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For nearly a century, detecting the genetic contributions to cognitive and behavioral phenomena has been
a core interest for psychological research. Recently, this interest has been reinvigorated by the availability
of genotyping technologies (e.g., microarrays) that provide new genetic data, such as single nucleotide
polymorphisms (SNPs). These SNPs—which represent pairs of nucleotide letters (e.g., AA, AG, or GG)
found at specific positions on human chromosomes—are best considered as categorical variables, but this
coding scheme can make difficult the multivariate analysis of their relationships with behavioral
measurements, because most multivariate techniques developed for the analysis between sets of variables
are designed for quantitative variables. To palliate this problem, we present a generalization of partial
least squares—a technique used to extract the information common to 2 different data tables measured
on the same observations—called partial least squares correspondence analysis—that is specifically
tailored for the analysis of categorical and mixed (“heterogeneous”) data types. Here, we formally define
and illustrate—in a tutorial format—how partial least squares correspondence analysis extends to various
types of data and design problems that are particularly relevant for psychological research that include
genetic data. We illustrate partial least squares correspondence analysis with genetic, behavioral, and
neuroimaging data from the Alzheimer’s Disease Neuroimaging Initiative. R code is available on the
Comprehensive R Archive Network and via the authors’ websites.
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Interests in the genetic contributions to psychological traits date
back over a century, and these interests fostered advancements in
measurement and assessment of genetic contributions to behavior.
Thorndike (1905) initiated some of the earliest efforts “to make
modern statistical methods current in psychology” (Sanford, 1908,
p. 142) as well as in genetics, and he was soon followed by Fisher
(1919), who favored more formal approaches. Over a decade later,
Thurstone (1934) suggested using “factor analysis” to understand cogni-
tive abilities and personality traits. Thurstone favored these methods, in
part, because he firmly believed “that the isolation of the mental abilities
will turn out to be essentially a problem in genetics” (p. 32).

These same beliefs, interests, questions, and advancements have
been revived in recent years with the advent of technology such as
microarrays and genome-wide association studies (GWASs). To-
day, in brain and behavioral sciences, one of the most typical types
of genetic data—called single nucleotide polymorphisms (SNPs;
pronounced “snips”)—lists the possible alleles of a nucleotide pair
at a given position for the corresponding chromosomes (i.e., one
maternal and one paternal). In practice, SNPs are detected as their
DNA nucleotide pairs, called genotypes. These genotypes are in
general classified as the major homozygote, heterozygote, and
minor homozygote (e.g., AA, AG, GG, respectively, assuming that
AA is found more often than GG in the population of interest)
where zygosity is determined by allele frequency (e.g., G is a
minor allele because it is less frequent than A). SNPs can provide
insight into numerous diseases (Weiner & Hudson, 2002), and
many studies have shown associations of specific SNPs with
particular diseases (Lakatos et al., 2010), disorders (Clarke et al.,
2014; Filbey, Schacht, Myers, Chavez, & Hutchison, 2010; Lan-
tieri, Glessner, Hakonarson, Elia, & Devoto, 2010; Romanos et al.,
2008), personality (Munafò & Flint, 2011), phenotypes (Cho et al.,
2011), and traits (Hamidovic, Dlugos, Palmer, & de Wit, 2010;
Miyajima et al., 2008).

And now again—just as in the early days of Thorndike and
Fisher—new statistical methods are being developed to understand
how genetics may contribute to behaviors (or traits). Most of these
modern statistical techniques are multivariate in nature. Some
approaches include derivatives of independent components analy-
sis (Liu et al., 2009; Yang, Liu, Sui, Pearlson, & Calhoun, 2010),
sparse multivariate regression approaches (Vounou, Nichols, Mon-
tana, & Alzheimer’s Disease Neuroimaging Initiative, 2010), dis-
tance matrix regression (Zapala & Schork, 2006), and path mod-
eling (Franić et al., 2013). Further, some of these recent techniques
are designed to simultaneously analyze behavioral and genetic data
(Bloss, Schiabor, & Schork, 2010), in part in order to increase
statistical power to detect genetic contributions to traits, behaviors,
and phenotypes (Schifano, Li, Christiani, & Lin, 2013; Seoane,
Campbell, Day, Casas, & Gaunt, 2014; van der Sluis, Posthuma, &
Dolan, 2013). This boost in power can be particularly relevant in
psychological research in which sample sizes can rarely reach
“standard” sizes for genome-wide studies (i.e., N � 5,000).

One versatile family of multivariate techniques—the partial
least squares (PLS) family—is particularly suited for analyzing
two tables of data measured on the same observations, and has
been developed into regression (Abdi, 2010; Tenenhaus, 1998),
correlation (Krishnan, Williams, McIntosh, & Abdi, 2011; McIn-
tosh & Lobaugh, 2004), and path-modeling approaches (Esposito
Vinzi, Chin, Henseler, & Wang, 2010; Tenenhaus, Esposito Vinzi,
Chatelin, & Lauro, 2005). Further, PLS approaches have been used

in studies on genetics and genomics (Michaelson, Alberts,
Schughart, & Beyer, 2010; Moser, Tier, Crump, Khatkar, &
Raadsma, 2009; Wang, Ho, Ye, Strickler, & Elston, 2009), inte-
grating genetic and brain data (Le Floch et al., 2012; Tura, Turner,
Fallon, Kennedy, & Potkin, 2008), or genetics and clinical status
(Chun, Ballard, Cho, & Zhao, 2011; Sullivan et al., 2008). How-
ever, nearly all current approaches to analyzing SNPs (including
PLS approaches) require SNPs to be treated as numerical data—
often because of particular inheritance models—even though
SNPs themselves are intrinsically categorical. This preference for
methods based on numerical assumptions is likely because, in part,
of the lack of multivariate methods designed specifically for the
analysis of categorical—or heterogeneous—data.

SNP Coding Problem and Solution

Table 1 provides an overview of common analytical approaches
and inheritance models used in association studies. As noted in
Table 1, the majority of approaches are naturally categorical—in
which the goal is to test presence versus absence of particular
genotypes. However, for practical, analytical, and statistical pur-
poses, SNPs in association studies are (most often) represented
through an allelic counting scheme (as found, e.g., in PLINK;
Purcell et al., 2007). With this coding scheme, a SNP is repre-
sented either by its number of minor alleles (e.g., as in de Leon et
al., 2008: 0, 1, or 2 minor alleles) or by its number of major alleles
(e.g., as in Cruchaga et al., 2010: 0, 1, or 2 major alleles).
However, this counting scheme relies on two unrealistic assump-
tions about how SNPs might contribute to traits, behaviors, and
diagnoses. With the first assumption, the (statistical) emphasis is
always placed on the same allele (e.g., minor alleles) across all
SNPs. The second—and more problematic—assumption states
that the effect of SNPs is uniform and linear. A simple counter-
example shows the limitations of strictly linear additive assump-
tions: The risk of Alzheimer’s disease due to ApoE genotypes is
neither uniform nor linear (see, e.g., Table 2 in Genin et al., 2011).
Furthermore, “ApoE E4” gene alleles are considered risk factors
for Alzheimer’s disease, whereas “ApoE E2” gene alleles are
considered protective against Alzheimer’s disease (Corder et al.,
1994). By contrast, “ApoE E2” is considered a risk factor for the
inability to break down fats, and this inability could, in turn, lead
to certain types of vascular diseases or obesity (Koopal, van der
Graaf, Asselbergs, Westerink, & Visseren, 2014). Thus, direction-
ality of genetic effects becomes dependent on the field of study.

Furthermore, there are two other specific cases in which the [0,
1, 2] (and similar) coding scheme is problematic, especially when
the “risk” allele is computed empirically (i.e., as a frequency of,
say, the minor allele). First, the minor allele for a given SNP in one
sample or cohort is not guaranteed to be the same minor allele in
a separate sample or cohort. This discrepancy is more likely to
occur in smaller samples such as candidate gene studies. Thus, an
empirical “2” in one study could be an empirical “0” in another.
Second, studies that employ aggregate scores, such as profile
scores or multilocus scores (e.g., Blum, Oscar-Berman, Demetrov-
ics, Barh, & Gold, 2014; Nikolova, Ferrell, Manuck, & Hariri,
2011; van Eekelen et al., 2011)—essentially, the sum or average of
the risk alleles across multiple SNPs—could in fact miss effects,
if the risk is empirically defined and the emphasis is in the same
direction (i.e., minor homozygote as “2”). In fact, ApoE is an
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example of such an effect. ApoE is genotyped by the two SNPs—
rs7412 and rs429358, in which the ApoE E4/E4 genotype (the
major risk factor for Alzheimer’s disease) is produced by a major
homozygote (i.e., 0) from rs7412, and a minor homozygote (i.e., 2)
from rs429358.1

When risk alleles and true inheritance patterns are unknown, we
(of course) do not know which allele should be emphasized as the
risk factor, nor whether an effect should be tested with linear
assumptions. Furthermore, if more than one SNP contributes to an
effect in complex ways (e.g., a haplotype) sometimes, the linear
additive [0, 1, 2] coding can completely miss effects (Vormfelde &
Brockmöller, 2007). So, applying these [0, 1, 2] values to all
SNPs—and subsequently testing each SNP independently—could
either miss an effect or even misrepresent the true inheritance
pattern. This problem occurs because allelic counts do not repre-
sent how much a SNP actually contributes to an effect, but rather
codes only for a presumed effect (i.e., a linear contrast applied to
an ANOVA design) about each genotype (e.g., AA, AG, or GG).
Thus, the most parsimonious approach to genetic association stud-
ies—especially when we do not know the inheritance pattern, the
direction, or the size of the effect—is to treat each genotype (e.g.,
AA, AG, or GG) as a level of a categorical variable (e.g., rs6859).
This representation closely matches the genotypic or codominant
models of inheritance and is a more general approach to testing. In
fact, prior work has shown that the codominant model (see Table
1 and Appendix A) is the best choice when choosing a single
model if the true inheritance pattern is unknown (Lettre, Lange, &
Hirschhorn, 2007). Furthermore, because the genotypic or codomi-
nant models are the most general, there is no requirement for
additional testing of other inheritance models (i.e., additive, dom-
inant, and recessive) on the same data set (which would require
corrections for multiple tests).

Here, we present partial least squares correspondence analysis
(PLSCA; Beaton, Filbey, & Abdi, 2013)—a derivative of PLS—

and several of its novel extensions tailored for the particular data
and design issues often confronted in genetic association studies
within the psychological, cognitive, and neurological sciences.
PLSCA (like traditional PLS) is designed to simultaneously ana-
lyze two tables of data. However, PLSCA is more versatile than
PLS because it can analyze diverse types of data, such as two
categorical data sets, one categorical and one quantitative data set,
or two data sets in which each is a mixture of categorical and
quantitative data within each table. This versatility of PLSCA
makes it an ideal method for genetic association studies because
(a) as a multivariate method, PLSCA can detect how multiple
genotypes contribute to many various phenotypes (traits) simulta-
neously; (b) phenotypes (traits) can be either categorical (e.g.,
diagnosis, sex) or quantitative (e.g., summary score, brain size);
and (c) PLSCA—when used with a fully categorical coding
scheme to represent SNPs—is flexible enough to detect linear and
nonlinear relationships within (e.g., genotypic) and between
(genotypic-phenotypic) data sets.

Because a uniform and linear assumption could misrepresent the
expected contribution of genetic data to traits, behaviors, and
diagnoses, we present PLSCA with an explicit categorical coding
scheme for SNPs that represents each genotype. However, it is
worth noting that—with a proper coding scheme—PLSCA can
also analyze other inheritance models or even analyze mixed
inheritance models within a single analysis (see Appendix A [and
R code] for a detailed discussion on how to apply PLSCA with
other inheritance models). Therefore, instead of using allelic

1 For a simple explanation of the ApoE genotype and haplotype, see
Nyholt, Yu, and Visscher (2009). See also the National Institutes of
Health’s minor allele frequencies at http://www.ncbi.nlm.nih.gov/SNP/
snp_ref.cgi?rs�7412 and http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?
rs�429358. Furthermore, prior work (Bennet et al., 2010) suggests that
only rs429358 is a risk factor for Alzheimer’s disease.

Table 1
Inheritance Models and Analyses

Analysis or model
Major

homozygote Heterozygote
Minor

homozygote Data type

Genotypes and their general representations for a variety of analytical and inheritance models
HWEa AA Aa aa Categorical (three levels)
Genotypica AA Aa aa Categorical (three levels)
Dominant (D) Not D D D Categorical (dichotomous)
Recessive (R) Not R Not R R Categorical (dichotomous)
Heterozygous (H)b Not H H Not H Categorical (dichotomous)
Linear additivec b b � r b � (2r) Quantitative (interval or ratio scale)
Multiplicativec b br br2 Quantitative (interval or ratio scale)

Genotypes and their numeric representations for a variety of analytical and inheritance models
HWE [1 0 0] [0 1 0] [0 0 1] Categorical (three levels)
Genotypic [1 0 0] [0 1 0] [0 0 1] Categorical (three levels)
Dominant (D) [0 1] [1 0] [1 0] Categorical (dichotomous)
Recessive (R) [0 1] [0 1] [1 0] Categorical (dichotomous)
Heterozygous (H)b [0 1] [1 0] [0 1] Categorical (dichotomous)
Linear additivec b b � r b � (2r) Quantitative (interval or ratio scale)
Multiplicativec b br br2 Quantitative (interval or ratio scale)

Note. HWE � Hardy-Weinberg Equilibrium. Note that, in general, many of these models are naturally categorical.
a Here, for HWE and the genotypic model, SNPs are presented generally where ‘A’ is the major allele and ‘a’ the minor allele. The major homozygote,
heterozygote, and minor homozygote are denoted ‘AA’, ‘Aa’, and ‘aa’, respectively. b The model codes for the heterozygote as different from either
homozygote. c Where, b means “baseline” and r means “risk,” assuming the risk is associated strictly with the minor homozygote (if the risk should be
on the major homozygote, the scale can be reversed where r is associated with the major allele).
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counts (i.e., 0, 1, and 2), we present PLSCA with SNPs as cate-
gorical variables (see Table 2). While this approach is rarely used
in multivariate analyses, there is some precedence for analyzing
genetic data as categorical (Greenacre & Degos, 1977; Park, Lee,
& Kim, 2007). Additionally, multivariate contingency analyses of
genetic data exist in some domains, such as ecology and biology
(Dray, 2014; Edelaar et al., 2015; Frantz et al., 2013; Gasi et al.,
2013; Kocovsky, Sullivan, Knight, & Stepien, 2013).

PLSCA is a derivative technique of both correspondence anal-
ysis (CA; Abdi & Williams, 2010a; Greenacre, 2010) and partial
least squares correlation (PLSC; Krishnan et al., 2011; McIntosh &
Lobaugh, 2004). CA is a multivariate technique designed specif-
ically to analyze categorical data (as found, e.g., in a contingency
table) in a �2 framework—a framework particularly well suited for
identifying rare occurrences (Greenacre, 2007, 1984). PLSC is a
family of methods—often used in neuroimaging (Krishnan et al.,
2011; McIntosh & Lobaugh, 2004)—designed to analyze two
tables of variables measured on the same observations (Abdi,
Chin, Esposito Vinzi, Russolillo, & Trinchera, 2013). Interest-
ingly, PLSC has recently been shown to be the best approach—
among several canonical correlation or covariance analyses—to
detect genetic associations in high dimensional neuroimaging data
sets (Grellmann et al., 2015). Thus, PLSCA—by leveraging fea-
tures of CA and PLSC—is particularly suited for analyzing com-
plex genetic association studies (e.g., candidate gene or genome-
wide). PLSCA can analyze genetic data in conjunction with data
that are well defined and robust (e.g., clinical measures), and can
do so for very high-dimensional data (even when the variables
outnumber the observations).

The remainder of this article is outlined as follows. We first
formally define PLSCA, and then we explain how to use particular
nonparametric inference methods (e.g., tests via permutation and
bootstrap) with PLSCA. Next we present a tutorial on—and intro-
duce several variants of—PLSCA. This tutorial is broken into

several studies that aim to tease apart the specific genetic contri-
butions to: depression, dementia, and differences in brain struc-
tures in Alzheimer’s disease (via the Alzheimer’s Disease Neuro-
imaging Initiative [ADNI] study). Each study highlights a
particular variation of PLSCA. Finally, we discuss the findings
from the illustrative studies and highlight the methodological
contributions of PLSCA.

A Précis of PLSC

In this section, we present a brief summary of PLSC—some-
times also called Tucker’s interbattery analysis (Tucker, 1958),
singular value decomposition (SVD) of the covariance between
two fields (Bretherton, Smith, & Wallace, 1992), or coinertia
analysis (Dray, 2014)—in order to (a) provide the background, and
(b) establish the concepts and notations we need for PLSCA.

Notation

Matrices are denoted with uppercase bold letters (e.g., X), and
vectors with lowercase bold letters (e.g., x); scalars are denoted by
uppercase italic letters (e.g., I), and indices by lowercase italic
letters (e.g., i). The identity matrix is denoted I. The transpose
operation is denoted by a superscript “T” (e.g., XT) and the inverse
of a matrix is denoted by the superscript “�1” (e.g., X�1). By
default, vectors are column vectors, and so a transposed vector is
a row vector (i.e., x is a column vector, but xT is a row vector). The
“diag{}” operator transforms a vector into a diagonal matrix when
applied to a vector and extracts the vector of the diagonal elements
of a matrix when applied to a matrix. Writing side-by-side matrices
or vectors (e.g., XTY) indicates ordinary matrix multiplication;
when multiplication needs to be made explicit, we use the symbol
“�.” Further, we reserve some letters to denote vectors and ma-
trices that represent specific, and common, features of these meth-
ods. These reserved letters are listed in Table 3.

Table 2
Nominal, Additive, and Disjunctive Formats of SNP Data

SNP1 SNP2

Nominal
Subject 1 Aa Aa
Subject 2 aa Aa
Subject i Aa aa
Subject I AA AA

Additive
Subject 1 1 1
Subject 2 2 1
Subject i 1 2
Subject I 0 0

SNP1 SNP2

AA Aa aa AA Aa aa

Disjunctive
Subject 1 0 1 0 0 1 0
Subject 2 0 0 1 0 1 0
Subject i 0 1 0 0 0 1
Subject I 1 0 0 1 0 0

Note. Example of nominal, additive, and disjunctive coding of illustrative SNPs referred to as SNP 1 and SNP
2. Here, both illustrative SNPs are presented generally where A � major allele; a � minor allele. The major
homozygote, heterozygote, and minor homozygote are denoted ‘AA’, ‘Aa’, and ‘aa’, respectively.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

4 BEATON ET AL.



PLSC

PLSC analyzes the relationship between two data matrices of
sizes (respectively) I by J and I by K, denoted (respectively) X and
Y, that measure the same I observations (rows) described by
(respectively) J and K quantitative variables (i.e., columns). The
centered and normalized versions of X and Y are denoted ZX and
ZY. The common information between these two data tables is
represented by the matrices computed as

R � XTY and ZR � ZX
TZY. (1)

This multiplication produces a J by K cross-product matrix (R)
or correlation matrix (ZR). In PLSC (Abdi & Williams, 2013;
Bookstein, 1994; Krishnan et al., 2011; McIntosh, Bookstein,
Haxby, & Grady, 1996), the variables are, in general, centered and
normalized (i.e., matrices ZX and ZY are used), and therefore the
matrix ZR is used for further analysis. The matrix ZR is decom-
posed with the SVD (see Appendix B) as

ZR � U�VT, (2)

where (a) L is the rank of ZR, (b) U is the J by L orthonormal matrix of
left singular vectors, (c) V is the K by L orthonormal matrix of
right singular vectors, and (d) � is an L by L diagonal matrix (i.e.,
the off-diagonal elements of � are all 0), in which the elements of
the vector diag{�} are the singular values (ordered from the
largest to the smallest). The squared singular values—called
eigenvalues—express the variance of the data extracted by the
components. In the PLSC nomenclature, the matrices U and V are
also called saliences (Bookstein, 1994; Krishnan et al., 2011;
McIntosh & Lobaugh, 2004). The matrices U� and V� are akin to
component (a.k.a. factor) scores for principal components analysis
(PCA) (Abdi & Williams, 2010a) and CA (Abdi & Béra, 2014). In
this article, we tend to use the more ubiquitous nomenclature from
PCA and CA rather than the more specialized nomenclature from
PLSC.

In PLSC, the original variables of ZX and ZY are linearly
combined to create pairs of latent variables (each pair has one
latent variable from ZX and one from ZY; see Abdi & Williams,
2010b; Krishnan et al., 2011). The coefficients—which play a role
analogous to loadings in PCA—of these linear combinations are

given by the (respectively left and right) singular vectors of ZR.
The latent variables for ZX and ZY are computed as

LX � ZXU and LY � ZYV. (3)

What Does PLSC Maximize?

PLSC seeks two vectors of coefficients—denoted u (respectively
v)—that define a linear combination of the columns of ZX (respec-
tively ZY) such that these two linear combinations—called latent
variables, denoted lX (respectively lY), and computed as
lX � ZXu (respectively, lY � ZYv)—have maximal covariance, as
stated by

� � arg max(lX
T lY) � arg max cov�l

X
, lY�, (4)

under the constraints that the set of coefficients of the linear
transformation for ZX (respectively ZY) have unit norm

ul
Tul � 1 � vl

Tvl. (5)

After the first pair of latent variables has been extracted, sub-
sequent pairs are extracted under the additional condition that
unpaired sets of latent variables are orthogonal:

lX,l
T lY,l� � 0 when l � l� . (6)

The coefficients of the successive linear transformations (stored
in matrices LX and LY) are obtained from the SVD of ZR (see
Equation 2), as shown by

LX
TLY � UTZX

TZYV � UTZRV � UTU�VTV � �. (7)

When l � 1, the covariance between LX and LY has the largest
possible value, when l � 2, the covariance between LX and LY has
the largest possible value under the constraints that the second pair of
latent variables are orthogonal (as defined by Equation 6) to the first
pair of latent variables. This property holds for each subsequent value
of l (for proofs, see, e.g., Bookstein, 1994, and Tucker, 1958).

PLS for Categorical Data Types

The properties of PLSC hold when matrices X and Y contain
quantitative variables (and therefore ZR is a correlation matrix).
However, SNPs and many types of behavioral data (e.g., surveys,
clinical assessments, and diagnostic groups) are inherently cate-
gorical. We now present a new PLSC method—called partial least
squares correspondence analysis (PLSCA)—designed specifically
to analyze two tables of categorical data (Beaton, Filbey, et al.,
2013). We have implemented PLSCA (and several of its deriva-
tives) in the R package TExPosition (Beaton, Chin Fatt, & Abdi,
2014; Beaton, Rieck, Fatt, & Abdi, 2013). Additional code—
which illustrates the formalization of PLSCA and several exam-
ples—can be found on the authors’ websites.2

2 https://code.google.com/p/exposition-family/source/browse/Publications/
PsyMet_2015 and http://www.utd.edu/~herve/PsyMet_2015.

Table 3
Reserved Notation Descriptions

Reserved notation Definition

Z� Centered and (usually) normalized matrices
L� Latent variables scores
F� Component (or factor) scores
m� Vectors of masses
W� Diagonal matrices of weights
O� Observed values (under �2 assumptions)
E� Expected values (under �2 assumptions)

Note. Notation letters that are reserved for specific uses and their corre-
sponding definitions. In each case, the asterisk (�) is replaced by the name
of a matrix (e.g., X) or by an index (e.g., J) to denote where the matrix
originates from. For example, (a) ZX would mean a centered and normal-
ized version of X; (b) WY is a matrix of weights derived from the Y; and
(c) FJ are the component scores associated with the J columns of a matrix.
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Formalization of PLSC for Categorical Data

PLSCA analyzes the relationships between two tables of cate-
gorical data (denoted X and Y) that describe the same set of I
observations (i.e., rows). Both X and Y store categorical variables
that are expressed with group coding (a.k.a. “disjunctive coding”
or “indicator matrix coding;” see, e.g., Greenacre, 1984; Lebart,
Morineau, & Warwick, 1984), as illustrated in Table 2. With this
coding scheme, the N levels of a categorical variable are coded
with N binary vectors. The level describing an observation has a
value of 1 and the other levels have a value of 0, and so the product
XTY creates a contingency table. Contingency tables are routinely
analyzed with �2 statistical approaches, and thus we developed
PLSCA in such a �2 framework.

First, compute the vectors of the proportional column sums for
X and Y, and call these vectors masses:

mX � �1TX1��1 � �1TX� and mY � �1TY1��1 � �1TY� (8)

(with 1 being a conformable vector of ones).
In PLSCA, each level of a variable is weighted according to the

information it provides. Assuming that rare occurrences are more
informative than frequent occurrences, these weights are computed
as the inverse of the relative frequencies (masses) and stored in
diagonal matrices computed as

WX � diag{mX}�1 and WY � diag{mY}�1. (9)

As in PLSC, the disjunctive data matrices X and Y are, in
general, preprocessed to have zero mean and unitary norm. Here,
centered and normalized matrices are denoted ZX and ZY, and with
NX and NY denoting the number of (original) variables (i.e., before
disjunctive coding) for X and Y, respectively, matrices ZX and ZY

are computed as

ZX � �X – �1�1TX � I�1��� � �NXI
1
2��1

(10)

and

ZY � �Y – �1�1TY � I�1��� � �NYI
1
2��1

. (11)

From here, we compute ZR as

ZR � ZX
TZY. (12)

Then we decompose ZR with the generalized SVD (GSVD; see
Appendix B) as

ZR � U�VT with UTWXU � I � VTWYV. (13)

Similarly to PLSC, the latent variables are computed as
weighted projections on the left and right singular vectors:

LX � ZXWXU and LY � ZYWYV, (14)

where—by analogy with PLSC—WXU and WYV are called sa-
liences. PLSCA performs a maximization similar PLSC, namely,
that the first pair of latent variables have maximum covariance
evaluated just as in Equation 4, except under the constraints that u
and v each have unit WX-norm and WY-norm, respectively:

ul
TWXul � 1 � vl

TWYvl. (15)

Just like with PLSC, after the first pair of latent variables has
been extracted, subsequent pairs are extracted under the additional
condition that unpaired sets of latent variables are orthogonal (as
defined in Equation 6). The coefficients of the successive linear
transformations (stored in matrices LX and LY) are obtained from
the GSVD of ZR:

LX
TLY � UTWXZX

TZYWYV � UTWXZRWYV

� UTWXU�VTWYV � �. (16)

When l � 1, the covariance between LX and LY has the largest
possible value, when l � 2, the covariance between LX and LY has
the largest possible value under the constraints that the second pair
of latent variables is orthogonal to the first pair of latent variables,
and therefore,

diag�LX
TLY� � diag{�}. (17)

Links to CA

PLSCA can be seen as a generalization of PLSC for two
categorical data tables, but also as an extension of CA (Abdi &
Williams, 2010a; Greenacre, 1984; Lebart et al., 1984). CA, in
turn, is often presented as a generalization of PCA to be used for
qualitative data. PCA decomposes the total variance of a quanti-
tative data table, whereas CA—as a generalized PCA—decom-
poses the �2 of a data table because this statistic is analogous to the
variance of a contingency table. First, CA computes R (a contin-
gency table) as

R � XTY. (18)

Next, CA computes two matrices related to R, referred to in the
�2 framework as observed (OR) and expected (ER). The observed
matrix is computed as

OR � R � (1TR1)�1, (19)

and the computation of expected values of R (under independence)
comes from the marginal frequencies of R (which are also the
masses—and relative frequencies of the columns—of X and Y;
see Equation 8):

ER � mXmY
T . (20)

Next, just as when computing the �2, we compute the deviations

ZR � OR � ER, (21)

a formula which is equivalent to Equation 12, and thus ZR can be
decomposed according to Equation 13. In CA, the component
scores for the rows and the columns of a matrix (the J and K
elements of R) are computed as

FJ � WXU� and FK � WYV�. (22)

Like in CA and PCA, several additional indices can be computed
from the component scores. These indices are called contributions,
direction cosines, and squared distances. Each of the indices provide
additional information on how variables, from each variable set (J and
K variables), contribute to the structure of the components (for more
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information, see Lebart et al., 1984; Greenacre, 1984; Abdi & Wil-
liams, 2010a; Beaton et al., 2014).

Component scores for the I observations of both X and Y can be
computed via supplementary projections. The component scores
for observations of X and Y are projected as supplementary
elements by projecting them onto their respective singular vectors.
Specifically, the first step computes X observed and Y observed
(cf. Equation 19):

OX � X � (1TX1)�1 and OY � Y � (1TY1)�1, (23)

then OX and OY are projected as supplementary elements:

FX � OXFJ�
�1 � OXWXU���1 � OXWXU, (24)

FY � OYFK��1 � OYWYV���1 � OYWYV. (25)

Finally, we compute the latent variables—which are propor-
tional to the supplementary projections obtained by rescaling the
component scores (in Equations 24 and 25):

LX � FX � I
1
2 and LY � FY � I

1
2 . (26)

Equivalently, the latent variables could be directly computed as

LX � ZXFJ�
�1 � ZXWXU and LY � ZYFK��1 � ZYWYV. (27)

Thus, in conclusion—as the name partial least squares corres-
pondence analysis indicates—the computations and rationale of
the technique can be interpreted either as a generalization of PLSC
or an extension of CA.

Nonparametric Inference in PLSCA

PLSCA by itself is a multivariate descriptive (i.e., fixed-effect)
technique. However, its results can be complemented by a variety
of inference tests. These tests are computed from nonparametric
resampling methods such as permutation and bootstrap resam-
pling. Resampling methods generate a large number (e.g., thou-
sands) of new data sets to derive the distributions of various
statistics. The observed statistics are then compared against their
resampling based distributions to determine if the observed effects
are “significant.”

Permutation Tests

The permutation approach creates new samples by permuting
the original data according to the null hypothesis to evaluate
(Berry, Johnston, & Mielke, 2011). When all possible permuta-
tions are computed, this procedure creates an exact test for the null
hypothesis (when only a random sample of permutations is used,
the permutation test is asymptotically exact). In PLSCA, observa-
tions from X are reordered, whereas Y remains static. That is, a
(random) permutation breaks the relationship between the two sets.
Several tests can be performed with permutation resampling.

Omnibus. The original �2 value of the entire table (R) is
tested against a generated set of �2 values generated from permu-
tations. To note, the sum of all the cells the contingency table R
multiplied by the sum of the eigenvalues (called the “inertia”) from
CA is equal to the �2 computed directly from the contingency
table. As a result, an alternate test could simply use the sum of the

eigenvalues. A rare value of the observed �2 or total inertia (i.e., it
is among the � largest values) of the permuted samples indicates
a significant omnibus effect.

Components. In SVD-based techniques, it is often difficult to
identify the components to interpret (Raîche, Walls, Magis, Rio-
pel, & Blais, 2013), especially because large data sets generate
large numbers of components. Permutation resampling can also be
used to identify the stable components from PLSCA. While there
are numerous methods of testing components (Malinvaud, 1987;
Peres-Neto, Jackson, & Somers, 2005; Saporta, 2011), we use a
simple, but conservative, method (see “lambda-test” in Peres-Neto
et al., 2005). PLSCA is computed, in full, on each permuted
version of R (Equation 13) to generate distributions of singular
values for each component.

Bootstrap

The bootstrap is a resampling with replacement technique
(Chernick, 2008; Efron & Tibshirani, 1993). In PLSCA, observa-
tions are assumed to represent a population of interest. New
samples are generated by resampling (observations) with replace-
ment from the original sample (i.e., the rows of both X and Y are
resampled with the same resampling scheme). The distribution of
the statistics computed from bootstrap resampling is a maximum
likelihood estimation of the distribution of the statistic of interest
(for the population of the observations). In addition, the bootstrap
can be stratified to resample within a priori groups (e.g., Alzhei-
mer’s, mild cognitive impairment, control). The bootstrap is used
to derive two different types of inferential statistics: bootstrap
ratios (BSRs) and confidence intervals.

BSR tests. BSRs come from the neuroimaging literature
(McIntosh & Lobaugh, 2004) but are related to other tests based on
the bootstrap (see Hesterberg, 2011, for “interval-t”) or on asymp-
totic theory (see Lebart et al., 1984, for “test-value”). The BSR test
is a t-like statistic computed by dividing the bootstrap computed
mean of a measure by its bootstrap derived standard deviation. Just
as for the usual t statistic, a value of 2 would (roughly) correspond
to significance level of � � .05, that is, P (|t| 	 2) � .05, and can
be considered as a critical value for a single null-hypothesis test.
Corrections for multiple comparisons (e.g., Bonferroni) can be
implemented when performing a large number of tests simply by
increasing the BSR threshold to correspond to a particular � value,
that is, P (|t| 	 3) � .0013 or P(|t| 	 4) � 3.17 � 10�5).

Confidence intervals. Confidence intervals are created from
percentile cutoffs of the bootstrap distributions. Confidence inter-
vals are generated for anything with component scores except
observations (because the observations are the units for resam-
pling). Confidence intervals can be created for each measure (just
like the BSR) or around groups of participants (e.g., Alzheimer’s
group, mildly cognitive impaired group, control group). Confi-
dence intervals can be displayed on component maps as peeled
convex hulls (Greenacre, 2007) or as ellipsoids (Abdi, Dunlop, &
Williams, 2009). When the confidence intervals of two measures
or groups do not overlap, these measures or groups are signifi-
cantly different at the chosen level (Abdi et al., 2009).

Interpreting PLSCA and Its Extensions

Here, we illustrate PLSCA—and its extensions—with subsets
of data from clinical, neuroimaging, and genome-wide data
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from the ADNI (Phase 1 data). First, we describe the ADNI
project and the data used in this article. Next, we describe how
PLSCA can be tailored for various experimental designs and
research questions, as well as different data structures and even
different data types.

We chose a very specific subset of the ADNI data to illustrate
PLSCA for two reasons. First, the ADNI data set is available to
qualified researchers, and thus what we present via PLSCA can be
easily replicated. Second, the ADNI data are well studied and this
allows us to highlight how PLSCA provides more insight from
previous studies using the ADNI data.

ADNI and Data

Data used in the preparation of this article come from Phase 1 of
the ADNI database (adni.loni.usc.edu). ADNI was launched in
2003 as a public–private funding partnership and includes public
funding by the National Institute on Aging, the National Institute
of Biomedical Imaging and Bioengineering, and the Food and
Drug Administration. The primary goal of ADNI has been to test
a wide variety of measures to assess the progression of mild
cognitive impairment and early Alzheimer’s disease. The ADNI
project is the result of efforts of many coinvestigators from a broad
range of academic institutions and private corporations. Michael
W. Weiner (VA Medical Center, and University of California–San
Francisco) is the ADNI Principal Investigator. Subjects have been
recruited from over 50 sites across the United States and Canada
(for up-to-date information, see www.adni-info.org).

For this article, we used several types of data from the ADNI
project. First, we extracted the diagnostic criteria (i.e., clinical
classification) of individuals: Alzheimer’s Disease, mild cognitive
impairment, or control. To note, we refer to our specific participant
groups as the abbreviations AD (Alzheimer’s disease), MCI (mild
cognitive impairment), and CON (control). For example, “AD”
refers to the Alzhiemer’s disease group in this article, while
“Alzheimer’s disease” refers to the disease itself. We also ex-
tracted volumetric (mm3) brain data (collected at baseline) from
the following regions: ventricles, hippocampus, entorhinal, fusi-
form, and medial temporal. Volumetric brain data and diagnostic
information were extracted from the R package ADNIMERGE.

Next, we extracted three behavioral measures that are widely
used in Alzheimer’s research and clinical assessment: the Mini-
Mental State Exam (MMSE), the Clinical Dementia Rating
(CDR), and the Geriatric Depression Scale (GDS). The MMSE is
a brief measure designed to capture aspects such as memory,
attention, and orientation (time, place). The CDR assesses behav-
ioral aspects of dementia. The GDS is an assessment of depression
for older populations.

Finally, we extracted a specific subset of candidate SNPs from
the ADNI genome-wide association data. According to the litera-
ture, these SNPs are strongly linked to various behavioral, neuro-
logical, and physiological aspects of Alzheimer’s disease and
dementia. We refer to this approach of selecting SNPs a priori as
a “candidate GWAS,” as it can be seen as a compromise between
genome-wide association and candidate gene studies. The general
goal of our “candidate GWAS” is to determine whether SNPs (and
genes) routinely associated with Alzheimer’s disease are also
associated with some of the diagnostic criteria used for Alzhei-

mer’s disease. All data and the ADNIMERGE package can be
acquired from the ADNI project database.

Data Preprocessing

ADNI Phase 1 data (for this study) included 757 total subjects
from three groups: AD (n � 337), MCI (n � 210), and CON (n �
210). Individuals were only used in these analyses if they had
mostly complete data (i.e., �90%). Any missing datum (e.g., a
SNP) was imputed to the mean of the entire sample. Behavioral,
diagnostic, and genetic (i.e., SNP) data were recoded into disjunc-
tive format (see Table 2). Volumetric brain data were transformed
into Z scores before further processing (see Table 4).

The ADNI’s genome-wide data set comprises 620,901 SNPs.
ADNI’s clinical data include separate genotyping for ApoE (see
ADNI’s clinical data). Because ApoE status is defined by two
SNPs (rs429358 and rs7412), we can account for these SNP
genotypes in the genome-wide data: Thus, we obtain a total of
620,903 SNPs. PLINK was used for genome-wide data prepro-
cessing (Purcell et al., 2007). We used the following quality
control (QC) criteria: Participant and SNP call rates (i.e., com-
pleteness of data) �90%, minor allele frequency �5%, Hardy-
Weinberg equilibrium3 p � 10�6, in addition to gender and
relation checks. SNP-based QC criteria were computed from the
CON subjects. After QC, 756 participants (AD � 336, MCI �
210, CON � 210) and 531,339 SNPs remained.

From the genome-wide preprocessed data, we selected, for the
studies of this article, 145 candidate SNPs because these
SNPs—or their associated genes—are well-established candidates
(e.g., ApoE) or have recently been implicated in Alzheimer’s
disease and related conditions. These SNPs have been reported in
Hollingworth et al. (2011), Kauwe et al. (2008), Potkin et al.
(2009), Shen et al. (2010), and Wijsman et al. (2011), or from an
aggregate source: AlzGene (www.alzgene.org; Bertram, Mc-
Queen, Mullin, Blacker, & Tanzi, 2007). Two studies from this list
(i.e., Potkin et al., 2009, and Shen et al., 2010) were also conducted
on earlier versions of the ADNI data set.

Studies

We present five studies that illustrate PLSCA and its four
different extensions. In general, these extensions map to some of
the current variants of PLSC (Krishnan et al., 2011; McIntosh et
al., 1996; McIntosh & Lobaugh, 2004), which often aim to simul-
taneously analyze neuroimaging and behavioral (or experimental
design) related data.

We use “simple” PLSCA (as defined in PLS for Categorical Data)
to illustrate the relationship between two categorical data sets: genetic
(SNPs) and behavioral (MMSE, CDR, and GDS). Each extension of
PLSCA is tailored to a particular problem of data type, data structure,
or experimental design. The first extension solves the issue of data
structured in blocks (i.e., MMSE, CDR, and GDS are separate
“blocks” of variables within the set of behavioral data). Next, we
define a discriminant version of PLSCA, called “mean-centered”
PLSCA, which maximally distinguishes data based on a grouping

3 This is a test of the Hardy-Weinberg principle, which states that allele
frequencies follow a very particular probability distribution to be consid-
ered in “equilibrium.” This statistical hypothesis is tested via �2.
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variable (i.e., the three clinical groups). Similarly, we define “seed”
PLSCA as a method to specifically to maximize the interrelationships
within a particular set of categorical data—for example, we want to
identify novel candidate SNPs from well-established candidate mark-
ers such as ApoE). Finally, we define a particularly useful version of
PLSCA: “Mixed-data” PLSCA, which can analyze the relationship
between one categorical data set (i.e., SNPs) and one quantitative
(continuous, interval scale) data set (i.e., volumetric data from brain
imaging).

Simple PLSCA

Simple PLSCA was used to analyze the relationship between the
behavioral data set and the SNP data set. A permutation test indicates
that the omnibus effect was significant (�omnibus

2 � 23150.41, pperm 

.001). For the components, only Components 1 and 3 (out of 68)
reached significance (30.85%, pperm 
 .001, and 6.25%, pperm �
.017, respectively), and were therefore kept for the analysis. Compo-
nents 1 and 3 are presented in PLSC style (with normalized saliences
as bar plots) in Figure 1 and CA style (with normalized saliences on
component maps) in Figure 2. As a noteworthy feature, PLSCA
provides information for each level of all variables. This can be seen
with the contrast of, for example, “correct” versus “incorrect” results
on the MMSE (see Figures 2a and 2b; horizontal axis). Likewise, the
SNPs are coded in the same fashion, and provide information per
genotype.

Component 1. With PLSCA, it is often easier to begin interpre-
tation with the behavioral results, as they provide context for the
genetics results. Component 1 (Figure 1a, Figure 2a, and Figure 2b,
horizontal axis) shows a contrast for the MMSE and the CDR. On the
left side, component scores for MMSE items are associated with
“incorrect” responses and CDR items range from “moderate” to
“severe” (dementia); therefore, any genetic markers on the left side

(Figure 1c, Figure 2c, and Figure 2d) are more associated with deficits
on the MMSE and dementia than any other behaviors.

The left side of Component 1 includes two very notable markers:
the heterozygote and minor homozygote of rs429358 (a SNP used to
assign the genotype for ApoE). We also see the minor homozygotes
of rs7910977 and rs7526034, which have been associated, respec-
tively, with �-amyloid degradation (Kauwe et al., 2008) and structural
changes in brain regions in Alzheimer’s disease (Shen et al., 2010).

Additionally, PLSCA shows that the heterozygote of rs2075650
and the major homozygote of rs157580 are also on the left side of
Component 1, and therefore are also associated with dementia and
deficits on the MMSE. Both rs2075650 and rs157580 are associated
with the TOMM40 gene—a gene strongly linked to ApoE—and have
been associated with Alzheimer’s disease in previous studies (Potkin
et al., 2009; Roses et al., 2010; Shen et al., 2010). However, this
conclusion runs counter to expectations because it suggests that the
genetic contributions to pathological behaviors are not strictly because
of standard “risk” (i.e., minor) alleles. Such a conclusion could be missed
in a standard analysis using “additive coding” (see Table 2), but becomes
explicit with a disjunctive coding scheme.

In contrast to the left side of Component 1, the right side of
Component 1 is associated with “healthy” responses on the MMSE
and CDR. This level of detail is advantageous because we can identify
possibly protective genetic markers. Some of the alleles with the
strongest effects are the heterozygote of rs157580 and the major
homozygote of rs2075650 (TOMM40), as well as the major homozy-
gote of rs429358 (ApoE). We can conclude that Component 1 is a
“pathological versus healthy” dimension, and thus we can associate
specific genotypes of SNPs (as opposed to entire SNPs) with patho-
logical or healthy features.

Component 3. In general, the GDS items contribute a sub-
stantial amount of variance to the top side of Component 3 (see

Table 4
Schematic of Escofier-Style Transformation

x1 x2

Continuous data
Subject 1 x1,1 x1,2

Subject 2 x2,1 x2,2

Subject i xi,1 xi,2

Subject I xI,1 xI,2

x1 x2

� � � �

Escofier-style transform

Subject 1
1�x1,1

2

1	x1,1

2

1�x1,2

2

1	x1,2

2

Subject 2
1�x2,1

2

1	x2,1

2

1�x2,2

2

1	x2,2

2

Subject i
1�xi,1

2

1	xi,1

2

1�xi,2

2

1	xi,2

2

Subject I
1�xl,1

2

1	xl,1

2

1�xl,2

2

1	xl,2

2

Note. Example of the Escofier-style coding of continuous data. This transform is used to perform principal
components analysis of continuous data via correspondence analysis. xj denotes the jth vector from a Matrix X,
where xi,j denotes a specific values at row i and column j.
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Figure 1b and Figure 2a and b). All of these items are associated
with geriatric depression (e.g., Q: “Are you basically satisfied
with your life?” A: “No”; Q: “Do you feel that your life is
empty?” A: “Yes”). Therefore, Component 3 can be described

as a “depression” dimension. This component, therefore, sug-
gests that some genes may contribute to geriatric depression and
that this effect can be seen in early stages of cognitive decline
(e.g., in MCI). For example, the pattern displayed by the SNPs
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Figure 1. Data presented as saliences, per component, as in partial least squares correlation. Top (a, b) figures show
the behavioral data on Components 1 and 3. Bottom (c, d) show the SNPs data on Components 1 and 3. The longer
the bar associated with an item, the more variance the item contributes to the respective component. SNP � single
nucleotide polymorphism; BEH � behavioral data. See the online article for the color version of this figure.
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Figure 2. Component maps presented as in correspondence analysis. Top and bottom rows are the same figure
without and with labels (for the items), respectively. Top (a, b): Behavioral measures for Components 1 and 3.
Bottom (c, d): SNPs data on Components 1 and 3. Top-row maps have no labels on the behavioral and SNP
markers. Instead, a legend is provided to indicate which measures they are (BEH � behavioral; a, b) or the
selected source material (SNPs � genetic data; c, d). SNPs labeled as “2� papers” are referred to in at least two
of the sources cited for the selected SNPs. Bottom-row maps have labels for each item in the analysis. The further
from the origin an item is, the more variance it contributes to the visualized components. PLSCA � partial least
squares correspondence analysis; SNP � single nucleotide polymorphism; BEH � behavioral data; MMSE �
Mini-mental state exam; CDR � Clinical dementia rating; GDS � geriatric depression scale. See the online
article for the color version of this figure.
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(Figure 1d, Figure 2b, and Figure 2d) reveals a strong effect of
the minor allele of rs11525066, which has been previously
associated with hippocampal atrophy (Potkin et al., 2009).

Bootstrap. BSRs can be used to identify important (e.g.,
“significant”) variables, and can be graphically represented on
component maps (see Figure 3) or as bar plots (see Figure 4).
Many of the significant behavioral variables for Component 1
correspond to either incorrect responses on the MMSE, or
“moderate” to “severe” responses on the CDR (Figure 4a). The
complete list of SNPs associated with either pathological (left
side of Component 1) or beneficial (right side of Component 1)
behaviors can be found in Supplemental Materials (Table S1).
Component 3 seems to oppose depression with mild impairment
(top of Component 3) to depression with severe impairment
(bottom of Component 3). The complete list of genetic markers
associated with depression versus impairment can be found in
Table S1 of the online supplemental materials.

Latent variables and participants. In PLSCA, just as in
PLSC, observations can be represented by the values of their
latent variables (see Equations 14, 26, and 27), and this pro-
vides maps in which the coordinates for one observation are its
values of the latent variables for X and Y (see Figure 5 for
PLSC style, and Figure 6 for CA style). These maps can
be interpreted as scatterplots and the dispersion of the obser-
vations reflects their relationship (a perfect relationship will
show the observations positioned on a line). Groups of obser-
vations can also be represented in these maps by averaging the
component scores of the observations in a group and bootstrap
resampling can provide confidence intervals for these groups
(see Figure 5b and d). Figure 5 indicates a clear distinction of
individuals within groups for behavior versus genetics on Com-
ponent 1. Furthermore, the groups are significantly different
from one another because their confidence intervals do not
overlap (Figure 5b). Component 1 reflects a continuum for the
groups: from CON to MCI to AD. These results indicate that
there are specific behavioral and genetic signatures for each
group. Component 3 (see Figure 5 and Figure 6a) appears to
show individual (as opposed to group) effects of geriatric
depression.

Multiblock PLSCA

Multiblock PLSCA is a simple extension of PLSCA that in-
cludes multiblock projections (Abdi, Williams, Beaton, et al.,
2012; Abdi, Williams & Valentin, 2013; Krishnan et al., 2011).
Often, the variables of these data sets are structured into related,
but distinct, blocks (also called tables or subtables). In our exam-
ple, the MMSE, CDR, and GDS are all distinct blocks of variables
within the behavioral data set. It is worth noting that genome-wide
data have several possible block structures (e.g., genes, haplotypes,
and chromosomes). Multiblock PLSCA can be used to answer the
following question: How does each behavioral measure uniquely
contribute to the results?

The goal of multiblock PLSCA is to provide both an overall and
a “block” point of view of the participants’ latent variable scores.
In general, the data are structured as

ZX � [ZX1
, . . . , ZXb

, . . . , ZXB
] (28)

where the columns of X (and subsequently ZX) are partitioned into

blocks. This block structure propagates to the rows of the matrix
ZR and to its GSVD (cf. Equation 13):

ZR � [U1, . . . , Ub, . . . , UB]�VT. (29)

The partition of U into blocks also propagates to the latent
variables of X (see Equation 14):

LXb
� ZXb

WXb
Ub. (30)

Multiblock analyses were conducted within the same analysis
as “simple” PLSCA. Figure 7 shows the participants’ latent
variable scores, separately, for the MMSE (Figure 7a), the CDR
(Figure 7b), and the GDS (Figure 7c). The multiblock projec-
tion shows that the CDR and MMSE—as indicated before—
constitute strong sources of variance for Component 1 (Figure
7a and b). Finally, with the multiblock projections, the inter-
pretation of Component 3 becomes clearer. The upper part of
Component 3 is associated with strong features of depression
(Figure 7c), whereas the lower part is associated with severe
dementia (Figure 7b).

Mean-Centered PLSCA
Mean-centered PLSCA is a simple form of PLSCA also known as

barycentric discriminant correspondence analysis (DiCA; Abdi,
2007a; William, Abdi, French, & Orange, 2010). The goal of mean-
centered PLSCA to maximize the separation between a set of a priori
defined groups. Alternatively, this can be thought of as finding the
best set of variables that can be used to assign observations to a priori
defined groups. In mean-centered PLSCA, a disjunctive design matrix
for the a priori groups is X and the disjunctive data matrix (e.g., SNPs)
is Y. Mean-centered PLSCA maximizes the separation between
groups, and thus detects which SNPs patterns (because of participant
groups) can be used to assign individual participants to clinical groups
(i.e., CON, MCI, and AD).

In mean-centered PLSCA, the omnibus test is significant (�2 �
785.60, pperm 
 .001). Because we have three groups, we have only
two components: Component 1 explains 67% of the variance and is
significant (pperm 
 .001), whereas Component 2 explains 33% of the
variance but is not significant (pperm � .521). Figure 8a shows the
groups (large dots) and individuals (small dots), and suggests a
separation of all groups. Figure 8b shows the bootstrap confi-
dence intervals around the groups. None of the intervals over-
lap; thus, all groups significantly differ from each other.

The genotypes closest to CON are more associated with this group
than with any of the other groups. In Figure 8c, only significant SNPs
(according to their BSR) are colored. In the lower part of the map
in Figure 8c, we see the minor homozygote of rs12610605,
which has been previously linked to Alzheimer’s disease (Hol-
lingworth et al., 2011). However, mean-centered PLSCA shows
that the minor homozygote of rs12610605 is much more asso-
ciated with the MCI group than with any other group. Further-
more, we highlight a particular effect in Figure 8d, with two
TOMM40 SNPs (rs157580, rs2075650) and one ApoE SNP
(rs429358). Both the rs2075650 and rs429358 show a similar
structure: an effect from left (major homozygote) to right (mi-
nor homozygote) that is somewhere between a linear and a
multiplicative effect on Component 1. However, rs157580 ap-
pears to show a different inheritance pattern—a dominance
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effect—and in the opposite direction of both rs2075650 and
rs429358: The minor homozygote and heterozygote of
rs157580 are positioned closely to the major homozygotes of
rs2075650 and rs429358 on Component 1. This finding high-
lights how PLSCA—with categorical coding—detects a variety
of effects (without the need to explicitly model each of them).
The effects observed on Component 1 could suggest a complex
haplotype of the ApoE and TOMM40 SNPs that better de-
scribes AD risk than any single genotype.

Thus, mean-centered PLSCA indicates that (a) the genotypes
on the right side of Component 1 are more associated with AD
than with any other group, (b) the genotypes on the bottom of
Component 2 are more associated with MCI than with any other
group, and arguably the most important aspect, (c) the geno-
types on the left of Component 1 are more associated with the
CON group than with any other group. This level of detail can
only be obtained from PLSCA and disjunctive coding. A com-
plete set of significant SNP markers—for mean-centered

Component 1 Constrained Bootstrap Test: Behavioral Data
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Component 1 Constrained Bootstrap Test: Allelic Data
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Figure 3. Only items with a bootstrap ratio with a magnitude greater than 2 are plotted. Behavioral markers
are displayed in the top figures (a, b), and genetic data are displayed in the bottom figures (c, d). Items close to
each other are highly correlated; items on the opposing sides of the map are negatively correlated. See the online
article for the color version of this figure.
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PLSCA results—is provided in Table S2 of the online supple-
mental materials.

Seed PLSCA

The term seed partial least squares is commonly used in func-
tional brain connectivity analyses (McIntosh, Nyberg, Bookstein,
& Tulving, 1997). In a “seed” analysis, there is only one data set,

but a specific portion of that data set is extracted and treated as a
second data set (i.e., a seed). In this case, the SNPs are still referred
to as Y and can also be thought of as having a block structure (as
in Equation 28):

Y � [Y1, . . . , Ys, . . . , YS] (31)

where Ys denotes one SNP in disjunctive coding (see Table 2).
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Figure 4. Top row (a, b): Behavioral markers are plotted on the bar graph as a function of their bootstrap ratio
(BSR) value. Bottom row (c, d): SNPs are plotted on the bar graph as a function of their BSR value. In all figures,
the longer the bar of an item, the bigger the (absolute value) BSR of this item. The dashed gray lines indicate
the threshold for significance (i.e., �2 and �2). Gray items did not reach the level for significance. SNP � single
nucleotide polymorphism; BEH � behavioral data. See the online article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

14 BEATON ET AL.



From Y, a particular set of SNPs are selected as “seeds” and
removed from that matrix. The remaining SNPs are left in Y. If,
for example, the first two SNPs are “seeds,” X and Y
become

X � [Y1, Y2] (32)

Y � [Y3, Y4, Y5, . . . , Ys, . . . , YS]. (33)
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Figure 5. Partial least squares correlation (PLSC)-style latent variables. In PLSC, it is common to project the
latent variables of one data set (e.g., behavior) against the latent variables of the other set (e.g., SNPs). The top
(a, b) show the latent vectors for behavioral and SNP data for Component 1. The bottom (c, d) show the latent
vectors for behavioral and SNP data for Component 3. SNP � single nucleotide polymorphism; BEH �
behavioral data; AD � Alzheimer’s Disease group; MCI � mild cognitive impairment group; CON � control
group. See the online article for the color version of this figure.
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The seed approach reveals similarity (and dissimilarity) of
genotypes across SNPs. Seed PLSCA is a useful approach to
find novel candidate markers. Seed PLSCA can be used to
reveal which genotypes are most similar to “candidate” geno-
types (e.g., SNP or gene alleles). This example uses rs429358
(APOE) and rs2075650 (TOMM40) as “seeds.”

Seed PLSCA benefits from using an “asymmetric” visualiza-
tion, in which the component scores of the “seed set” (i.e., X) are
(cf. Equation 22) computed as

FX � WXU, (34)

because the weighted saliences define a simplex, which gives

Behavioral 1 vs Behavioral 3
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Figure 6. Plots of latent variables in the style of correspondence analysis (CA). In CA, it is more common to
represent the latent variables of one data set (e.g., behavior) together. AD � Alzheimer’s disease group; MCI �
mild cognitive impairment group; CON � control group. See the online article for the color version of this
figure.
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the boundary of the component space (see Abdi & Béra, 2014,
Abdi & Williams, 2010b, and Greenacre, 1984, 2007, for more
details). Asymmetric visualization could be used for any form
of PLSCA in which one data set is “privileged” over the other.
In seed PLSC, we use the asymmetric visualization for the seed
SNPs. Thus, in seed PLSCA genotypes across sets that are close
to one another co-occur frequently, genotypes that are in the

exact same position co-occur precisely with one another, and
genotypes that are far apart co-occur infrequently or in oppo-
sition.

Figure 9a shows the plot of the first two components of seed
PLSCA. Components 1 and 2 explain, respectively, 72% and
20% of the total variance. Note that the heterozygotes (upper
left of Figure 9a) and minor homozygotes (lower left of Figure
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Figure 7. Multiblock projection of each of the behaviors from partial least squares correspondence analysis:
Mini-Mental State Exam (MMSE) (a), Clinical Dementia Rating (CDR) (b), and Geriatric Depression Scale
(GDS) (c). AD � Alzheimer’s disease group; MCI � mild cognitive impairment group; CON � control group.
See the online article for the color version of this figure.
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9a) of rs429358 and rs2075650 are distant from nearly all other
genotypes. That is, the minor allele-based markers of the
“seeds” are not close to any other genotypes. Furthermore, the
major homozygotes of rs429358 and rs2075650 are very close
to other genotypes (lower right of Figure 9a). This indicates that

major homozygotes of these SNPs co-occur very frequently, or
exactly, with many other major homozygotes. Furthermore,
Figure 9b shows the latent variables, via the distribution of
participants with respect to their group. This figure shows that
AD is more associated with the minor alleles than the other
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Figure 8. (a) Individuals and groups. (b) Groups and 95% confidence intervals. Because the confidence intervals
do not overlap, all groups significantly differ from one another. (c) Component scores for the genotypes; only
significant genotypes are shown. (d) Genotypes (in generic AA, Aa, aa format) of one ApoE SNP (rs429358) and two
TOMM40 SNPs (rs157580, rs2075650). The distribution of SNP rs157580 is opposite to the distribution of the other
two SNPs. SNP � single nucleotide polymorphism; AD � Alzheimer’s disease group; MCI � mild cognitive
impairment group; CON � control group. See the online article for the color version of this figure.
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groups, whereas Figure 9c shows no real discernible pattern to
separate individuals.

The “seed” analysis suggests that although the major homozygotes
are highly similar to other major homozygotes, the heterozygotes and

minor homozygotes of rs429358 and rs2075650 express a relatively
unique pattern. This uniqueness suggests that there is no novel can-
didate from this set of SNPs to match the ApoE and TOMM40 minor
homozygotes and heterozygotes.

Component 1 variance: 72.319%
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Figure 9. Top left image (a) shows component scores (from seed partial least squares correspondence analysis,
with APOE and TOMM40 as seeds). The configuration of APOE and TOMM40 shows that they are relatively
unique, because of the unique component scores for their heterozygotes and minor homozygotes on the
component map. Bottom images (b, c) show the observations expressed as their latent variables scores. Bottom
left (b) are the latent variables with respect to the “seeds.” Because there are few possible combinations of these
two markers, there are only a few possible scores. The number of observations, per group, are expressed with
pie charts at each unique latent variable score. Latent scores for the seed set appear to show some effect of group,
in which the Alzheimer’s Disease (AD) group is most associated with the minor allele. Bottom right (c) shows
latent variable (LV) scores for the nonseed set. No discernible pattern exists for the individuals. MCI � mild
cognitive impairment group; CON � control group. See the online article for the color version of this figure.
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PLSCA With Heterogeneous Data
Though we present PLSCA as a method for two categorical

tables, PLSCA can be generalized to include continuous variables,
because with a simple preprocessing (i.e., coding) approach,
PLSCA can easily analyze mixtures of categorical and continuous
variables. Specifically, in 1979, Brigitte Escofier proposed such an
approach for analyzing mixtures of data with CA (Escofier, 1979),
and showed that a quantitative variable, noted x (i.e., a column
from X) that is centered and scaled (i.e., it has mean of zero and
norm one) can be used with CA if it is re-expressed as two

variables computed as 1�x
2 and 1	x

2 . Applying CA (following
Equations 19 to 22) to an “Escofier-transformed” matrix (of a
continuous data set; see Table 5) produces results identical to a
PCA of X because this table is analogous to a complete disjunctive
table (see Table 2).4

As in the previous examples, mixed-data PLSCA provides com-
ponent scores for each set of variables, and latent variable scores
for participants. However, one noticeable difference is that the
continuous data set component scores—here, volumetric data of
brain regions—are “duplicated” (also called “bipolar,” because
each variable is represented by two poles; see Greenacre, 1984,
2014), and are denoted with “�” and “–” (see Figure 10).

In this analysis, there was a significant omnibus effect (pperm 

.001), but only Component 1 was significant (pperm 
 .001).
Figure 10 shows the component maps for both the genotypes
(Figure 10a and b) and the brain regions (Figure 10c and d).
Significant genotypes are presented in Table S3 of the online
supplemental materials. In Figure 10, we can see that there are
particular genotypes associated with particular patterns of brain
region volumes. More specifically, Figures 10b and 10d suggest
that certain genotypes are associated with brain region volumes
above the grand mean (right side of Figure 10b, and Figure 10d)

but that other genotypes are associated with brain region values
below the grand mean (left side of Figure 10b, and Figure 10d).

In particular, Figure 11 shows that brain region volumes above
the grand mean (Figure 11a) are more associated with the CON
group (Figure 11b) than with other groups. Further, we see that
numerous major homozygotes—such as rs429358 (ApoE),
rs7647307, and rs2075650 —are more associated with brain
region volumes above the grand mean (Figure 11c). Interest-
ingly, however, some heterozygotes and minor homozygotes
are also associated with brain region volumes above the grand
mean. These include rs439401, rs667897, and rs337847. To
note, although these SNPs have been previously implicated in
Alzheimer’s disease, this implication has been almost exclu-
sively via the assumptions of an “additive” model in which,
typically, the minor alleles are assumed to be associated with
risk factors. For example, rs337847 has been associated with
hippocampal atrophy (Potkin et al., 2009). However, we show
that the minor homozygote of rs337847 is more related to brain
region volume above the grand mean than below the grand
mean, a pattern that suggests the major allele of rs337847 is
likely to be the risk factor.

Discussion

PLSCA was designed to address several challenges (e.g., the
categorical nature of SNPs, rare occurrences, multivariate analy-
sis) while simultaneously analyzing genetic data and data tradi-
tionally associated with the psychological, cognitive, and neuro-

4 To note, if there are two continuous data tables, X and Y, transformed
via Escofier’s approach, and PLSCA is applied to the cross product of the
transformed X and Y, the results are identical (within a scaling factor) to
standard PLSC.

Table 5
Example of Escofier-Style Transformation

Hippocampus Ventricles

(a) Example of continuous data
Subject 1 4,581 40,559
Subject 2 7,090 26,125
Subject i 5,732 57,383
Subject I 7,463 27,759

(b) Z scores of example
Subject 1 �1.239 .180
Subject 2 .662 �.818
Subject i �.367 1.343
Subject I .844 �.705

Hippocampus Ventricles

� � � �

(c) Escofier-style of example
Subject 1 1.1195 �.1195 .4100 .5900
Subject 2 .1690 .8310 .9090 .0910
Subject i .6835 .3165 �.1715 1.1715
Subject I .0280 .9720 .8525 .1475

Note. Example of “Escofier-style” coding with actual values. Here, (a) shows the volumetric data (in mm3) of
each region, where (b) shows the Z-score transformation of the data in (a). Part (c) shows the Escofier-style
transform of the “bipolar” values (above and below a mean) in (b).
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logical sciences. In the following sections, we highlight some of
the affordances PLSCA provides.

Findings Conclusions

The analyses we performed, with each extension of PLSCA,
added a unique perspective on the genetic contribution to Alzhei-
mer’s disease and associated traits. First, across several of our

analyses (e.g., simple PLSCA and mixed-data PLSCA), we have
shown that the additive risk model approach (e.g., emphasizing
minor alleles as the risk factor) may be an inappropriate assump-
tion to explain, for example, complex behaviors, traits, and diag-
noses. In several of our analyses, a number of major homozygotes
were associated with AD, MCI, and traits often associated with
those groups (such as memory and attention issues; Figures 3 and
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Figure 10. (a) Component map for Components 1 and 2 for all genotypes. (b) Component scores only for the
significant genotypes for Component 1 (via a bootstrap ratio test). (c) Component map on Components 1 and 2
for brain regions. Because only Component 1 was significant, the ventricles are denoted with gray circles. This
is because the ventricles do not significantly contribute to Component 1. Note that each region is duplicated, with
“Escofier” recoding. (d) A zoomed in version of the component map (as seen in c) provides a closer look at the
brain regions. MidTemp � Medial Temporal. See the online article for the color version of this figure.
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4). Furthermore, some minor homozygotes were associated with
CON participants and nonpathological—and arguably “healthy”—
traits (e.g., the minor homozygote of rs337847 is not associated
with smaller regional brain volume, but rather regional sizes above
the mean).

The results from both mean-centered and simple PLSCA sug-
gest that there are unique genetic signatures per group. First, this
provides a more distinct view of genetic risk factors for AD.
Further, our results suggest that there are particular genetic (and
behavioral) profiles of the CON and MCI groups as well. Given
these unique profiles, the genetic markers associated with the CON
group may suggest the existence of protective (against AD) genetic
factors.

However, we also show unique genetic and behavioral profiles
for the MCI group. This group is somewhat associated with be-
havioral measures of geriatric depression. Because mild cognitive
impairment is considered part of a pathological trajectory (Sper-
ling et al., 2011), this result is somewhat surprising. These findings
suggest that the MCI group is not a homogeneous group neces-
sarily on a path toward Alzheimer’s disease or other dementia.
Rather, the MCI group could consist of (at least) two undifferen-
tiable populations of individuals: (a) those on the path toward
further cognitive decline (Dotson, Beydoun, & Zonderman, 2010),
and (b) those who suffer from depression with specific incidents of
cognitive complaints or impairment (Richard et al., 2013).

Finally, we also show, via mixed-data PLSCA, that some geno-
types are more associated with brain region volumes above or below
the grand mean of the sample. However, we show that typical Alz-
heimer’s disease risk—atrophy or shrinkage of brain regions—is not
exclusively related to minor alleles. In fact, our results suggest that
there is a complex interaction between SNPs—in which some major
and some minor alleles contribute to protective or risk factors asso-
ciated with Alzheimer’s disease.

Methods Conclusions

One issue of growing interest is, simply, how to concurrently
analyze sets of behavioral and genetic variables. The joint analysis
of behavioral and genetic data could boost power to detect genetic
effects (Allison et al., 1998; Schifano et al., 2013; Seoane et al.,
2014). Additionally, these data are typically high-dimension (i.e.,
large number of variables) and low-sample-size (HDLSS). SVD
(and thus eigen) based techniques tend to be reliable under partic-
ular conditions in HDLSS (Chi, 2012; Jung & Marron, 2009), even
in GWAS (Duan et al., 2013). Thus, PLSCA is well suited for
multivariate analyses of behavioral and genetic data.

Further, because PLSCA is a multivariate technique, it also has
several other advantages over many currently used methods. Mul-
tivariate approaches are more beneficial than univariate ap-
proaches (Schmitz, Cherny, & Fulker, 1998), especially with re-
spect to multiple testing issues (Nyholt, 2004). Additionally,
PLSCA incorporates several nonparametric resampling methods
for inference tests. Resampling methods are particularly relevant
for data that are noisy or non-normal (Hesterberg, 2011), or when
conservative estimates should be made (Chernick, 2008), all of
which are conditions especially relevant in genetics (Gao, Becker,
Becker, Starmer, & Province, 2010).

In addition, PLSCA analyzes levels (genotypes) of SNPs, and
does so in a �2 framework (i.e., CA), which is already used in
many aspects of genetic analyses such as the (a) �2 tests of
association or Hardy-Weinberg disequilibrium, and (b) explicit
genotypic tests and the codominant model of inheritance. Further-
more, PLSCA generalizes PLSC, which has been shown to be
robust in association studies with high dimensional data (Grell-
mann et al., 2015).

Because of the features, properties, and categorical approach of
PLSCA, interpretation of specific allelic and genotypic effects

Ventricles
Hippocampus
Entorhinal
Fusiform
MidTemp

Latent Variable 1

SNPs LV1

B
ra

in
 R

eg
io

ns
 L

V
1

Control
AD
MCI

rs667897_G.Aa

rs677909_G.Aars536841_C.Aars541458_C.Aa
rs7941541_G.Aars3851179_A.Aa

rs157580_G.Aars157580_G.aars2075650_G.AA
rs439401_T.aa

rs10425074_G.Aa

rs7647307_G.AA

rs337847_G.aa

rs5984894_A.aa

rs429358_C.AA

rs677909_G.AArs536841_C.AArs541458_C.AA
rs7941541_G.AArs3851179_A.AA

rs6859_A.aars157580_G.AArs2075650_G.aars2075650_G.Aa

rs10425074_G.aa

rs10932886_A.AA
rs6463843_T.aars16912145_A.aa
rs7647307_G.aa

rs8079215_C.aa

rs5984894_A.Aa

rs429358_C.Aars429358_C.aa

cba

Figure 11. The left image (a) shows bootstrap ratios for the brain regions on Component 1. Note that, with the
“Escofier“ recoding scheme, each region is duplicated. The ventricles are gray because they do not significantly
contribute to Component 1. The gray lines indicate the threshold for significance (�2 and �2). The center image (b)
plots the latent variables (LV; participants) from each data set on map of the LVs projected against one another. Only
LV 1 is shown because only Component 1 is significant. The horizontal axis represents the SNPs and the vertical axis
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becomes more apparent. The more general approach (i.e., geno-
typic model coding) of PLSCA can be more advantageous than
relying on any one model or testing all possible models (and then
correcting for multiple tests), because if a particular inheritance
model is apparent, PLSCA will reveal it on a component-by-
component basis. For example, if we look at two of the analyses
presented here, “simple” PLSCA and “mixed-data” (a.k.a. “heter-
ogeneous”, or “mixed-modality”) PLSCA, we see evidence for
two different genetic models for how rs429358 (an ApoE SNP)
may contribute to different aspects of AD: (a) a linear additive
effect with respect to diagnostic criteria for Alzheimer’s disease
(Figure 2, horizontal axis), and (b) a dominance effect (presence of
a minor allele) with respect to volume of brain regions (Figure 10,
horizontal axis). Finally, because components from (within each
of) these analyses are orthogonal, they can be interpreted indepen-
dently. For example, in “seed” PLSCA (see Figure 9) we can see
that the “seeds” are roughly equidistant to the major homozygotes
and heterozygotes, and we see, again, the same pattern for the
heterozygotes and the minor homozygotes for both ApoE and
TOMM40 on the first component (Figure 9, horizontal axis).
However, the second component (Figure 9, vertical axis) shows a
contrast of the heterozygote to both the homozygotes. Components
configured in this way show two different genetic models of these
two SNPs (in ApoE and TOMM40) with respect to the other SNPs:
The first component implies a linear model, but the second com-
ponent implies a heterozygous effect. Overall, the inheritance of
ApoE and TOMM40 markers appears to be quite unique when
compared to other risk markers.

Because of the features of PLSCA, we have shown a much more
detailed perspective, within a limited set of SNPs, of the genetic
contributions to AD and associated behaviors. We were able to
associate very specific genotypic contributions—contrary to usual
risk assumptions—with standard and robust measures often used
in clinical and diagnostic settings for Alzheimer’s disease. The
level of detail that PLSCA provides could shed more light onto the
genetic contributions to complex traits and diseases, such as iden-
tifying possibly protective genetic markers. Future work includes
combining PLSCA with (a) regularization and sparsification tech-
niques, and (b) predictive and path-modeling approaches—to cre-
ate PLS-based regression and path-modeling approaches designed
for categorical data.
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Franić, S., Dolan, C. V., Borsboom, D., Hudziak, J. J., van Beijsterveldt, C. E.,

& Boomsma, D. I. (2013). Can genetics help psychometrics? Improving
dimensionality assessment through genetic factor modeling. Psychological
Methods, 18, 406–433. http://dx.doi.org/10.1037/a0032755

Frantz, A. C., Zachos, F. E., Kirschning, J., Cellina, S., Bertouille, S.,
Mamuris, Z., . . . Burke, T. (2013). Genetic evidence for introgression
between domestic pigs and wild boars (Sus scrofa) in Belgium and
Luxembourg: A comparative approach with multiple marker systems.
Biological Journal of the Linnaean Society, 110, 104–115. http://dx.doi
.org/10.1111/bij.12111

Gao, X., Becker, L. C., Becker, D. M., Starmer, J. D., & Province, M. A.
(2010). Avoiding the high Bonferroni penalty in genome-wide associa-
tion studies. Genetic Epidemiology, 34, 100–105.

Gasi, F., Kurtovic, M., Kalamujic, B., Pojskic, N., Grahic, J., Kaiser, C., &
Meland, M. (2013). Assessment of European pear (Pyrus communis l.)
genetic resources in Bosnia and Herzegovina using microsatellite mark-
ers. Scientia Horticulturae, 157, 74 – 83. http://dx.doi.org/10.1016/j
.scienta.2013.04.017

Genin, E., Hannequin, D., Wallon, D., Sleegers, K., Hiltunen, M., Com-
barros, O., . . . Campion, D. (2011). APOE and Alzheimer disease: A
major gene with semi-dominant inheritance. Molecular Psychiatry, 16,
903–907. http://dx.doi.org/10.1038/mp.2011.52

Greenacre, M. J. (1984). Theory and applications of correspondence
analysis. London, UK: Academic Press.

Greenacre, M. J. (2007). Correspondence analysis in practice. Boca Raton,
FL: CRC Press. http://dx.doi.org/10.1201/9781420011234

Greenacre, M. J. (2010). Correspondence analysis. Wiley Interdisciplinary
Reviews: Computational Statistics, 2, 613–619. http://dx.doi.org/10
.1002/wics.114

Greenacre, M. J. (2014). Data doubling and fuzzy coding. In J. Blasius &
M. Greenacre (Eds.), Visualization and verbalization of data (pp. 239–
270). Boca Raton: CRC Press.

Greenacre, M. J., & Degos, L. (1977). Correspondence analysis of HLA
gene frequency data from 124 population samples. American Journal of
Human Genetics, 29, 60–75.

Grellmann, C., Bitzer, S., Neumann, J., Westlye, L. T., Andreassen, O. A.,
Villringer, A., & Horstmann, A. (2015). Comparison of variants of
canonical correlation analysis and partial least squares for combined
analysis of MRI and genetic data. NeuroImage, 107, 289–310. http://dx
.doi.org/10.1016/j.neuroimage.2014.12.025

Hamidovic, A., Dlugos, A., Palmer, A. A., & de Wit, H. (2010). Polymor-
phisms in dopamine transporter (SLC6A3) are associated with stimulant
effects of D-amphetamine: An exploratory pharmacogenetic study using
healthy volunteers. Behavior Genetics, 40, 255–261. http://dx.doi.org/
10.1007/s10519-009-9331-7

Hesterberg, T. (2011). Bootstrap. Wiley Interdisciplinary Reviews: Com-
putational Statistics, 3, 497–526. http://dx.doi.org/10.1002/wics.182

Hollingworth, P., Harold, D., Sims, R., Gerrish, A., Lambert, J.-C., Car-
rasquillo, M. M., . . . EADI1 consortium. (2011). Common variants at
ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated
with Alzheimer’s disease. Nature Genetics, 43, 429–435. http://dx.doi
.org/10.1038/ng.803

Jolliffe, I. (2002). Principal component analysis. New York, NY: Springer-
Verlag.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

24 BEATON ET AL.



Jung, S., & Marron, J. S. (2009). PCA consistency in high dimension, low
sample size context. Annals of Statistics, 37, 4104–4130. http://dx.doi
.org/10.1214/09-AOS709

Kauwe, J. S. K., Cruchaga, C., Mayo, K., Fenoglio, C., Bertelsen, S.,
Nowotny, P., . . . Goate, A. M. (2008). Variation in MAPT is associated
with cerebrospinal fluid tau levels in the presence of amyloid-beta
deposition. PNAS Proceedings of the National Academy of Sciences of
the United States of America, 105, 8050–8054. http://dx.doi.org/10
.1073/pnas.0801227105

Kocovsky, P. M., Sullivan, T. J., Knight, C. T., & Stepien, C. A. (2013).
Genetic and morphometric differences demonstrate fine-scale popula-
tion substructure of the yellow perch Perca flavescens: Need for rede-
fined management units. Journal of Fish Biology, 82, 2015–2030. http://
dx.doi.org/10.1111/jfb.12129

Koopal, C., van der Graaf, Y., Asselbergs, F. W., Westerink, J., & Vis-
seren, F. L. (2014). Influence of APOE-2 genotype on the relation
between adiposity and plasma lipid levels in patients with vascular
disease. International Journal of Obesity (2005), 39, 265–269.

Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011). Partial least
squares (PLS) methods for neuroimaging: A tutorial and review. NeuroImage,
56, 455–475. http://dx.doi.org/10.1016/j.neuroimage.2010.07.034

Lakatos, A., Derbeneva, O., Younes, D., Keator, D., Bakken, T., Lvova,
M., . . . Alzheimer’s Disease Neuroimaging Initiative. (2010). Associ-
ation between mitochondrial DNA variations and Alzheimer’s disease in
the ADNI cohort. Neurobiology of Aging, 31, 1355–1363.

Lantieri, F., Glessner, J. T., Hakonarson, H., Elia, J., & Devoto, M. (2010).
Analysis of GWAS top hits in ADHD suggests association to two
polymorphisms located in genes expressed in the cerebellum. American
Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: The
Official Publication of the International Society of Psychiatric Genetics,
153B, 1127–1133.

Lebart, L., Morineau, A., & Warwick, K. M. (1984). Multivariate descrip-
tive statistical analysis: Correspondence analysis and related techniques
for large matrices. London, UK: Wiley.

Le Floch, E., Guillemot, V., Frouin, V., Pinel, P., Lalanne, C., Trinchera,
L., . . . Duchesnay, E. (2012). Significant correlation between a set of
genetic polymorphisms and a functional brain network revealed by
feature selection and sparse partial least squares. NeuroImage, 63, 11–
24. http://dx.doi.org/10.1016/j.neuroimage.2012.06.061

Lettre, G., Lange, C., & Hirschhorn, J. N. (2007). Genetic model testing
and statistical power in population-based association studies of quanti-
tative traits. Genetic Epidemiology, 31, 358–362. http://dx.doi.org/10
.1002/gepi.20217

Liu, J., Pearlson, G., Windemuth, A., Ruano, G., Perrone-Bizzozero, N. I., &
Calhoun, V. (2009). Combining fMRI and SNP data to investigate connec-
tions between brain function and genetics using parallel ICA. Human Brain
Mapping, 30, 241–255. http://dx.doi.org/10.1002/hbm.20508

Malinvaud, E. (1987). Data analysis in applied socio-economic statistics
with consideration of correspondence analysis. Paper presented at Mar-
keting Science Conference, Jouy-en-Josas, France, June, 1987.

McIntosh, A. R., Bookstein, F. L., Haxby, J. V., & Grady, C. L. (1996). Spatial
pattern analysis of functional brain images using partial least squares.
NeuroImage, 3, 143–157. http://dx.doi.org/10.1006/nimg.1996.0016

McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least squares analysis of
neuroimaging data: Applications and advances. NeuroImage, 23(Suppl.
1), S250–S263. http://dx.doi.org/10.1016/j.neuroimage.2004.07.020

McIntosh, A. R., Nyberg, L., Bookstein, F. L., & Tulving, E. (1997).
Differential functional connectivity of prefrontal and medial temporal
cortices during episodic memory retrieval. Human Brain Mapping, 5,
323–327. http://dx.doi.org/10.1002/(SICI)1097-0193(1997)5:4
323::
AID-HBM20	3.0.CO;2-D

Michaelson, J. J., Alberts, R., Schughart, K., & Beyer, A. (2010). Data-
driven assessment of eQTL mapping methods. BMC Genomics, 11, 502.
http://dx.doi.org/10.1186/1471-2164-11-502

Miyajima, F., Quinn, J. P., Horan, M., Pickles, A., Ollier, W. E., Pendleton, N.,
& Payton, A. (2008). Additive effect of BDNF and REST polymorphisms
is associated with improved general cognitive ability. Genes, Brain &
Behavior, 7, 714–719. http://dx.doi.org/10.1111/j.1601-183X.2008.00409.x

Moser, G., Tier, B., Crump, R. E., Khatkar, M. S., & Raadsma, H. W.
(2009). A comparison of five methods to predict genomic breeding
values of dairy bulls from genome-wide SNP markers. Genetics, Selec-
tion, Evolution, 41, 56. http://dx.doi.org/10.1186/1297-9686-41-56

Munafò, M. R., & Flint, J. (2011). Dissecting the genetic architecture of
human personality. Trends in Cognitive Sciences, 15, 395–400.

Nikolova, Y. S., Ferrell, R. E., Manuck, S. B., & Hariri, A. R. (2011).
Multilocus genetic profile for dopamine signaling predicts ventral stria-
tum reactivity. Neuropsychopharmacology: Official Publication of the
American College of Neuropsychopharmacology, 36, 1940–1947. http://
dx.doi.org/10.1038/npp.2011.82

Nyholt, D. R. (2004). A simple correction for multiple testing for single-
nucleotide polymorphisms in linkage disequilibrium with each other.
American Journal of Human Genetics, 74, 765–769. http://dx.doi.org/
10.1086/383251

Nyholt, D. R., Yu, C.-E., & Visscher, P. M. (2009). On Jim Watson’s
APOE status: Genetic information is hard to hide. European Journal of
Human Genetics, 17, 147–149. http://dx.doi.org/10.1038/ejhg.2008.198

Paige, C. C., & Saunders, M. A. (1981). Towards a generalized singular
value decomposition. SIAM Journal on Numerical Analysis, 18, 398–
405. http://dx.doi.org/10.1137/0718026

Park, M., Lee, J. W., & Kim, C. (2007). Correspondence analysis approach
for finding allele associations in population genetic study. Computa-
tional Statistics & Data Analysis, 51, 3145–3155. http://dx.doi.org/10
.1016/j.csda.2006.09.002

Peres-Neto, P. R., Jackson, D. A., & Somers, K. M. (2005). How many
principal components? stopping rules for determining the number of
non-trivial axes revisited. Computational Statistics & Data Analysis, 49,
974–997. http://dx.doi.org/10.1016/j.csda.2004.06.015

Potkin, S. G., Guffanti, G., Lakatos, A., Turner, J. A., Kruggel, F., Fallon,
J. H., . . . Alzheimer’s Disease Neuroimaging Initiative. (2009). Hip-
pocampal atrophy as a quantitative trait in a genome-wide association
study identifying novel susceptibility genes for Alzheimer’s disease.
PLoS ONE, 4(8), e6501. http://dx.doi.org/10.1371/journal.pone.0006501

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender,
D., . . . Sham, P. C. (2007). PLINK: A tool set for whole-genome association
and population-based linkage analyses. American Journal of Human Ge-
netics, 81, 559–575. http://dx.doi.org/10.1086/519795

Raîche, G., Walls, T. A., Magis, D., Riopel, M., & Blais, J.-G. (2013).
Non-graphical solutions for Cattell’s scree test. Methodology: European
Journal of Research Methods for the Behavioral and Social Sciences, 9,
23–29. http://dx.doi.org/10.1027/1614-2241/a000051

Richard, E., Reitz, C., Honig, L. H., Schupf, N., Tang, M. X., Manly, J. J.,
. . . Luchsinger, J. A. (2013). Late-life depression, mild cognitive
impairment, and dementia. Journal of the American Medical Association
Neurology, 70, 383–389. http://dx.doi.org/10.1001/jamaneurol.2013.603

Romanos, M., Freitag, C., Jacob, C., Craig, D. W., Dempfle, A., Nguyen,
T. T., . . . Lesch, K. P. (2008). Genome-wide linkage analysis of ADHD
using high-density SNP arrays: Novel loci at 5q13.1 and 14q12. Molec-
ular Psychiatry, 13, 522–530. http://dx.doi.org/10.1038/mp.2008.12

Roses, A. D., Lutz, M. W., Amrine-Madsen, H., Saunders, A. M., Cren-
shaw, D. G., Sundseth, S. S., . . . Reiman, E. M. (2010). A TOMM40
variable-length polymorphism predicts the age of late-onset Alzheimer’s
disease. The Pharmacogenomics Journal, 10, 375–384. http://dx.doi
.org/10.1038/tpj.2009.69

Sanford, E. C. (1908). Review of measurements of twins by Edward L.
Thorndike. The American Journal of Psychology, 19, 142–143.

Saporta, G. (2011). Probabilités, analyse des données et statistique [Prob-
ability, data analysis, and statistics]. Paris, France: Technip.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

25PLSCA FOR BEHAVIORAL AND GENETIC DATA



Schifano, E. D., Li, L., Christiani, D. C., & Lin, X. (2013). Genome-wide
association analysis for multiple continuous secondary phenotypes.
American Journal of Human Genetics, 92, 744–759. http://dx.doi.org/
10.1016/j.ajhg.2013.04.004

Schmitz, S., Cherny, S. S., & Fulker, D. W. (1998). Increase in power
through multivariate analyses. Behavior Genetics, 28, 357–363. http://
dx.doi.org/10.1023/A:1021669602220

Seoane, J. A., Campbell, C., Day, I. N. M., Casas, J. P., & Gaunt, T. R.
(2014). Canonical correlation analysis for gene-based pleiotropy discov-
ery. PLoS Computational Biology, 10(10), e1003876. http://dx.doi.org/
10.1371/journal.pcbi.1003876

Shen, L., Kim, S., Risacher, S. L., Nho, K., Swaminathan, S., West, J. D., . . .
Alzheimer’s Disease Neuroimaging Initiative. (2010). Whole genome
association study of brain-wide imaging phenotypes for identifying
quantitative trait loci in MCI and AD: A study of the ADNI cohort.
NeuroImage, 53, 1051–1063. http://dx.doi.org/10.1016/j.neuroimage
.2010.01.042

Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S.,
Fagan, A. M., . . . Phelps, C. H. (2011). Toward defining the preclinical
stages of Alzheimer’s disease: Recommendations from the National
Institute on Aging-Alzheimer’s Association workgroups on diagnostic
guidelines for Alzheimer’s disease. Alzheimer’s & Dementia: The Jour-
nal of the Alzheimer’s Association, 7, 280–292. http://dx.doi.org/10
.1016/j.jalz.2011.03.003

Sullivan, P. F., Lin, D., Tzeng, J.-Y., van den Oord, E., Perkins, D., Stroup,
T. S., . . . Close, S. L. (2008). Genomewide association for schizophrenia
in the CATIE study: Results of stage 1. Molecular Psychiatry, 13,
570–584. http://dx.doi.org/10.1038/mp.2008.25

Tenenhaus, M. (1998). La régression pls: Théorie et pratique [PLS regres-
sion: Theory and practice]. Paris: Technip.

Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y., & Lauro, C. (2005). PLS
path modeling. Computational Statistics & Data Analysis, 48, 159–205.
http://dx.doi.org/10.1016/j.csda.2004.03.005

Thorndike, E. L. (1905). Measurements of twins. New York, NY: Science
Press.

Thurstone, L. L. (1934). The vectors of mind. Psychological Review, 41,
1–32. http://dx.doi.org/10.1037/h0075959

Tucker, L. R. (1958). An inter-battery method of factor analysis. Psy-
chometrika, 23, 111–136. http://dx.doi.org/10.1007/BF02289009

Tura, E., Turner, J. A., Fallon, J. H., Kennedy, J. L., & Potkin, S. G. (2008).
Multivariate analyses suggest genetic impacts on neurocircuitry in schizophre-
nia. NeuroReport: For Rapid Communication of Neuroscience Research,
19, 603–607. http://dx.doi.org/10.1097/WNR.0b013e3282fa6d8d

van der Sluis, S., Posthuma, D., & Dolan, C. V. (2013). TATES: Efficient
multivariate genotype-phenotype analysis for genome-wide association
studies. PLoS Genetics, 9(1), e1003235. http://dx.doi.org/10.1371/
journal.pgen.1003235

van Eekelen, J. A. M., Olsson, C. A., Ellis, J. A., Ang, W., Hutchinson, D.,
Zubrick, S. R., & Pennell, C. E. (2011). Identification and genetic determi-
nation of an early life risk disposition for depressive disorder: Atypical
stress-related behaviour in early childhood. Australian Journal of Psychol-
ogy, 63, 6–17. http://dx.doi.org/10.1111/j.1742-9536.2011.00002.x

Van Loan, C. F. (1976). Generalizing the singular value decomposition.
SIAM Journal on Numerical Analysis, 13, 76–83. http://dx.doi.org/10
.1137/0713009

Vormfelde, S. V., & Brockmöller, J. (2007). On the value of haplotype-
based genotype-phenotype analysis and on data transformation in phar-
macogenetics and -genomics. Nature Reviews. Genetics. Advance online
publication. http://dx.doi.org/10.1038/nrg1916-c1

Vounou, M., Nichols, T. E., Montana, G., & Alzheimer’s Disease Neuro-
imaging Initiative. (2010). Discovering genetic associations with high-
dimensional neuroimaging phenotypes: A sparse reduced-rank regres-
sion approach. NeuroImage, 53, 1147–1159. http://dx.doi.org/10.1016/j
.neuroimage.2010.07.002

Wang, T., Ho, G., Ye, K., Strickler, H., & Elston, R. C. (2009). A partial
least-square approach for modeling gene-gene and gene-environment
interactions when multiple markers are genotyped. Genetic Epidemiol-
ogy, 33, 6–15. http://dx.doi.org/10.1002/gepi.20351

Weiner, M. P., & Hudson, T. J. (2002, June). Introduction to SNPs: Discovery of
markers for disease. BioTechniques (Suppl.), 4–7, 10, 12–13.

Wijsman, E. M., Pankratz, N. D., Choi, Y., Rothstein, J. H., Faber, K. M.,
Cheng, R., . . . NIA-LOAD/NCRAD Family Study Group. (2011).
Genome-wide association of familial late-onset Alzheimer’s disease
replicates BIN1 and CLU and nominates CUGBP2 in interaction with
APOE. PLoS Genetics, 7(2), e1001308.

Williams, L. J., Abdi, H., French, R., & Orange, J. B. (2010). A tutorial on
multiblock discriminant correspondence analysis (MUDICA): A new
method for analyzing discourse data from clinical populations. Journal
of Speech, Language, and Hearing Research, 53, 1372–1393. http://dx
.doi.org/10.1044/1092-4388(2010/08-0141)

Yanai, H., Takeuchi, K., & Takane, Y. (2011). Projection matrices, gen-
eralized inverse matrices, and singular value decomposition. New York,
NY: Springer-Verlag. http://dx.doi.org/10.1007/978-1-4419-9887-3

Yang, H., Liu, J., Sui, J., Pearlson, G., & Calhoun, V. D. (2010). A hybrid
machine learning method for fusing fMRI and genetic data: Combining
both improves classification of schizophrenia. Frontiers in Human Neu-
roscience, 4, 192. http://dx.doi.org/10.3389/fnhum.2010.00192

Zapala, M. A., & Schork, N. J. (2006). Multivariate regression analysis of
distance matrices for testing associations between gene expression pat-
terns and related variables. PNAS Proceedings of the National Academy
of Sciences of the United States of America, 103, 19430–19435. http://
dx.doi.org/10.1073/pnas.0609333103

(Appendices follow)

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

26 BEATON ET AL.



Appendix A

Alternative and Additional Strategies With Partial Least Squares Correspondence Analysis (PLSCA):
Testing Other Genetic Models

We present a multivariate strategy that is both parsimonious
and, arguably, the most general approach (i.e., genotypic/codomi-
nant) to detecting associations between many single nucleotide
polymorphisms (SNPs) and traits (or behaviors, diagnoses, etc.).
However, the completely categorical approach that we present is
not the only approach to association analyses. In this appendix, we
briefly discuss how to use PLSCA with other models of inheri-
tance (e.g., additive, dominant, recessive).

Sometimes it might be advantageous to test a specific genetic
model of inheritance, especially if the model is known (Lettre,
Lange, & Hirschhorn, 2007). As in Table 1, we have noted a
number of formats taken by genetic data for a variety of analyses
and inheritance models. Generally, there are six widely used
models: codominant (or genotypic), dominant, recessive, heterozy-
gous, additive, and multiplicative. While the additive model is one
of the most commonly used models, the codominant and genotypic
models are the most general, quite powerful, and the best fit when
an inheritance model is unknown (Lettre et al., 2007). While
multiple models can be tested in succession, this procedure be-
comes impractical with large data sets for two reasons: computa-
tional expense and correcting for multiple tests (especially because
the standard genome-wide association studies threshold is already
very conservative: p 
 .05 � 10–8). Thus, we recommend the fully
categorical approach (à la the genotypic model), especially be-
cause in the psychological, cognitive, and neurological sciences,
we may not know which model is most appropriate in order to
explain complex behaviors, traits, and diagnoses.

We briefly illustrate how data could be recoded for a variety of
formats, in addition to recommendations for how to approach
PLSCA with different inheritance models. To note, most formats
discussed are easily exported from most genetic association soft-
ware (e.g., PLINK). The disjunctive recoding and analyses can be
achieved with the ExPosition and TExPosition packages (Beaton
et al., 2014; Beaton, Rieck, Fatt, & Abdi, 2013). Example data and
code are available at https://code.google.com/p/exposition-family/
source/browse/Publications/PsyMet_2015 and http://www.utd.edu/
~herve/PsyMet_2015

Categorical Models

Four of the six commonly used genetic models are categorical in
nature. These models are (a) codominant, (b) dominant, (c) reces-
sive, and (d) heterozygous. Because PLSCA is presented in a
format that aligns with codominant (and genotypic) model(s), we
forgo that discussion here and focus on the other three categorical
models. The categorical models can be used in any of the PLSCA
approaches with another categorical data set (e.g., surveys, diag-

nosis). If the genetic data are categorical and the trait data are
quantitative, the mixed-modality version of PLSCA must be used.

Table A1 illustrates how to code for dominant, recessive, and
heterozygous models. Both the nominal genotype and (standard)
additive approach are provided for reference (Table A1, a and b).
SNPs are presented in a general format in which “A” is the major
allele and “a” the minor allele. The major homozygote, heterozy-
gote, and minor homozygote are presented as AA, Aa, and aa,
respectively.

Dominant. The dominant model assumes that just the pres-
ence of a minor allele is considered a risk factor. Essentially,
genotypes become dichotomized between the major homozygote
vs. the other genotypes ([AA] vs. [Aa � aa]). Categorical and
disjunctive coding for the dominant model can be found in Table
A1, c and d.

Recessive. The recessive model assumes that only the minor
homozygote is the risk factor. Essentially, genotypes become
dichotomized between the minor homozygote vs. the other geno-
types ([AA � Aa] vs. [aa]). Categorical and disjunctive coding for
the recessive model can be found in Table A1, e and f.

Heterozygous. The heterozygous model assumes that just the
heterozygote confers either a risk or protective factor. Essentially,
genotypes become dichotomized between the heterozygote vs. the
homozygotes ([AA � aa] vs. [Aa]). Categorical and disjunctive
coding for the heterozygous model can be found in Table A1, g
and h.

In sum, any of these categorical coding approaches are easily
exported by most genetic association software, and can be used
trivially with PLSCA.

Quantitative Models

In general, there are two quantitative genetic models: (a) addi-
tive, and (b) multiplicative. Here, we outline how to use PLSCA
with these models in two different formats: representation of each
genotype with a quantitative value in a disjunctive format (i.e., a
compromise between quantitative and co-dominant coding), in
addition to representation of just SNPs (i.e., strictly quantitative).

A compromise between quantitative and categorical.
Additive coding expects equal risk between ordinal pairs of nu-
cleotides. That is, the risk value between the major homozygote
and the heterozygote should be equal to the risk value between
the heterozygote and the minor homozygote (e.g., 0, 1, 2). In
Table A2, Part c, we provide an example of how to code the
additive model in the disjunctive format. In disjunctive format,
there are three possible configurations: [1 0], [0.5 0.5], and [0 1],
which represent (respectively) the major homozygote, heterozy-
gote, and minor homozygote.

(Appendices continue)
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Table A1
Nominal, Additive (for Reference), Dominant, Recessive, Heterozygous, and Disjunctive Formats of
SNP Data

SNP1 SNP2

(a) Nominal
Subject 1 Aa Aa
Subject 2 aa Aa
Subject i Aa aa
Subject I AA AA

(b) Additive
Subject 1 1 1
Subject 2 2 1
Subject i 1 2
Subject I 0 0

(c) Dominant
Subject 1 D D
Subject 2 D D
Subject i D D
Subject I N N

SNP1 SNP2

D N D N

(d) Disjunctive for dominant
Subject 1 1 0 1 0
Subject 2 1 0 1 0
Subject i 1 0 1 0
Subject I 0 1 0 1

SNP1 SNP2

(e) Recessive
Subject 1 N N
Subject 2 R N
Subject i N R
Subject I N N

SNP1 SNP2

R N R N

(f) Disjunctive for recessive
Subject 1 0 1 0 1
Subject 2 1 0 0 1
Subject i 0 1 1 0
Subject I 0 1 0 1

SNP1 SNP2

(g) Heterozygous
Subject 1 H H
Subject 2 N H
Subject i H N
Subject I N N

(Appendices continue)
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Table A1 (continued)

SNP1 SNP2

H N H N

(h) Disjunctive for heterozgous
Subject 1 1 0 1 0
Subject 2 0 1 1 0
Subject i 1 0 0 1
Subject I 0 1 0 1

Note. Here, SNPs are presented generally where “A” is the major allele and “a” the minor allele. The major homozygote,
heterozygote, and minor homozygote are denoted “AA”, “Aa”, and “aa”, respectively. Example of (a) nominal, (b) additive,
followed by (c) dominant (dominant genotypes marked as “D”; nondominant marked as “N”) with (d) the disjunctive form
of dominant, followed by (e) recessive (recessive genotypes marked as “R”; nonrecessive marked as “N”) with (f)
disjunctive form of recessive, followed by (g) heterozygous (heterozygous genotypes marked as ‘H’, non heterozygous
marked as ‘N’) with the (h) disjunctive form of heterozygous. Disjunctive data for dominant, recessive, and heterozygous
models are essentially dichotomized, and thus presented as disjunctive code for two categories.

Table A2
Nominal, Additive (for Reference), and Compromise Between Quantitative and Disjunctive Formats of SNP Data

SNP1 SNP2

(a) Nominal
Subject 1 Aa Aa
Subject 2 aa Aa
Subject i Aa aa
Subject I AA AA

(b) Additive
Subject 1 1 1
Subject 2 2 1
Subject i 1 2
Subject I 0 0

SNP1 SNP2

A a A a

(c) Compromise between linear additive and disjunctive
Subject 1 .5 .5 .5 .5
Subject 2 0 1 .5 .5
Subject i .5 .5 0 1
Subject I 1 0 1 0

(d) Compromise between multiplicative and disjunctive
with emphasis on the minor allele

Subject 1 .25 .75 .25 .75
Subject 2 0 1 .25 .75
Subject i .25 .75 0 1
Subject I 1 0 1 0

Note. Here, SNPs are presented generally where “A” is the major allele and “a” the minor allele. The major homozygote,
heterozygote, and minor homozygote are presented as “AA”, “Aa”, and “aa”, respectively. Example of (a) nominal, (b)
additive, followed by (c) a compromise between linear additive and disjunctive. Here, coding exists only for the presence
of a major allele (‘A’) or a minor allele (‘a’). If a subject has the heterozygote, they receive equal parts major and minor
homozygote, and (d) a compromise between multiplicative and disjunctive. Here, coding exists only for the presence of a
major allele (‘A’) or a minor allele (‘a’). If a subject has the heterozygote, there is a larger emphasis on the minor allele
than the major allele.

(Appendices continue)
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However, if the quantitative inheritance model should place
more emphasis on a particular allele, then only one set of these
values changes: those associated with the heterozygote. If, for
example, there should be more emphasis on the minor allele when
it is present (e.g., the heterozygote and minor homozygote; anal-
ogous to a dominance model), then the heterozygote can be coded
as different values that sum to 1 (e.g., [0.25 0.75], [0.1, 0.9]) that
best describes the risk of a minor allele (see Table A2d). To note,
as long as the sum of the columns that span a single variable (e.g.,
SNP1) sum to 1, this pattern meets the criteria for disjunctive
coding. When the values are within the interval of [0 1], this is
often called “fuzzy coding” or “bipolar coding” (Greenacre, 2014;
Lebart, Morineau, & Warwick, 1984). This format is still consid-
ered a categorical table and the same rules apply as in the other
categorical coding formats. If the genetic and trait data are both
categorical, standard PLSCA applies. If the genetic data are cate-
gorical and the trait data are quantitative, the mixed-modality
version of PLSCA must be used.

Quantitative models as they are. If a researcher wishes to
use SNPs in a quantitative format, represented by single columns,

as one of their data sets (see, e.g., any of the “additive” examples
in Tables 1, 2, Table A1, and Table A2), then there are only two
options in the PLSCA framework. First, if the SNPs are quantita-
tive but the trait data are categorical or dummy coded (e.g.,
diagnostic group; see mean-centered PLSCA), then the mixed-
modality PLSCA approach applies, wherein the SNPs are treated
as quantitative (and thus duplicated, as in Table 4). To note, there
is one particular circumstance that essentially reduces to a simple
regression: If the SNPs are quantitative and the categorical data
simply designate whether a subject is either a “case” or a “control,”
this will produce only one component that best separates “case”
from “control” groups.

Second, if the SNPs and the traits are quantitative, then both
data sets must be recoded as in Table 4. However— because
PLSCA generalizes PLSC—this simply reduces to a standard
PLSC (within a constant scaling factor) between the SNPs and
the traits. If both sets are treated as quantitative, it is best to just
perform PLSC because it reduces the required computational
time and memory (i.e., there is no duplication of columns).

Appendix B

The Main Tool: The Generalized Singular Value Decomposition

The singular value decomposition (SVD)—and, by extension,
the generalized SVD (GSVD)—is the core tool for many tech-
niques such as principal components analysis, correspondence
analysis, partial least squares, and numerous related techniques.
The SVD is a generalization of the eigenvalue decomposition
(EVD; see Abdi 2007c). The EVD decomposes square, symmetric
tables, whereas the SVD decomposes rectangular tables (Yanai,
Takeuchi, & Takane, 2011).

The SVD produces orthogonal components (sometimes
called dimensions, axes, principal axes, or factors). Compo-
nents are new variables computed as linear combinations of the
original variables of the original data matrix. Because compo-
nents are orthogonal (i.e., two different components have zero
correlation), they can also be obtained as a simple geometric
rotation of axes with respect to the original variables (Jolliffe,
2002). The first component always explains the maximum
variance in the data. Each following component explains the
next largest possible amount of remaining variance under the
condition that components are mutually orthogonal.

Observations and measures are assigned values for each com-
ponent, called component scores. The values reflect how much an
observation contributes to the variance of each component. Addi-
tionally, component scores of observations or measures can be
plotted, with respect to components, to produce component maps

(much akin to scatterplots). Component maps show the spatial
relationship between observations, between measures, and be-
tween the two sets (Greenacre, 1984): Items close to each other are
similar, and items far apart differ.

The SVD

The SVD is the core of most linear multivariate techniques (see
Abdi, 2007b). The SVD decomposes a data matrix R—with J rows
and K columns—into three matrices:

R � U�VT, (B1)

where R has rank L, U is a J by L matrix of left singular vectors,
V is a K by L matrix of right singular vectors, and � is an L by L
diagonal matrix in which diag{�} stores the singular values (and
diag{�2} stores the eigenvalues). Furthermore, U and V are or-
thonormal matrices such that

UTU � I � VTV. (B2)

Component scores for the J rows and K columns are computed
as

FJ � U� and FK � V�, (B3)

and can be plotted—often with two components at a time—to
produce component maps.

(Appendices continue)

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

30 BEATON ET AL.



The Generalized SVD (GSVD)

The GSVD5 differs from the SVD in that there are constraints
placed upon the rows and columns. The constraints are represented
by positive definite matrices of sizes J by J and K by K applied to
the rows and columns, respectively. These constraints matrices are
often diagonal matrices, and when this is case, they are usually
called masses or weights. We denote the weights for the rows, WJ,
and the weights for the columns, WK. Decomposition of a matrix
is the same as in Equation B1, with the following constraints:

UTWJU � I � VTWKV, (B4)

where component scores for the J rows and K columns are com-
puted as

FJ � WJU� and FK � WKV�. (B5)

The GSVD is a very powerful technique and, with the correct
selection of weights, can generalize many techniques (e.g., multi-

dimensional scaling, Fisher’s linear discriminant analysis, canon-
ical correlation analysis). For a comprehensive list of techniques
that the GSVD generalizes, see Appendix A in Greenacre (1984).

5 There are actually two techniques called the generalized singular value
decomposition (GSVD). One described by Van Loan (1976), and extended
by Paige and Saunders (1981), was designed for decomposition of two
matrices that share the same columns, in which, typically, one matrix is
ill-conditioned. The other, which is the one we refer to, is described as an
approach to the SVD with constraints placed on the left and right singular
vectors, as described by Greenacre (1984), Lebart et al. (1984), and Abdi
(2007b).
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