the MRI T1 scans the CSF

is appearing as dark areas, thus we can select it just by thresholding.

B∗(x, y, z) < Tdark

Fig. 3 CSF on the hippocampus region : a) AD brain, b) Healthy : Coronal projection brain

But due to the large difference in brightness and contrast of MRI scans, all

scans need to be transformed in such a way that, similar intensities will have similar

tissue-specific meaning. In our work, we perform the scale normalization method

proposed in [25]. In order to select the optimal threshold, the following procedure

is performed: all voxels from the hippocampus regions from all scans are collected

together and the threshold between dark (hyposignal) and bright (hyper signal)

voxels is estimated using Otsu method [26]. In fact, one threshold for all images

is computed. But normal patients have a little CSF amount in the hippocampus

area. Thus, to ensure correct delineation when computing the threshold by Otsu

method, we add additional regions where CSF is always present: The Lateral

Ventricles (LV) by referring to the domain knowledge. In addition, adding some

pixels from the Lateral Ventricles may improve the discrimination results because

AD patients show more CSF in the LV than do MCI and NC subject. Using this
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procedure, the volume of the CSF in a normalized hippocampal area is measured

in a quantity of voxels. It will be later denoted by V . Figure 3 illustrates the results

of detection of CSF (in green) in hippocampal region. The CSF (green color) is

situated around the hippocampus (red color) boundaries. The added region is

marked with a yellow rectangle. It can be seen that the quantity of CSF in the

case of AD (a) is higher. Hence the quantity of CSF in the hippocampus area is

determined for all scans in the database and Bayesian classifier is trained using

this parameter to distinguish the subjects.

4 Classification approach

The classification approach we design is aimed to combine the two sources of in-

formation : visual signature and the volume of CSF in a global decision framework

to discriminate between AD and NC, MCI and NC and AD and MCI subjects.

Taking into account the advances in multimedia fusion research in the literature,

we propose to do it by a late fusion scheme. The overall diagram of the approach is

presented in Figure 4. The CHF-based visual signatures are first classified between

the categories two by two with a state-of-the art SVM approach with an Radial

Basis Function (RBF) kernel. The classification of subjects on the basis of the

CSF volume is performed by a Bayesian classifier. Indeed, we have here a scalar

feature and the class probabilities can reasonably be a priori trained (AD are much

more rare in patients cohorts, than NC and MCI for instance). Both classification

schemes give a decision output. We transform it into an homogeneous probabilis-

tic output and form the second order feature vectors of dimension 2. They are

then submitted to the trained SVM binary classifier for each classification prob-

lem given above (AD vs NC, NC vs MCI and AD vs MCI). We stress that in

this work we address a binary classification problem as the goal is to assess the

discriminative power of our scheme which uses both hippocampal shape expressed

by CHF features and CSF volume biomarkers in an automatic classification of

cohorts. We now present the details of each step of the approach.
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Fig. 4 Late Fusion scheme

4.1 Support vector machines classifier for visual signatures classification

Hence, we solve a set of binary classification problems AD vs NC, NC vs MCI and

AD vs MCI. The unknown subject is classified by maximizing the score of these

three classifiers. We use the well known SVM classifier [7] in the visual description

space of signatures built with CHF descriptors. At training step it separates a

given set of training data of instance label pairs (xi, yi), i = 1, ..., l where xi ∈ Rn

and y ∈ {1,−1} by maximizing the distances to the hyperplane that separates

the two classes in a kernel-transformed space. Then the classification of unknown

data is performed in this space accordingly to their position with regard to the

hyperplane. For more details on SVMs we refer the reader to [30]. In this work we

use the RBF kernel defined by: exp(−γ ∗ |u − v|2). In many settings, for a given

input sample and for a given classifier we are more interested in the degree of

confidence that the output should be +1. In such cases it is useful to produce a

probability P (y = 1|x). Given k classes, for any x, the goal is to estimate

pi = P (y = i|x), i = 1....k

We first estimate pairwise class probabilities by Platt approximation [27]
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ri =
1

1+eAfi+B

where f is the decision value at x. A and B are estimated by minimizing the

negative log likelihood of training data (using their labels and decision values).

For each binary classifier we will have the probabilistic output PSV Mi
(x).

4.2 Bayesian classifier for CSF based features Classification

The Bayesian classifier uses the parametric model of pdf for each class which we

suppose Gaussian. It gives the most likely class for a given observation. Let V

denote the CSF volume for a given subject, Y is the subject class label (Y =

AD,NCorMCI), and C = 2 (binary classification) is the number of classes. The

problem consists in classifying the sample v to the class c∗ maximizing P (Y =

c|V = v) over c = 1, , C. Applying Bayes rule gives:

P (Y = c|V = v) = P (V =v|Y =c)P (Y =c)
P (V =v)

and reduces the original problem to:

c∗ = argmaxc=1,...CP (V = v|Y = c)P (Y = c)

we denote the related probability of a sample by PBayesi
(x)

4.3 SVM-based late fusion scheme

The probabilistic outputs of SVM-based signature classification and CSF volume-

based Bayesian classification are now available for each training sample in all

binary classification problems . We form the 2 dimensional feature vectors

Z(x) = (PSV Mi
(x), PBayesi

(x))T

and the training set pairs Z(x), y(x). Finally, the second SVM classifier in cascade

is trained with a linear kernel using Leave-One-Out Cross-Validation.

Metrics used to evaluate final late fusion classification performance are :

– Accuracy (Acc) =
(TP + TN)

(TP + TN + FN + FP )
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– Sensitivity (Sen) =
TP

(TP + FN)

– Specificity (Spe) =
TN

(TN + FP )

Here TP (True Positives) are AD patients correctly identified as AD, TN (True

Negatives) are controls correctly classified as controls, FN (False Negatives) are

AD patients incorrectly identified as controls and FP (False Positives) are controls

incorrectly identified as AD. Similar definition is hold for other binary classification

problems NC vs MCI and AD vs MCI.

5 Experiments and results

5.1 MRI data

Data used in the preparation of this article were obtained from the Alzheimers Dis-

ease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was

launched in 2003 by the National Institute on Aging (NIA), the National Institute

of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Admin-

istration (FDA), private pharmaceutical companies and non-profit organizations,

as a 60 million, 5- year public-private partnership. The primary goal of ADNI has

been to test whether serial magnetic resonance imaging (MRI), positron emission

tomography (PET), other biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of mild cognitive impair-

ment (MCI) and early Alzheimers disease (AD). Determination of sensitive and

specific markers of very early AD progression is intended to aid researchers and

clinicians to develop new treatments and monitor their effectiveness, as well as

lessen the time and cost of clinical trials. The Principal Investigator of this initia-

tive is Michael W. Weiner, MD, VA Medical Center and University of California

San Francisco. ADNI is the result of efforts of many co-investigators from a broad

range of academic institutions and private corporations, and subjects have been

recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI

was to recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-
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2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to

participate in the research, consisting of cognitively normal older individuals, peo-

ple with early or late MCI, and people with early AD. The follow up duration of

each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Sub-

jects originally recruited for ADNI-1 and ADNI-GO had the option to be followed

in ADNI-2. For up-to-date information, see www.adni-info.org.

In this work, we selected from the ADNI dataset the same data as [40], with

the same demographic information for each of the diagnosis groups (NC, AD and

MCI). The data sample consists of 218 structural MRIs from the ADNI dataset

with 35 Alzheimer’s Disease (AD) patients, 72 cognitively normal (NC) and 111

Mild Cognitive Impairment (MCI) subjects. Images are standard 1.5 T screening

baseline T1 weighted obtained using volumetric 3D MPRAGE protocol.

The second source of data is a study of AD on a real cohort, we call it ”Bor-

deaux dataset” 4 [8] comprising 37 structural MRI (16 AD and 21 NC).

5.2 Results and Discussion

5.2.1 CSF volume computation

In this subsection we give the figures showing the credibility of CSF quantity

biomarker extracted with our method (see 3.2). Table 1 presents the quantities of

CSF voxels within the hippocampal ROI. Indeed, from Table 1, one can see that

the amount of CSF increases from NC to AD.

Table 1 CSF amounts

Class Volume ( mean ± SD )

NC 212 ± 101
MCI 316 ± 104
AD 402 ± 126

4 http://www.incia.u-bordeaux1.fr/
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5.2.2 Classification results

Table 2 presents classification performance. It summarizes classification results of

AD versus NC, MCI versus NC and MCI versus AD for the ADNI subset. We also

present classification results of AD versus NC obtained on the ”Bordeaux dataset”.

Since the latter does not contain MCI cases, relative classification problems are

not addressed in our experiments.

Table 2 Classification results

ADNI dataset Bordeaux dataset

AD vs NC NC vs MCI MCI vs AD AD vs NC

Hippo VF (CHF)

Acc 85.05% 74.32% 58.9% 79%

Spe 94.45% 85.59% 63.97 % 80%

Sens 65.72% 57% 42.86 % 70%

Hippo VF (SIFT)

Acc 79.44 % 72.14% 52.05% 67.56%

Spe 93 % 84.69% 55.85 % 76.19 %

Sens 51.43% 52.78% 40 % 56.25 %

Hippo VF (SURF)

Acc 81.3% 73.23% 50% 66.67 %

Spe 91.67% 83.78 % 57.6% 40%

Sens 60% 56.95% 25.73% 85.71%

CSF volume

Acc 78.5 % 58.47 % 62.33% 80%

Spe 72.29% 48% 67.39 % 72%

Sens 70.5% 66% 60% 60%

Hippo VF (CHF)+ CSF Acc 87% 78.22% 72.23% 85%

Spe 100 % 83.34% 70 % 81%

Sens 75.5 % 70.73% 75 % 76%

Firstly, we compare the performance on CHF visual features (3.1.3) with regard

to conventional SIFT and SURF ones. It can be seen that the proposed CHF

features systematically outperform SIFT and SURF in all three quality metrics:

Accuracy, Specificity and Sensitivity. We note that the SURF features with the

lowest dimension (64) between three classes of descriptors are not applicable in our
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problem. In fact, they are less precise than SIFT and give a very low sensitivity

(25.73%) in a difficult case of MCI vs AD. The CHF descriptors used are of a

comparable dimension (150) with SIFT (128), but outperform them. The results

presented in the Table 2 for visual features alone, correspond to the optimal sizes of

visual vocabularies we estimated experimentally optimizing the accuracy criterion.

For SIFT features, the size of visual dictionary per projection was 100 yielding to

the dimension of 3*100 of the BoVW. For SURF features, it was of 150 yielding the

signature size of 3x150. Finally, for the CHF features, the dictionary consisted of

150 visual words yielding respectively the dimension of the visual signature of 3x

150. The low cardinality of the optimal codebook can be explained by a reasonably

limited number of descriptors. Indeed, the dense sampling is performed only on

the hippocampal ROI in a limited number of slices (70 for sagittal, 97 for axial

and 42 for coronal projections respectively).

Using visual features of the hippocampus on the ADNI subset, we achieved

an accuracy of 85.05% and 74.32% respectively for AD versus NC and NC versus

MCI classification. However, structural change on hippocampus is not sufficiently

accurate on its own to be an absolute diagnostic criterion to separate AD from

MCI cases. In the case of MCI versus AD classification, performance drops to

58.9%. We aimed to deal with this challenging category (MCI). To enhance the re-

sults, CSF amount measurement was added. The CSF amount classification using

Bayesian classifier gives an accuracy of 62.33% and 58.47% for the recognition of

the MCI cases respectively from the AD and NC subjects. Moreover, we note that

adding supplementary voxels from the Lateral Ventricles helps to boost the per-

formance of CSF delineation and thus improve the classification results. Indeed,

the accuracy of AD vs NC classification by CSF amount increases from 74.1%

to 78.5%. Hence, we retained this finding for classification and all results in Ta-

ble 2 were obtained with this approach. Since those two kinds of features were

extracted from the same brain (hippocampus), our assumption that they could

provide complementary information for classification was correct.
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For MCI versus AD classification, using the late fusion, we achieved 72.23%

of accuracy compared to 58.5% using only CHF features. For the MCI versus

NC classification, accuracy increases from 74.32% to 78.22%. As we can see from

table 2 the sensitivity values of both AD vs MCI and NC vs MCI classification

undergoes a significant increase ( from 42.86% to 75% for the MCI vs AD cases

for example) when we use the late fusion. These results show that CSF volume

improves the classification accuracy by an average of 9% when combined with

the visual signatures especially for the MCI cases classification which is the most

challenging task due to the strong heterogeneity of this class.

In a second part of experiments, we selected 15 MRI scans of AD (60 ± 3 years

old) and 12 aging subject from the Normal control category ( 80 ± 6 years old ) of

the ADNI dataset. Our approach distinguishes well between Alzheimer’s disease

and the aging normal control subjects with an accuracy of 85% and sensitivity of

76%. Hence, adding CSF amount not only improved MCI cases classification but

also helped to separate old healthy subjects from those suffering from AD.

We compare our work with results obtained in [40]. First, the authors used

the volume and the shape of hippocampus to perform subject categorization and

second, they added CSF bimomarkers and volume and shape of the lateral ventri-

cles to improve results in the case of AD and MCI recognition. Our content based

approach outperforms all achieved results on [40]. For example better classifica-

tion accuracy was achieved in AD versus MCI and NC versus MCI classification

tasks is 69.6% and 72% respectively, which is lower than results obtained in our

present work. In the case of AD or MCI categorization we reached better results

(accuracy of 72.23%, a 70% of specificity and of sensitivity 75% ) compared to [40]

in which the authors obtained only 69.9% of accuracy, 68.6% of specificity and of

sensitivity 70.7%. We can conclude that combining visual features of AD biomark-

ers performs better than using volume or shape. Also, in [40], the authors use the

freesurfer software to select region which is a very time consuming (about hours

of processing) task contrarily to the atlas mapping used in our work. Therefore,
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the ability to efficiently classify MCI and AD patients based on visual features of

structural MRI might shed light on the ability to predict the conversion from MCI

to AD, which is of clinical interest.

6 Conclusion

In this paper we proposed a simple and robust classification approach of MRI scans

for Alzheimer’s disease diagnosis. The approach is based on visual content descrip-

tion of anatomical structure of a brain region involved in AD ( hippocampal area).

We proposed a late fusion of classification results on two biomarkers: hippocam-

pus and CSF. The experiments showed that combining hippocampus features and

CSF amount classification gave better accuracy especially when discriminating

between AD and MCI than when using either visual features or CSF volume sep-

arately for discriminating between AD and MCI than using either visual features

extraction or CSF volume computation separately. We also demonstrated that the

proposed method provides better classification accuracy compared to other volu-

metric methods. In the perspective of this work we plan to use multiple ROIs, but

also multiple MRI modalities in the established classification framework.
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4. Ayache S, Quénot G, Gensel J (2007) Classifier fusion for SVM based multi-

media semantic indexing. In: Proceedings of the 29th European conference on

IR research, Springer-Verlag, Berlin, Heidelberg, ECIR’07, pp 494–504



Title Suppressed Due to Excessive Length 23

5. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-Up Robust Features

(SURF). Comput Vis Image Underst 110(3):346–359

6. Ben Ahmed O, Benois-Pineau J, Ben Amar C, Allard M, Catheline G (2013)

Early Alzheimer disease detection with bag-of-visual-words and hybrid fusion

on structural MRI. In: 11th International Workshop on Content-Based Multi-

media Indexing (CBMI) 2013, IEEE, pp 79–83

7. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal

margin classifiers. In: the fifth annual workshop on Computational learning

theory, ACM, pp 144–152

8. Catheline G, Periot O, et al (2010) Distinctive alterations of the cingulum bun-

dle during aging and Alzheimer’s disease. Neurobiology of Aging 31(9):1582 –

1592

9. Chupin M, Gérardin E, Cuingnet R, et al (2009) Fully automatic hippocam-

pus segmentation and classification in Alzheimer’s disease and mild cognitive

impairment applied on data from ADNI. Hippocampus 19(6):579–587

10. Chupin M, Hammers A, Liu RSN, et al (2009) Automatic segmentation of the

hippocampus and the amygdala driven by hybrid constraints: Method and

validation. NeuroImage 46(3):749–761

11. Colliot O, Chételat G, Chupin M, et al (2008) Discrimination between

Alzheimer disease, mild cognitive impairment, and normal aging by using au-

tomated segmentation of the hippocampus. Radiology 248(1):194–201

12. Csurka G, Dance CR, Fan L, et al (2004) Visual categorization with bags of

keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV,

pp 1–22

13. Cuingnet R, Gerardin E, Tessieras J, et al (2011) Automatic classification of

patients with Alzheimer’s disease from structural MRI: A comparison of ten

methods using the ADNI database. NeuroImage 56(2):766–781

14. Daliri MR (2012) Automated Diagnosis of Alzheimer disease using the Scale-

Invariant Feature Transforms in Magnetic Resonance Images. J Med Syst



24 Olfa Ben Ahmed et al.

36(2):995–1000

15. Gerardin E, Chételat G, Chupin M, et al (2009) Multidimensional classifica-

tion of hippocampal shape features discriminates Alzheimer’s disease and mild

cognitive impairment from normal aging. NeuroImage 47(4):1476–1486

16. Gutman B, Morra YWJ, Toga A, Thompson P (2009) Disease classification

with hippocampal shape invariants. Hippocampus 19(6):572–578
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