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Abstract

The human brain is inherently organized as separate networks, as has been widely revealed by resting-state func-
tional magnetic resonance imaging (fMRI). Although the large-scale functional connectivity can be partially
explained by the underlying white-matter structural connectivity, the question of whether the underlying func-
tional connectivity is related to brain metabolic factors is still largely unanswered. The present study investigated
the presence of metabolic covariant networks across subjects using a set of fluorodeoxyglucose (18F, FDG) posi-
tron-emission tomography (PET) images. Spatial-independent component analysis was performed on the subject
series of FDG-PET images. A number of networks that were mainly homotopic regions could be identified, in-
cluding visual, auditory, motor, cerebellar, and subcortical networks. However, the anterior-posterior networks
such as the default-mode and left frontoparietal networks could not be observed. Region-of-interest-based corre-
lation analysis confirmed that the intersubject metabolic covariances within the default-mode and left frontopar-
ietal networks were reduced as compared with corresponding time-series correlations using resting-state fMRI
from an independent sample. In contrast, homotopic intersubject metabolic covariances observed using PET
were comparable to the corresponding fMRI resting-state time-series correlations. The current study provides
preliminary illustration, suggesting that the human brain metabolism pertains to organized covariance patterns
that might partially reflect functional connectivity as revealed by resting-state blood oxygen level dependent
(BOLD). The discrepancy between the PET covariance and BOLD functional connectivity might reflect the differ-
ences of energy consumption coupling and ongoing neural synchronization within these brain networks.
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lism covariance; PET

Introduction

The human brain is intrinsically organized into different
networks, as revealed by resting-state functional mag-

netic resonance imaging (fMRI) (Beckmann et al., 2005;
Biswal et al., 2010). After the initial observation that the
blood oxygen level-dependent (BOLD) signals from function-
ally related regions exhibit high correlation in the absence of
any explicit tasks (Biswal et al., 1995), a great deal of research
has been conducted to analyze the functional connectivity be-
tween regions and the network organizations of the whole
brain. The brain has consequently been classified as being
composed of anticorrelated task-positive and negative net-
works (Fox et al., 2005), or extrinsic- and intrinsic-oriented
networks (Golland et al., 2008). Using spatial-independent
component analysis (ICA), brain networks showing a hierar-

chical organization from the module level to system level
have been observed (Beckmann et al., 2005; Biswal et al.,
2010; Doucet et al., 2011).

Currently, the majority of the connectivity analyses of
brain organization conducted have been based on fMRI
time series. The fMRI signals are indirect measures of neuro-
nal activity and subjected to intermediate physiological re-
sponses, including the cerebral metabolism rate of glucose/
oxygen, cerebral blood flow (CBF), and cerebral blood vol-
ume (CBV) (Buxton et al., 1998; Raichle, 1987). Investigating
the correlations of brain metabolism, CBF, and CBV among
brain regions can provide insight into the underlying mecha-
nism of the whole brain network organizations. In a seminal
study, Horwitz and colleagues, using fluorodeoxyglucose
(18F, FDG) positron-emission tomography (PET), investigated
the intersubject metabolic correlations among brain regions,
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and found high correlations between homotopic regions and
similar correlation pattern within the left and right hemi-
spheres (Horwitz et al., 1984). This article suggested that
there were organized patterns of brain metabolism, and the
associated metabolic activity might reflect the relevant brain
functions between those regions. However, a subsequent
study of FDG-PET using seed-based correlations showed lim-
ited intersubject correlation distributed across the whole
brain (Lee, 2008). In a recent study using cerebral metabolic
rate of oxygenation (CMRO2) MRI images, Wu and col-
leagues observed high correlations of CMRO2 time series
within functional networks, including visual network,
default-mode network (DMN), and hippocampus, respec-
tively (Wu et al., 2009). These studies using the seed-based
correlation method are limited because of the requirement
of prespecified number of regions of interest (ROIs). A data-
driven method is helpful to study the whole-brain organiza-
tion without choosing ROIs a priori (Park et al., 2003). In
this study, Park and colleagues used ICA on PET data during
stimulus presentation to identify eloquent brain regions cor-
responding to the stimulus.

In the present study, spatial ICA- and ROI-based correla-
tions were used to study the covariance of brain metabolisms
obtained using PET. Briefly, spatial ICA is a statistical proce-
dure commonly used in fMRI studies to decompose the brain
into distinct networks (Beckmann et al., 2005; Calhoun et al.,
2001). The input for fMRI ICA was the concatenation of each
individual subject’s fMRI time-series images. The input for
the PET ICA was the subject series of PET images, with one
mean PET image per subject. In this study, a set of 18F
FDG-PET images of 155 healthy old (63–94 years) subjects de-
rived from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), reflecting regional brain glucose uptake, was ana-
lyzed using spatial ICA. Spatially independent networks
were obtained based on the interindividual differences of
FDG-PET measures. We predict that the regions that are func-
tionally correlated will show distinct independent networks
using either PET or resting-state fMRI datasets. As an alterna-
tive to spatial ICA, the ROI-based correlation analysis was also
performed between the ROIs, which are known to be function-
ally connected in resting-state fMRI studies (e.g., Biswal et al.,
2010). We hypothesize that the regions that are functionally
connected will show higher correlations of metabolic activity
than regions that are not functionally related.

Methods

FDG-PET data

Data used in the preparation of this article were obtained
from the ADNI database (adni.loni.ucla.edu). The ADNI
was launched in 2003 by the National Institute on Aging
(NIA), the National Institute of Biomedical Imaging and Bio-
engineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies, and nonprofit or-
ganizations as a $60 million, 5-year public–private partner-
ship. The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). Determination of sensitive
and specific markers of very early AD progression is intended
to aid researchers and clinicians to develop new treatments

and monitor their effectiveness, as well as lessen the time
and cost of clinical trials.

The Principal Investigator of this initiative is Michael W.
Weiner, M.D., VA Medical Center and University of Califor-
nia, San Francisco. ADNI is the result of efforts of many coin-
vestigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from
over 50 sites across the United States and Canada.

The initial goal of ADNI was to recruit 800 adults, ages 55
to 90, to participate in the research, *200 cognitively normal
older individuals to be followed for 3 years, 400 people with
MCI to be followed for 3 years, and 200 people with early AD
to be followed for 2 years. In the present study, only the
healthy, nondementia subjects who had both FDG-PET and
high-resolution magnetization-prepared rapid gradient echo
(MPRAGE) MRI images were included in the analyses. In
total 155, old subjects were included (95 men), with an age
range of 63–94 years (mean = 77.2; SD = 6.0). The PET data
were scanned from different PET scanners with different pro-
tocols. In the present study, we used the single-frame static
FDG-PET image or the mean FDG-PET image, a subject
from other protocols to construct a subject series of FDG-
PET images. Spatial ICA and ROI-based connectivity analysis
were performed on this subject series of FDG-PET images.

Resting-state fMRI data

Because in this study we only had PET images of old sub-
jects, to control the potential effects of aging, we used resting-
state BOLD images in the same age range from another set of
subjects. The resting-state fMRI dataset consists of 30 subjects
(all men). The age range was from 65 to 92 years (Mean = 80.3;
SD = 5.5). The mean ages were statistically not different be-
tween the two data sets [t(183) = 0.254, p = 0.80].

MRI images were acquired using a 3.0T Siemens MRI scan-
ner with a 12-channel head coil (Siemens Magnetom Tim
Trio, Erlangen, Germany). All the images were acquired paral-
lel to the anterior commissure–posterior commissure line. For
the resting-state scan, 200 images were acquired with a TR of
2500 ms. The scanning parameters were as follows: TE = 27; ac-
quisition matrix = 64 · 64; flip angle = 77�; slices = 43; spatial
resolution = 3.44 · 3.44 · 3.40 mm. A high-resolution MPRAGE
structural image was also acquired for each subject. The scan-
ning parameters were as follows: TR = 2530 ms; TE = 3.5 ms;
flip angle = 7�; resolution = 1 · 1 · 1 mm (no gap).

PET image preprocessing

The image data were preprocessed using SPM8 software
(www.fil.ion.ucl.ac.uk/spm/) based on MATLAB7.6
(www.mathworks.com). Three types of PET protocols were
used for different subjects: static, dynamic, and quantitative.
For the static protocol, there was one single PET image for
each subject. For the dynamic protocol, six PET images
were acquired for each subject. For the quantitative protocol,
33 PET images were acquired for each subject, of which only
the last 6 images were used in the current analysis. For each
subject with multiple PET images, all the six PET images
were realigned to the first image, and the mean image was
then calculated representing average glucose metabolisms.
This resulted in one FDG-PET image for each subject. The
PET image for each subject was coregistered to the subject’s
own high-resolution T1 structural image. The T1 images
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were segmented using the new segment routine implemented
in SPM8. The deformation field, which was obtained during
the segmentation step, was applied to the subject’s PET
image, so that the PET images were spatially normalized to
the standard Montreal Neurological Institute (MNI) space.
During the normalization step, all the PET images were
resampled at 3 · 3 · 3 mm3. All the spatially normalized PET
images were spatially smoothed using a Gaussian kernel of
8-mm full-width at half maximum (FWHM). Finally, all the
PET images were normalized by dividing the whole-brain
mean signal from the original image.

BOLD image preprocessing

For each subject, the first two scans of the resting-state
fMRI BOLD images were discarded. The remaining BOLD
images were motion-corrected and coregistered to the sub-
ject’s own high-resolution T1 structural image. The T1 images
were segmented using the new segment tool in SPM8, and the
deformation fields were obtained. Then, the deformation field
maps were applied to the functional images to spatially nor-
malize all of the BOLD images into the MNI space. During the
spatial normalization step, all the BOLD images were
resampled at a voxel size of 3 · 3 · 3 mm3. Finally, all of the
BOLD images were smoothed using a Gaussian kernel of 8-
mm FWHM.

Spatial ICA

Spatial ICA was carried out using the Group ICA of fMRI
Toolbox (GIFT; http://icatb.sourceforge.net/) (Calhoun et al.,
2001). For the FDG-PET images, each of the subject’s mean
preprocessed PET images were concatenated to form a sub-
ject series and entered into the ICA process. Because the num-
ber of components present in PET metabolic images is not
known, we first extracted 20 components and then 40 compo-
nents. For the fMRI data, group ICA was conducted with 20
components extracted (Biswal et al., 2010). The resulting inde-

pendent components were z-transformed and visualized
using the threshold of z > 1.96 ( p < 0.05). Every map was visu-
ally inspected and compared to previous resting-state ICA re-
sults (Biswal et al., 2010; Cole et al., 2010) to classify them as
meaningful components or noise.

ROI-based connectivity analysis

From ICA results, we can infer that two regions that are
presented in the same IC are spatially correlated. However,
if two regions are not presented in the same IC, it is hard to
conclude that the two regions are not correlated, because
the two regions might be arbitrarily separated by the algo-
rithm due, for example, to the extraction of too many compo-
nents. Therefore, we directly calculated the correlations
between regions that are generally believed to be functionally
connected, to examine the differences between metabolic co-
variance and resting-state correlations between these regions.
The ROI were defined from an ICA of 1000 subjects’ resting-
state fMRI data (Biswal et al., 2010). Seven commonly
reported ICs were selected. The IC numbers of the Supple-
mentary Figure S3 in Biswal et al. (2010) are listed in Table 1.
The peak coordinates of the two main nodes of each IC
were obtained. By calculating the correlations among the 14
ROIs (7 networks * 2 ROIs each), we can compare the differ-
ences of within-network correlations and between-network
correlations. The ROIs were defined as spheres centered at
the peak coordinates with a radius of 8 mm.

For the PET data, the intersubject correlations between the
two ROIs in each network were calculated, and transformed
into Fisher’s z-score. For the fMRI data, after the time courses
were extracted from the ROIs, the following preprocessing
steps were used. First, the six rigid-body motion parameters
and the first eigenvector of white matter and cerebrospinal
fluid were regressed out using linear regression. Second, all
the time courses were temporally filtered using a band-pass
filtering of 0.01–0.1 Hz. The correlations of fMRI time series

Table 1. Resting-State Networks and ROIs, and the Results of ROI-Based Correlation Analyses

MNI coordinate Fisher’s z

Network IC # ROI label x y z PET fMRI (SD) Difference t(p)

Default IC6 MPFC 0 60 �6 0.070 0.66 (0.34) 9.51 (2.0 · 10�10)*
PCC 3 �42 27

L Executive IC11 LSFG �30 21 51 0.36 0.75 (0.29) 7.31 (4.7 · 10�8)*
LIPL_Ex �48 �57 42

R Executive IC8 RSFG 42 24 42 0.49 0.60 (0.33) 1.77 (0.088)
RIPL_Ex 54 �51 42

Salience IC17 LIFG �36 18 3 0.69 0.76 (0.26) 1.55 (0.13)
RIFG 42 15 �3

Attention IC9 LIPL_Att �54 �30 42 0.61 0.66 (0.35) 0.816 (0.42)
RIPL_Att 42 �36 48

Sensorimotor IC19 LSMC �57 �9 33 0.63 0.89 (0.33) 4.36 (1.5 · 10�4)*
RSMC 60 �9 33

Extrastriate IC3 LMOG �33 �90 9 1.1 0.82 (0.39) �3.94 (4.7 · 10�4)*
RMOG 33 �87 15

The ROIs were defined by the peak regions of each independent component in a large-scale ICA (Biswal et al., 2010). The Fisher’s z-scores of
PET were calculated from intersubject correlation of PET ROIs. The mean Fisther’s z-scores of fMRI were calculated from correlations of
resting-state BOLD time series.

*Statistically significant at p < 0.05.
BOLD, blood oxygen level dependent; fMRI, functional magnetic resonance imaging; ICA, independent component analysis; MPFC, medial

prefrontal cortex; MNI, Montreal Neurological Institute; PCC, posterior cingulate cortex; ROI, region of interest; IPL, inferior parietal lobule;
SMC, sensorimotor cortex; MOG, middle occipital gyrus; SFG, superior frontal gyrus; IFG, inferior frontal gyrus; R, right; L, left.
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between the two ROIs in each network were first calculated
for each subject, and transformed into z-score using Fisher’s
transformation. Then, the means and standard deviations of
the z-scores were calculated across subjects. One-sample
t-tests were conducted on the subject’s Fisher’s z-scores of
fMRI time-series correlations against the corresponding
z-score of intersubject PET correlation (not 0 as usually
used). This test gives statistical inference on whether the
mean fMRI time-series correlation is different from the inter-
subject PET correlation.

The effects of anatomical variances

One possible confounding variable of the PET ICA and
intersubject correlation analysis is the partial volume effect.
Because of the low spatial resolution of the PET images, the
signals of the PET image might be affected by the underlying
proportion of gray matter. Consequently, the covariance of
the PET signals might be due to the variance of the underly-
ing gray matter structure, but not metabolic signals per se. To
rule out this possibility, the gray matter volume (GMV) image
of each subject was obtained to control the partial volume ef-
fect. The GMV images were calculated from the segmentation
of each subject’s MPRAGE images. All of the GMV images
were smoothed using a Gaussian kernel of 6-mm FWHM.

Two types of GMV information might affect PET connec-
tivity analysis, within-subject spatial variance and intersub-
ject variance. For the ICA, the question is whether the

spatial covariance of PET signals is due to the underlying spa-
tial variance of GMV. Thus, we used a spatial regression for
each subject to regress out spatial GMV variance from the
PET images (a similar method has been used in fMRI experi-
ments, Di et al., 2012). After removing GMV information, the
PET images were entered into the ICA procedure. Twenty
components were extracted. The resulting IC maps were visu-
ally compared to the IC maps before GMV removal to verify
whether the removal of GMV information would affect the
PET ICA results. For the intersubject correlation of the PET
signals, the high correlations might also due to high intersub-
ject correlation of GMV. To rule out this possibility, the corre-
lations between the PET signals and GMV for each ROI were
calculated. Then, the GMV variances were regressed out from
the PET signals using linear regression. PET correlations be-
fore and after removing GMV effects were calculated.

Results

Spatial ICA

Among the 20 PET ICs, 10 were identified as meaningful
network components (shown in the left two columns of Fig. 1).
These included the primary visual network (Fig. 1D), higher
visual network (Fig. 1F), motor network (Fig. 1C), salience
network (Fig. 1B), orbital frontotemporopolar network
(Fig. 1H), cerebellar network (Fig. 1G), and subcortical net-
works (Fig. 1I, J). The other two interesting networks are

FIG. 1. Metabolic network maps as revealed by spatial-independent component analysis (ICA) on the PET data. (A–J) dis-
play the 10 IC maps classified as meaningful network when 20 ICs were extracted. (K–O) illustrates additional 5 IC maps when
40 ICs were extracted. Each individual IC map was z-transformed and thresholded at z > 1.96.
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shown in Figure 1E and A. The network (Fig. 1E) comprised
the right inferior parietal lobule, superior temporal gyrus,
and lateral prefrontal cortex. This network resembles the
right frontoparietal network as generally revealed in the
BOLD ICA studies (Cole et al., 2010). The network (Fig. 1A)
covered the midline regions of the cingulate regions and ex-
tended bilaterally into parietal lobule. The posterior portion
of the cingulate cluster and bilateral parietal lobule overlap-
ped with the DMN, but the cingulate cluster extended more
anterior covering the whole cingulate cortex. Most impor-
tantly, the anterior part of the DMN, the medial prefrontal
cortex (MPFC), was not present in this IC. Other 10 compo-
nents were classified as noise (see Supplementary Fig. S1;
Supplementary Data are available online at www.liebertpub
.com/brain). Additional analysis showed that the ICA results
of the PET images were not affected by the removal of GMV
information from the PET images (see Supplementary Meth-
ods, Results, and Supplementary Fig. S2).

When extracting 40 components, additional networks
could be identified, and they mostly still conveyed left–
right homotopy. Some new components are illustrated in

the right column of Figure 1. The new networks included
the dorsal attention network (Fig. 1L), frontal polar network
(Fig. 1O), and the auditory network (Fig. 1M). The networks
(Fig. 1K, N) seemed to be parts of the DMN, but the MPFC
was still not part of either component.

In contrast to the PET ICA results, the ICA of resting-state
BOLD images of an independent old-subject group showed
very similar network patterns as generally revealed by
BOLD ICA. All the typical networks in Cole et al. (2010)
could be identified in the resting-state BOLD image ICA
(Fig. 2).

ROI-based connectivity analysis

The correlation matrices of 14 ROIs for the PET and fMRI
datasets are illustrated in Figure 3. The subsequent ROI anal-
ysis focused on the correlations between the two ROIs within
each network (Fig. 4 and Table 1). For all of the BOLD time-
series connectivity within the known networks, the correla-
tions were > 0.54 (Fisher’s z = 0.60) and were all statistically
significant against zero. For the PET intersubject correlations,

FIG. 2. Resting-state network maps (A–I) as revealed by spatial ICA on the blood oxygen level-dependent (BOLD) data.
Twenty components were extracted. Each individual IC map was z-transformed and thresholded at z > 1.96.

FIG. 3. Correlation matrices of 14 region of interests for the PET (A) and functional magnetic resonance imaging (fMRI) (B)
datasets. (A) Intersubject correlation matrix of PET metabolism. (B) Mean resting-state BOLD time-series correlation matrix
across subjects.
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all the homotopic correlations were also very high (Fisher’s z
was always > 0.60) and statistically significant. However, lit-
tle or small connectivity was also observed between the
MPFC and posterior cingulate cortex (PCC) (Fisher’s
z = 0.070, p = 0.39), between the left superior frontal gyrus
(LSFG) and LIPL_Ex (Fisher’s z = 0.36, p = 1.3 · 10�5), and be-
tween the right SFG (RSFG) and RIPL_Ex (Fisher’s z = 0.49,
p = 2.6 · 10�9). The comparison of mean fMRI time-series cor-
relation against corresponding intersubject PET correlation
revealed greater fMRI correlation than PET between the
MPFC and PCC of the DMN [t(29) = 9.51, p = 2.0 · 10�10], be-
tween the LSFG and LIPL_Ex of left executive network
[t(29) = 7.31, p = 4.7 · 10�8], and between the left sensorimotor
cortex (LSMC) and right SMC (RSMC) of the sensorimotor
network [t(29) = 4.36, p = 1.5 · 10�4]. Smaller fMRI time-series
correlation compared with intersubject PET correlation was
also observed between the left middle occipital gyrus
(LMOG) and right MOG (RMOG) of the extrastriate visual
network [t(29) =�3.94, p = 4.7 · 10�4].

A subsequent analysis showed that regressing out inter-
subject GMV variances from the PET signals had very little ef-
fects on the intersubject PET covariances (see Supplementary
Results and Supplementary Fig. S3).

Discussion

Using spatial ICA and ROI-based connectivity analysis, the
present study provides preliminary demonstration that the co-
variances of the brain metabolisms could convey similar neural
networks as shown in resting-state BOLD images analyses
(mostly the homotopic networks). Discrepancies were also
observed in terms of the absence of anterior–posterior
networks, including the DMN and left frontoparietal network.

Metabolic networks

The ICA of metabolic images demonstrated the presence of
several networks that are similar to the networks identified

using resting-state BOLD ICA. These networks include unim-
odal sensory or motor networks such as the striate visual cor-
tex (Fig. 1D), extrastriate visual cortex (Fig. 1F), auditory
cortex (Fig. 1M), motor cortex (Fig. 1C), and other networks,
including the cerebellum (Fig. 1G), salience (Fig. 1B), and sub-
cortical network, including the caudate, putamen, and thala-
mus (Fig. 1I). The presence of these networks suggests that
the functionally related regions also have similar variances
of metabolisms across the subject, and the metabolic signals
can, to some extent, reflect the underlying neural architecture
of these networks. These networks are generally left–right
symmetric, which is in line with the earlier observations
that homotopic regions have high correlations of metabolisms
(Horwitz et al., 1984). Another component of the orbital fron-
totemporopolar network (Fig. 1H) is not usually reported in
resting-state BOLD ICA, but has been reported in a study
using cluster analysis (Yeo et al., 2011). As has been pointed
out by Yeo et al. (2011), the BOLD images have severe signal
dropout and spatial distortion in the orbitofrontal cortex and
anterior temporal cortex, so the connectivity in this network
might not be reliably detected using BOLD images.

The discrepancies between PET covariance networks and
resting-state BOLD networks are observed mainly in the net-
works containing anterior–posterior large-scale connectivity,
including the DMN and left frontoparietal network. Not only
absent in the ICA, the correlations between two main nodes
of each networks are also reduced compared with BOLD
time-series correlations. The impaired covariance of the
DMN and left frontoparietal network are not due to aging ef-
fects, because a separate analysis of a resting-state BOLD data
with matched age sample can show typical DMN and left
frontoparietal network with a small cluster located in the
MPFC (Fig. 2A). The existence of the resting-state DMN in
old individuals has also been consistently shown by previous
studies (e.g., Greicius et al., 2004; Koch et al., 2010). The DMN
and frontoparietal network can be reliably detected by
resting-state fMRI connectivity analysis (Biswal et al., 2010;
Zuo et al., 2010), and are supported by the underlying
white matter fiber tracts (Greicius et al., 2009; van den Heuvel
et al., 2008, 2009). These suggest that the impairments of
covariance in the DMN and left frontoparietal network are
specific to the metabolism level, and are independent of
neural wiring and underlying white matter connections.

One possible explanation of this dissociation is that the cur-
rent study analyzed the static properties of the brain meta-
bolic activity. Whether the static metabolic activity is
associated with the dynamic neurometabolic coupling is
largely unknown. However, a study using CMRO2 measures
has found correlations of CMRO2 time series between the
MPFC and PCC (Wu et al., 2009). Thus, the absence of inter-
subject MPFC-PCC covariance found in the present might
only reflect the decoupling of the static metabolic properties
between these two regions, but not the dynamic ongoing fluc-
tuations of oxygen metabolisms. Second, this discrepancy
might reflect the inter-regional coupling in different temporal
scales, ranging from seconds of the fMRI images to minutes of
the PET images. It might be worse for the DMN, because the
DMN maintained high activity during the resting-state. The
cumulative effects of mind wandering in several minutes
might increase the variances of the DMN metabolism; thus,
the correlation of cumulative metabolisms of the MPFC and
PCC would be hard to observe. In contrast, the BOLD times

FIG. 4. Correlations between two main nodes within each
network as revealed by both resting-state BOLD data and
PET data. For the BOLD data, the bars and error bars repre-
sent group mean and standard deviation of Fisher’s z-scores
corresponding to correlations of BOLD time series. For the
PET data, the bars represent the Fisher’s z-scores of intersub-
ject PET correlations. *Statistically significant difference at
p < 0.05.
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series might reflect ongoing fluctuations of mind wandering
in seconds, and the synchronization within the DMN would
be easy to observe. Third, this difference might be due to dif-
ferent environment noise, because the PET scanner is quiet
when scanning as compared with MRI scanner. However,
the long-range connectivity such as frontoparietal connectivity
and MPFC-PCC connectivity observed in resting-state fMRI
cannot purely due to scanner noise, because similar long-
range connectivity can also be observed using other quiet
methods such as electroencephalography (Musso et al., 2010)
and magnetoencephalography (Brookes et al., 2011).

From structural to functional covariance networks

The commonly used BOLD contrast indirectly reflects the
neural activity, which is mediated by regional tissue charac-
teristics, metabolism, and CBF/CBV. These mediation factors
may reflect underlying neural network architectures or shape
the observed BOLD networks. Thus, systematically investi-
gating the covariant networks of GMV, metabolism and
CBF/CBV might solidify the foundation of networks usually
observed in resting-state BOLD studies. There is an increasing
interest to study the brain networks using different imaging
modalities, including gray matter structures (He et al., 2007;
Mechelli et al., 2005; Zielinski et al., 2010), metabolisms as
revealed by PET (Lee et al., 2008; Zuendorf et al., 2003) and
CMRO2 (Wu et al., 2009), CBF as revealed by PET (Friston
et al., 1993; McIntosh et al., 1994; Young et al., 2003) and arte-
rial spin labeling (Biswal et al., 1997; Viviani et al., 2011; Zou
et al., 2009), CBV (Magnuson et al, 2010) (in rat brain), and
amplitude of low-frequency fluctuation (ALFF) during rest-
ing state (Taylor et al., 2012; Zhang et al., 2011). The different
measures of brain connectivity might reflect common infra-
structure of human brain networks. However, due to the dif-
ferent properties measured by different imaging modalities,
the network structures revealed might show slightly different
patterns.

The main properties of gray matter volumetric covariance
were high homotopic correlations (Mechelli et al., 2005; Zie-
linski et al., 2010). Similar to the current metabolism connec-
tivity analysis, the anterior–posterior covariances within the
DMN and frontoparietal network are also not evident
(Mechelli et al., 2005; Zielinski et al., 2010). Interestingly,
however, current analyses show that the individual differ-
ences of GMV have only none or small correlations with re-
gional metabolisms. These suggest that the variances of
GMVs and metabolisms are dissociated in the individual dif-
ferences, but that they independently reflect the same under-
lying brain network structures. Whether the spatial
distribution of correlation maps is different for the GMV
and metabolism needs to be clarified in future studies.

In contrast to GMV and metabolism, analyses of intersub-
ject covariance of ALFF can show similar networks of the
DMN and task-positive networks (including frontoparietal
connectivity) as regular resting-state fMRI studies (Zhang
et al., 2011). It is noteworthy that the ALFF reflects the
BOLD fluctuations over a period of time that has the same
temporal scale as the current PET data. The different connec-
tivity patterns in the DMN suggest that the ALFF parameter
might be closer to the brain network architectures, whereas
the FDG-PET values might convey lower-level properties
that can only partially reflect the brain network architectures.

According to the economy principle of brain network orga-
nization, network wiring (anatomical connections) and run-
ning (metabolisms) are expensive (Bullmore and Sporns,
2012), especially for long-range connections. Some long-
range functional connectivity might only occur in real-time
neural coupling, but might not be reflected in the intersubject
metabolic or structural correlations. We propose that system-
atically analyzing structural, metabolic, and ongoing fMRI
connectivity on the same sample of subjects will help to test
the economy principle of brain connectivity. Moreover,
these covariance networks might convey a hierarchy of
brain covariance properties from regional GMV to regional
metabolism to regional fluctuations, with different levels of
local and global network efficiencies.

Currently, only GMV, metabolism, and ALFF covariant
networks have been studied, while other levels such as CBF
and CBV covariances have not been examined. Systematically
investigating the CBF/CBV covariances in addition to the
existing covariance will complete the link from brain struc-
ture covariances to neural covariances. In addition, systemat-
ically comparing the differences between static covariance
and dynamic connectivity in different levels will enrich our
knowledge on how the brain is organized in different tempo-
ral scales.
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