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Background: Structural MRI measures for monitoring Alzheimer's Disease (AD) progression are becoming instru-
mental in the clinical practice, and more so in the context of longitudinal studies. This investigation addresses the
impact of four image analysis approaches on the longitudinal performance of the hippocampal volume.
Methods: We present a hippocampal segmentation algorithm and validate it on a gold-standard manual tracing
database. We segmented 460 subjects from ADNI, each subject having been scanned twice at baseline, 12-month
and 24 month follow-up scan (1.5 T, T1 MRI). We used the bilateral hippocampal volume v and its variation,
measured as the annualized volume change Λ = δv/year(mm3/y). Four processing approaches with different
complexity are compared to maximize the longitudinal information, and they are tested for cohort discrimination
ability. Reference cohorts are Controls vs. Alzheimer's Disease (CTRL/AD) and CTRL vs. Mild Cognitive Impairment
who subsequently progressed to AD dementia (CTRL/MCI-co). We discuss the conditions on v and the added
value of Λ in discriminating subjects.
Results: The age-corrected bilateral annualized atrophy rate (%/year)were:−1.6 (0.6) for CTRL,−2.2 (1.0) forMCI-
nc,−3.2 (1.2) forMCI-co and−4.0 (1.5) for AD. Combined (v,Λ) discrimination ability gave an Area under the ROC
curve (auc) = 0.93 for CTRL vs AD and auc= 0.88 for CTRL vs MCI-co.
Conclusions: Longitudinal volume measurements can provide meaningful clinical insight and added value with
respect to the baseline provided the analysis procedure embeds the longitudinal information.

© 2015 Elsevier Inc. All rights reserved.
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Introduction

Among image-based markers, structural information is considered
highly informative in the quantification of progression to Alzheimer's dis-
ease (AD). This is becoming evenmore important in the context of longi-
tudinal studies where substantial literature (Hogan et al., 2004; Bateman
et al., 2012; McEvoy et al., 2011; Spulber et al., 2013; Lobanova et al.,
2014; Leung et al., 2010; Schuff et al., 2009; Rusinek et al., 2003; Fox
and Schott, 2004) suggests that longitudinal trend may be pivotal in dis-
criminating a population at risk.

In addition, there is enough scientific evidence supporting the use of
the hippocampal geometrical properties (such as the hippocampal vol-
ume) as biomarker of early / progression of AD, and the reader is referred
to Frankó et al. (2013), Chincarini et al. (2011), Gerardin et al. (2009),
Fennema-Notestine et al. (2009) for a sample of studies in the field.

There are now a number of methods to automatically segment the
hippocampal structure, many of them featuring high accuracy and reli-
ability (Shen et al., 2002; Morra et al., 2008; Pruessner et al., 2000;
Bishop et al., 2011;Wolz et al., 2010b, 2014). In addition, the recently con-
cluded segmentation harmonization effort (see Frisoni et al. (2014),
Apostolova et al. (2015)) delivered a set of gold-standard tracings to be
used as reference for both human and automatic readers (Bocchetta
et al., 2014; Boccardi et al., 2015).

Despite the use of gold-standard segmentations, the reliability and the
clinical usefulness of a longitudinalmeasurement can be hindered by sev-
eral confounding factors, namely: technical errors (acquisition noises, ar-
tifacts, data analysis and algorithmic instabilities) and physiological
variability (both intrinsic and due to external conditions such as hydra-
tion, lipidic balance, nutrition and hormonal concentration, Duning et al.
(2005), Maclaren et al. (2014)). The goal of longitudinal analysis though
is to find the long-term trend due to either normal or pathological
aging, neglecting the nuisances of both intrinsic and extrinsic variabilities.

Our investigation here looks for possible implementations of a
segmentation-based longitudinal marker, aiming at the reduction of
variabilities other than the long-term aging contribution. First, we de-
velop a segmentation algorithm on a separate dataset, delivering the
hippocampal volume. Then, we segment a large number of MR images
from ADNI and use the hippocampal volume to construct a longitudinal
marker. This marker is implemented with four algorithmic variations of
increasing complexity, meant to enhance the robustness and accuracy
of the segmentation over the longitudinal scans. Finally, we assess the
marker prognostic potential and estimate under which conditions the
longitudinal information is clinically relevant.
Materials and methods

Dataset

MRI scans (1.5 T, T1-weighted) were selected from the ADNI data-
base 2 and downloaded in the original format (DICOM). The subjects'
id list is provided in supplemental table S1.

We selected 460 subjects having four scans: two scans at baseline
(hereafter labeled baseline and repeat), 12-month and 24-month scans
for a total of 460 × 4 = 1840 images.

According to the ADNI evaluators, subjects were grouped in three
cohorts consisting of 148 Controls (CTRL), 216 Mild Cognitive Impair-
ment (MCI) and 96 Alzheimer's Disease (AD) (clinical label given at
baseline). Coarse statistical description is summarized in Table 1.

MCI subjects were further divided into 121 “MCI progressing to AD”
(MCI-co) and 95 stable MCI, or“MCI non-progressing” (MCI-nc)
2 TheADNIwas launched in 2003 as a public-private partnership, led by Principal Inves-
tigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be combined tomeasure the
progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).
according to the clinical follow-up which stretched up to 96 months
after the baseline scan. A few MCI subjects (8) received more than two
labels during follow-up (MCI / AD / normal cognition). They were treat-
ed considering the first and the latest evaluation only.

On average, time to AD occurred after 48 (24–84)months (90% con-
fidence bounds) from the baseline.

Image processing

Image processing closely follows the method detailed in Chincarini
et al. (2011), save for two procedural differences. We summarize here
the main steps applied to each MR image up to the extraction of its
Volumes of Interest (VOI), which were used as starting points of the
segmentation algorithm.

MR images underwent a series of filters designed for bias B-field
reduction, volume normalization, anatomical structure registration
and gray level intensity equalization. The two novelties with respect
to Chincarini et al. (2011) are the lack of the pyramidal noise filter
and the addition of the B-field bias reduction, the latter implemented
with the BET algorithm (Smith, 2002). The noise filtering step was
avoided to keep the intensity contrast between the hippocampus struc-
ture and the adjacent structures (amigdala mainly), which could be
impaired by the pyramidal filter. Similarly, the B-field bias correction
was introduced to improve on the deformable registration cost function
used in the segmentation process.

As result of the pre-processing steps, imageswere alignedwith a 12-
parameters affine transformation to theMontreal Neurological Institute
(MNI, mazziotta et al. (1995)) space and themean gray level intensities
of the three major brain constituents – cerebro-spinal fluid (CSF), gray
matter (GM) and white matter (WM) – were matched to reference
values. In addition, aligned images are spatially sampled as the MNI
template, that is with isotropic voxels of 1 mm.

Each image was then sampled with 2 VOIs with dimension
30 × 80 × 40 mm each, which were placed in both Medial Temporal
Lobes (MTL) so that the hippocampi are anatomically aligned to the
VOIs sagittal axes (see Fig. 1 for an example of VOI positioning and
content).

Finally, a finer intra-cranial volume correction (icv) is computed by
non-linear mapping of the segmented MNI brain mask (provided with
the template) onto the affine-registered image and the mask volume
is weighted by the affine transformation jacobian. This number is a
minor factor (of the order of the unity) and it does not correct for the
native volume versus the MNI-space one, as the spatial normalization
already compensated for it. It is rather used to adjust for the possible
deviations that escape the affine registration. This non-linear-based
intra-cranial volume adjustment is used as a hippocampal volume correc-
tion factor after the segmentation process.

Segmentation algorithm

The main ground for developing our own segmentation procedure
instead of using an existing one was the choice to have it under control
and to use a probabilistic atlas approach rather than voxel-based classi-
fication techniques.

The procedure (referred in the following asGDIseg) requires only the
hippocampal VOI in input and it is not too dissimilar from that proposed
by Wolz et al. (2010a), save for some details. It was developed on a MR
set consisting of 100 T1-weightedMR images and tracings (Frisoni et al.
(2014), preliminary release) from the “harmonized protocol for hippo-
campal volumetry” project (HarP, www.hippocampal-protocol.net),
subjects not included in the dataset presented in this investigation.

For the purpose of this investigation we require only two outputs
from GDIseg: the bilateral hippocampal volume v and a spatial probabil-
ity map A, which should ideally peak on the hippocampi voxels and
quickly fade to zero on all other brain structures. The GDIseg algorithm
is described in Appendix A.

http://www.hippocampal-rotocol.net


Table 1
Demographics of the test dataset from ADNI.

Cohort Sample size M/F Age [y] (at baseline) MMSE

Baseline Month 12 Month 24

CTRL 148 77/71 76.5 (70.2–85.9) 29.0 (27.9–30.0) 30.0 (27.0–30.0) 29.0 (27.0–30.0)
MCI-nc 95 64/31 77.2 (62.8–86.2) 28.0 (24.0–30.0) 28.0 (23.0–30.0) 28.0 (22.2–30.0)
MCI-co 121 74/47 74.7 (63.9–86.0) 27.0 (24.0–30.0) 26.0 (20.0–29.0) 24.0 (18.0–29.0)
AD 96 50/46 76.7 (63.6–87.3) 23.0 (20.0–26.0) 22.0 (13.0–27.0) 19.5 (6.2–27.0)

CRTL = Controls; AD = Alzheimer's Disease; MCI-nc = MCI non-converters; MCI-co = MCI converters. Number within parentheses show the 90% confidence interval.
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Implementations

We implemented the longitudinal analysis procedure with four
progressive steps, starting with a naive approach in which all scans
are treated separately, to a fully integrated one in which image process-
ing and segmentation are intertwined. A schematic comparison of the
four implementations is given in Fig. 2.

All descriptions regarding the hippocampal VOIs have no explicit
laterality labels but it is intended that they are run on the left and right
VOI separately.

A: independent processing and segmentation
Each scan is treated independently. The icv correction is also comput-

ed separately on the four scans; no longitudinal (i.e., time) information is
used (Fig. 2A). This implementation serves as base comparison to assess
the performance increase of more sophisticated approaches.

B: unified image processing
In this implementation image preprocessing ismerged by generating

an unbiased within-subject template space, while segmentation follows
on each VOI independently (Fig. 2B).

The within-subject template is constructed by generating an average
intermediate image H from the 4 scans (baseline, repeat, month 12 and
Fig. 1. Positioning and content of
month 24) using robust, inverse consistent registration (Reuter et al.,
2012a). The intermediate within-subject template is processed up
to the extraction of the hippocampal VOIs according to the Image
processing section. The relevant parameters (registration onto the
MNI reference, VOI positions and intensity normalization) are passed
back to the original scans so that the actual VOIs can be extracted.

This implementation ensures that all 4 scans are treated uniformly
and the VOIs are extracted with a very high degree of reproducibility.
The icv correction is computed on H only.

C: atlas matrix re-normalization
This implementation shares the same image processing as in “B” but it

adds a refinement to the segmentation algorithm (Fig. 2C). This is based
on the construction of a single deformation field f* that summons the
main longitudinal variation of the hippocampal shape. Implementation
“C” supplements the GDIseg algorithm by adding the temporal informa-
tion in the form of a post-processed probabilistic map A.

Consider the four scans of a single subject and let bi be the hippo-
campal VOI extracted from scan i and Ai the related probabilistic atlas.
Let also fij be a deformation field that maps bi onto bj (i, j = 1..4).

We can define the 4 × 4matrix fwhose elements are the fij andwhich
contains the identity transformation I on the diagonal, with the require-
ment that fij + fji = I. Similarly, we can define a matrix a of probabilistic
maps whose elements are aij = fij(Ai), i.e., the application of the field fij
a sample hippocampal VOI.



Fig. 2. Schematicflowchart of the four implementations. The fourMRI drawings represents the baseline, repeat,month 12 andmonth 24 scans. In implementation A (A: independent processing
and segmentation ) all four images follow a separate preprocessing and segmentation path. In implementation B (B: unified image processing ) an intermediate imageH is generated and pre-
processing is performedon it; parameters are thenmappedback onto the original images to extract theVOIs. In implementation C (C: atlasmatrix re-normalization ) theVOIs extractedwith the
B procedure are segmented together with atlas re-normalization. Implementation D (D: weighted integration ) avoids the shape segmentation and delivers an equivalent volume only.
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to Ai. By definition, the diagonal elements are aii = Ai. Addition, subtrac-
tion and multiplication by a constant on the deformation field f are
intended to be applied voxel-by-voxel to the displacement vector compo-
nents. The identity operator I components are by definition all zero.

We now assume that themain contribution to the longitudinal trend
can be captured by a linear map of a new operator f*. The intent of f* is
to capture the mean, long term drift by averaging over the paths from
the baseline to the last follow-up scan, so that

f i j ≃ αi j f
�
;αi j ∈ 0;1½ �

A possible choice for αij could be

αi j ¼
t j−ti

maxi; j¼1::4 t j−ti
� �

where ti is the time of the ith scan. In order to find f* we average the de-
formation fields on all paths connecting the earliest to the latest scan.

The generalized expression is

f � ¼ 1
1þ n1 þ n2 þ…

f xy þ
X
xbkby

f xk þ f ky
� �

þ
X

xbkbhby

f xk þ f kh þ f hy
� �

þ…

0
@

1
A

where nr are the number of possible paths from x to y using r intermedi-
ates. The simplified expression for 4 scans (taking into account that t2 =
t1) is

f � ¼ 1
4

f 14 þ f 24 þ f 13 þ f 34ð Þ þ f 23 þ f 34ð Þð Þ

We can now compute the new matrix f with elements αijf *, and
hence the new atlas matrix a.

We have re-normalized the probabilistic maps aij to comply with a
single deformation field that links the VOIs extracted from the longitu-
dinal scans. The re-normalized aij are averaged over the columns and
then thresholded, to get the binary masks. Then, we apply the icv cor-
rection the same way as in implementation “B”.
D: weighted integration
In this last implementation images are preprocessed as in “B” and

segmentation undergoes a post-processing step, this time though we
drop the requirement of an actual binary mask per VOI, in favor of the
volume information alone (Fig. 2 D).

For each subject and bilateral VOI we define two new maps:

Ap ¼ ∏
j¼1::4

Aj

Am ¼ max
j

A j

where j is the index to the baseline, repeat, 12 month and 24 month
scans; the ‘max’ is taken voxel-wise over the four Aj. If x represents
the gray intensity in any voxel, the quantity:

W k; yð Þ ¼
X

x∈VOIk

x Ay

is the weighted sum of the intensity values over the volume VOIk. We
now define the longitudinal volumes as:

vj ¼ v̂
W j;mð ÞW 1; pð Þ
W 1;mð ÞW j; pð Þ

The normalization constants v̂ is the mean volume over the baseline
and repeat scans, as given by GDIseg.

In short, this formulation modulates the intensities in the bigger
map (Am, which includes the hippocampal boundary) with the inner in-
tensity values (Ap, where all segmentations agree).

Performance metrics

We checked the performance of all described procedures with four
metrics. The first one (reliability) is simply a quality control to assess
the robustness of GDIseg on a large number of images. Then we looked
at the test/re-test performance (reproducibility) and at the longitudinal
trend. Finally we checked whether the longitudinal information can
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improve on the accuracy when used as combined biomarker together
with the volume.

Reliability
The segmentation procedure was applied without human interven-

tion to 1840 images from the ADNI database. A quality control test checks
whether and on howmany images the procedure crudely fails. This con-
trol does not imply a “correct” hippocampus segmentation – in terms
of harmonized protocol – it only points out possible failures in the pre-
processing and in the segmentation procedure. To perform this test we
construct two identical statistics Revoi and Remask:

Revoi ¼ min
t;L;R

max
i

r VOI; TBið Þ½ �
� �

Remask ¼ min
t;L;R

max
j

r mask; TMj
� 	� �� �

where r is the Pearson correlation coefficient, the ‘max’ is taken on the
templates and the ‘min’ is taken among scans (t) and laterality (L,R). Tem-
plate Boxes (TB) and TemplateMasks (TM) are the hippocampal VOIs and
manual tracings on the HarP image dataset (see Appendix A).

This test computes the best correlation coefficient among the VOI
intensities and each TB, as well as among the segmented mask and
each TM, then keeping the lowest among these values with respect to
the number of scans and laterality. In other words, from each subject
we get 8 VOIs and 8 hippocampal tracings (bilateral regions on 4
scans). If either one or more are too distant from its nearest template
(in terms of correlation coefficient), the subject is flagged for visual
inspection. This formulation assumes that the HarP subjects are sampled
as to represent all relevant physiological variability.

Mishaps in image processing (intensity normalization for instance),
in the VOI extraction (registration) and in the segmentation algorithm
will result in either one or both statistics to be significantly impaired.
Visual inspection of outliers andmost extreme values follows, to under-
stand the reasons of failure and ensure that outliers are indeed the only
images on which the automatic procedure failed. Subjects failing this
test are discarded.

Reproducibility
We addressed the statistics of the segmentation volumetry compar-

ing baseline and repeat scans. This tests is crucial for informed use in
both research and clinical settings. Test/re-test reproducibility — i.e.,
how the outcome measure varies when computed over two repeat
scans acquired in the absence of plausible biological variability — is a
critical measure for reliable biomarkers. The considered quantity is

Δ ¼ 2
vr−vb
vr þ vb

¼ vr−vb
v̂

where vb and vr are the baseline and repeat hippocampal volumes
respectively.

Longitudinal trend
The annualized volume change Λ (expressed in mm3/year) is defined

as the slope of the least-squares linear fit of the longitudinal volume
measures vi versus time:

vi−ξi ¼ Λ ti þ β

where ξi and β are the residuals and the intercept respectively, and i =
1..4 tags the baseline, repeat, 12-month and 24-month scans. To make Λ
more robust we did not choose to split measures into 0–12 m and
12 m–24 m intervals as in Schuff et al. (2009).

A linear model using age, sex and cohort as predictors found
cohort and age as significant (p b 10−4). We adjusted Λ for age using
de-correlation.
Then, we used de-correlation to cross-check whether Λ maintains
significant prognostic performance after the adjustment for v̂ and
mini-mental state examination (MMSE) score.

Combined markers
The added complexity to derive a longitudinal biomarker – albeit a

simple one based on the hippocampal volume drift over time – should
be balanced by an increased prognostic potential.

ROC analysis on the combined volume and trend indexes was com-
puted with a linear discriminant. We used a support vector machine
(SVM) classifier on the feature set ðv̂;ΛÞ andwe considered the distance
from the separating plane as the newmarker. Its performancewas com-
pared to that of v̂ and Λ alone.

Software and statistics

Image processing was carried out on a dedicated computational
farm running the LONI pipeline software (www.loni.ucla.edu), using
MATLAB (www.mathworks.com) and ITK (www.itk.org) as algorithm
libraries. All statistical analyses were carried out within the MATLAB
environment.

The Λ score was adjusted for specific variables by de-correlation
using linear regression in the following manner:

Λad j
i ¼ Λ i− β̂0 þ

X
j

β̂ jxi j

0
@

1
A

where Λi is the score from the ith subject, xij is variable j of subject i to be

adjusted for, and β̂i is estimated using a least squaresfitΛ i=β0+∑jβjxij
to the considered dataset.We adjusted for either age or forMMSE, as they
are among the major confounders and we checked whether Λadj still car-
ried information. No dominant non-linear relationships were observed
when inspected by scatter plots. Consequently, a linear adjustment was
considered sufficient.

A SVM classifier with linear kernel was trained on CTRL vs. MCI-co
cohorts. The trained classifier was used to assess the AD and MCI-nc
cohorts. The combined marker was the distance from the SVM separat-
ing plane. ROC analysis of the combinemarker ðv̂;ΛÞ on CTRL vs. MCI-co
are given with a 20-fold cross-validation method. Right and left struc-
tures were treated separately.

Confidence intervals on AUC values in Table 3 were computed by
bootstrapping (1000 times) and by using the bias-corrected percentile
method (Martinez, 2011). Statistical significance in Table 4 versus the
null AUC and among different markers was carried on according to
Hanley and McNeil (1982, 1983).

The estimation of confidence intervals on the AUC can be carried
out with several methods, each delivering slightly different values.
Hence the comparison and compatibility among tests in Tables 3
and 4 should take into consideration that confidence intervals are
method-dependent estimates.We considered sevenmethods, paramet-
ric and non-parametric: Hanley–McNeil (parametric); Mann–Whitney,
Logit and Bootstrap (non-parametric, Gengsheng Qin and Hotilovac
(2007)); Maximum variance (non-parametric, Cortes and Mohri
(2004)); and Wald, and Wald/continuity-corrected (non-parametric,
Kottas et al. (2014)).

For instance, the width of the confidence interval on v̂L for the CTRL/
AD cohorts (implementationD, AUC=0.89 in Table 3) ranges from0.06
(Hanley–McNeil) to 0.09 (Mann–Whitney); in numbers 0.86 − 0.92
and 0.84 − 0.93. Another example with ΛR, implementation C and
CTRL/MCI-co (AUC = 0.78) shows a substantially similar interval
width of all methods (0.74 − 0.82 Hanley, Mann–Whitney; 0.73 −
0.84 Maximum Variance). The bias-corrected percentile bootstrap was
regarded as a safe estimate as it did not require any assumption about
the normality of the log-transformed AUC (Ahn and Yim, 2009).

http://www.loni.ucla.edu
http://www.mathworks.com
http://www.itk.org
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Results

Results on volume and longitudinal feature (v̂ and Λ) are given after
correction for age (de-correlation). Hippocampal volumes are given
after correction for icv and in the MNI space with spatial sampling of
1 × 1 × 1 mm.

Quality control

Fig. 3 shows the distribution of Revoi and Remask for all 460 subjects.
There are three distinctive outlierswhich are excluded from subsequent
analyses and whose inconsistent VOIs and tracings are shown aside
(Figs. 3a, b and c). Potential outliers – placed in the low value regions
of the Revoi/Remask scatter plot – are visually screened to ensure that
they are correctly classified as proper VOI and hippocampal tracings.

Oneof the outliers (Fig. 3a) stems froma blind injection: a null image
(white noise only) was placed in the analysis pipeline on purpose, in
order to test the reliability of the whole analysis procedure. Another
outlier (Fig. 3b) is due to incorrect brain spatial registration, causing
the VOIs to be misplaced. The third one (Fig. 3c) is due to the peculiar
atrophy conditions, which has no related template in the HarP subject
selection.

Reproducibility

The relative volume variation over baseline and repeat scan is given
for the A, B, C and D implementations in percent units (%), mean and
standard deviation: ΔA = −0.1 ± 3.5, ΔB = −0.1 ± 2.7, ΔC = 0.0 ±
0.1 and ΔD = 0.1 ± 1.2. The absolute value of the standard deviation
σv over the quantity vr − vb is: σv

A = 156, σv
B = 128, σv

C = 5 and
σv

D = 68 (units in mm3).

Longitudinal trend

Mean Λ values over cohorts and implementations are shown in
Table 2.
Fig. 3. Left: reliability scatter plot over VOIs (x-axis) and hippocampal masks (y-axis). Each circl
or biased template sampling. a,b and c are outliers. The dotted outline shows the subjectwhoun
outline shows the GDIseg hippocampal tracing.
Λ is significantly correlated to the baseline volume v̂ in
implementations B, C and D. The Pearson correlation r is rA = 0.05
(p = 0.12), rB = 0.09 (p = 0.01), rC = 0.41 (p b 10−4) and rD = 0.37
(p b 10−4). In words, volume loss is higher (in absolute value, i.e., more
negative numbers) in smaller structures.

In terms of cohort discrimination, Fig. 4 shows the distribution and
ROC curves of Λ for the right and left hippocampus separately, where
it is apparent that the AUC steadily increases with the implementation
complexity (from A → D). Comprehensive results on the AUC of v̂ and
Λ are summarized in Table 3.

The average bilateral AUC remained significant (p b 10−4) after de-
correlating baseline MMSE score (AUCA = 0.64, AUCB = 0.64, AUCC =
0.67 AUCD = 0.70) and volume v̂ (AUCA = 0.66, AUCB = 0.66, AUCC =
0.63 AUCD = 0.68).

A derived alternative marker is the bilateral average of the relative
annualized volume loss

λ ¼ 1
2

Λ=v̂½ �R þ Λ=v̂½ �L
� 	

expressed in %/year. Values (mean and standard deviation) are:
λ = −1.6(0.55) for CTRL, λ = −2.2(1.0) for MCI-nc, λ = −3.2(1.2)
forMCI-co and λ=−4.0(1.5) for AD (λ results are calculated on imple-
mentation D).

In order to better specify the expected levels of relative annualized
loss in potentially pathological subjects, the CTRL cohort is compared
to an ‘AD-like’ cohort consisting of subjects with AD together with sub-
jects who subsequently developed AD (MCI-co). Using implementation
D, we selected three cut-offs relevant for accuracy (acc), sensitivity
(sens) and specificity (spec): λ = −2.19 (sens = 0.83, spec = 0.85,
acc = 0.84, maximum accuracy criterion); λ = −1.28(sens =
0.32, spec = 0.95, acc = 0.69); λ = −2.94 (sens = 0.95, spec = 0.69,
acc = 0.80). In this example the area under the ROC curve is AUC =
0.90 and a graphical representation of the two distributions is shown
in Fig. 6.
e represents a subject. Lower scores are an indication of either improper image processing
derwent visual inspection. Right: coronal and sagittal view of the three outlierVOIs. The red



Table 2
Mean Λ values.

CTRL MCI-nc MCI-co AD

R A −75.90 (84.62) −80.04 (89.81) −135.80 (93.15) −135.54 (90.59)
B −72.60 (67.46) −96.99 (69.46) −129.63 (87.30) −140.09 (83.22)
C −69.32 (47.40) −98.39 (66.19) −131.29 (67.50) −154.58 (73.46)
D −76.27 (23.40) −91.96 (37.74) −124.41 (45.34) −143.10 (54.22)

L A −61.83 (79.76) −73.76 (96.06) −111.40 (88.74) −108.91 (85.86)
B −56.48 (53.35) −61.14 (86.43) −95.81 (72.96) −101.47 (91.23)
C −59.82 (43.71) −72.01 (54.72) −113.99 (59.09) −133.65 (60.39)
D −63.34 (25.19) −77.70 (40.32) −108.19 (44.21) −122.80 (47.32)

Annualized volume change (Λ) inmm3/year (mean and standard deviation).
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Combined markers

The benefit of adding the trend informationΛ to the average baseline
volume v̂ is summarized in Table 4 and graphically shown in Fig. 5. In
each comparison, we marked whether the combined information
fared significantly better than either factors. Considering a total of 3
(group comparisons) × 4 (implementations) × 2 (laterality) = 24
tests, adding atrophy rate information to the baseline volume resulted
in a significantly higher AUC (compared to that of the volume alone)
in 14 tests.

Sample size calculation

To determine the power of the different implementations in detect-
ing effects on hippocampal volume loss over time we estimated the
sample size needed in a hypothetical treatment trial to measure a 25%
slowing in Λwith α=0.05 significance level and a power 1− β=0.8.

Using the formula

n ¼ 2σ2 z1−α=2 þ z1−β
� 	2

δ2

we chose δ ¼ 0:25Λ where Λ ¼ ðΛR þ ΛLÞ=2 is the bilateral mean atro-
phy rate of the corresponding clinical group, σ their standard deviation
and z values are z1− α/2 ≃ 1.96 and z1− β ≃ 0.84 respectively. For each
patient group, the estimated sample sizes are displayed in Table 5.

Discussion

In this study we evaluated the impact of using the longitudinal infor-
mation deriving from serial MRI scans as an added value compared to
‘spot’ baseline scans in patients with MCI or AD as compared to controls.
The assumption was that atrophy rate with time could be a neurodegen-
erationmarker independent of single atrophymeasures.We showed that
with a 2-y observation time this is true only if adequate post-processing is
performed. On the other side, this means that 2-y repeated measures are
uselesswhen only a rawestimate of atrophy rate is performed ‘on thefly’,
that is with a simple algorithm that does not embed the longitudinal
information.

We compared four possible algorithmic implementations of a volume
marker in a longitudinal context, where the longitudinal information is
taken into account with different degrees both in the pre-processing
and post-processing steps. The first implementation (A) is considered
for comparison only.

The longitudinal information is translated into a simple measure Λ,
which estimates the hippocampal volume drift (atrophy rate) in time;
Λ is then used as a biomarker – alone and in combinationwith the aver-
age baseline volume v̂ – to assess its potential in discriminating among
relevant clinical groups.

All procedures are fully automated and implement an internal quality
check.
Conceptually, the most similar work to this one is Wolz et al.
(2010b) – where the longitudinal (i.e., time) information is embedded
in the segmentation workflow – and partially similar to McEvoy et al.
(2011). We conclude that clinical insight into AD development of subject
initially classified asMCI can be derived fromquantitativemeasures proc-
essed simultaneously frommultiple time points, and that thesemeasures
are more consistent than single-time point ones.

To further reduce the atrophy rate uncertainties we could have used
several more time points. This however would be an impractical proto-
col to implement outside clinical trials. Similarly, using two time points
only (i.e., 0–12m)would result in a larger error and a lower discrimina-
tion power (Wolz et al., 2010b).

Quality control

All procedures need a stable segmentation,which in turns depends on
an accurateVOI placing. Segmentation accuracywith respect to the expert
tracing is comparable to results in literature: the LEAP method (Wolz
et al., 2010a) DICE index ≃ 0.85; adaboost, ada-SVM and Freesurfer
(Morra et al., 2010) Precision ≃ 0.71− 0.84, Recall ≃ 0.73− 0.87; and in
Lötjönen et al. (2011) DICE index ≃ 0.87.

In this study the supplemental Revoi and Remask statistics are used as
warning indicators of outliers as they compare a new VOI and related
segmentation with the reference templates. If the templates do not
sample the population extensively enough we may incur in extreme
statistic values. In the particular example shown in Fig. 3c, the VOI and
its segmentation are not necessarily outliers per se; they are rather
given a low rank due to the lack of similar templates. In facts, while
Revoi captures structure other than the hippocampus, Remask refers to
the segmentation alone, therefore its score is below the average.

Other VOIs with significant and widespread atrophy dwell in the
lower Re region for the same reason. Although these cases might bear
little clinical significance, an extension of the template database would
favorably impact the finding of true outliers.

In the case of the purely noisy image (blank test) of Fig. 3a, Remask

value still ranks among acceptable numbers while Revoi = 0; this is
explained because GDIseg is based on atlas deformation and the trans-
formation constraints on the deformation field (such as the use of the
demons algorithm and the smoothing parameters) are weakly affected
by noise. In addition, the use of the intra-subject template and the aver-
aged deformation field avoid the pitfalls of overestimating the changes
in the atrophy rate (Thompson and Holland, 2011).

Reproducibility

The standard deviations in implementation A and B are rather con-
spicuous, that is in comparison to the volume change one would want
to measure to discriminate among cohorts. Implementation C has a defi-
nitely lowermark, but this value is heavily biased by the re-normalization
algorithm and doesn't represent the true variability. Rather, it represents
the error due to the threshold algorithm when applied to the averaged
probability matrix aij.
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Fig. 4.Distribution of Λ for the right hippocampus (top) and left hippocampus (bottom) on Controls (CTRL), Mild Cognitive Impairment non-converters/converters (MCI-nc/MCI-co) and
Alzheimer's Disease (AD) subjects. Themedian and its 95% conf. interval aremarkedwith a black dot and triangles on eachbar. The related ROC curves and area under the curves (AUC) are
shown on the right plots.
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The value ofσD
v though reflects the true difference between the base-

line and the repeat scan, due to acquisition and processing noises. That
is, in implementation D the probability atlas is fixed and there is no
threshold step involved.

The difference among implementations can also be appreciatedwith
the normal probability plot for Δ (supplemental Fig. S2), where devia-
tion from the Gaussian distribution is rather marked for implementa-
tion A and B.

Comparison to literature shows that results similar to the basic
implementations A and B are obtained in Maclaren et al. (2014) (with
a total coefficient of variation of ≃ 3 % on the hippocampus and using
Freesurfer).

Further methodological considerations

In ADNI, subjects were scanned at different sites and with different
MRI equipment. Besides, follow-up images could have been acquired
with scanner models other than those used at baseline.

The ADNI protocol goes a great length in assuring reproducibility
among sites (Jack et al., 2008) and in addition, other studies showed
that ADNI-like acquisitions and optimized analysis procedures (longitu-
dinal processing in particular) are robust across sites, regardless of MRI
system differences (see Jovicich et al. (2013) for a detailed analysis).
There are though fewer studies combining intra-site and inter-site
reproducibility – i.e., measuring the same participants on a variety of
scanners – a condition which is relevant in the longitudinal paradigm.
In their study, Reig et al. (2009) found that pooling of different sites
data can add a significant error compared to intra-site variability, particu-
larly in single-modality (T1) segmentations.

We looked for subjects whose record showed the use of different
MRI machines. A survey of the CTRL cohort indicated that 42 out of
148 subjects (≃28 %) were acquired with different scanner models at
some follow-up visit (with respect to the MRI system used at baseline).

The potential added variabilitywas gaugedwith a direct comparison
of the statistics using the non-parametric Kolmogorov–Smirnov test.
The application to the sample of 106 CTRL (same scanner model across
longitudinal measures but different cross-sectionally) and 42 CTRL sub-
jects (different scanner model both in longitudinal measures and cross-
sectionally) found no significant difference the Λ statistics, regardless of
the implementation.



Table 3
Performance (AUC).

Feat. Impl. CTRL/MCI-nc CTRL/MCI-co CTRL/AD

v̂R A 0.71 (0.65–0.74) 0.79 (0.75–0.83) 0.86 (0.81–0.89)
B 0.71 (0.65–0.75) 0.79 (0.75–0.83) 0.85 (0.81–0.88)
C 0.71 (0.66–0.77) 0.82 (0.77–0.85) 0.87 (0.83–0.90)
D 0.71 (0.66–0.76) 0.82 (0.78–0.85) 0.87 (0.83–0.90)

v̂L A 0.72 (0.67–0.78) 0.82 (0.79–0.86) 0.88 (0.85–0.91)
B 0.72 (0.68–0.77) 0.83 (0.78–0.86) 0.88 (0.83–0.91)
C 0.73 (0.68–0.78) 0.84 (0.80–0.87) 0.89 (0.85–0.92)
D 0.73 (0.67–0.77) 0.84 (0.80–0.87) 0.89 (0.85–0.92)

ΛR A 0.52 (0.46–0.57) 0.69 (0.64–0.73)⁎ 0.69 (0.63–0.73)⁎

B 0.60 (0.55–0.66) 0.71 (0.66–0.75)⁎ 0.73 (0.68–0.78)⁎

C 0.64 (0.58–0.69) 0.78 (0.73–0.82) 0.84 (0.80–0.88)⁎

D 0.63 (0.57–0.69) 0.83 (0.79–0.87) 0.89 (0.85–0.92)
ΛL A 0.55 (0.49–0.60)⁎ 0.68 (0.63–0.73)⁎ 0.66 (0.60–0.71)⁎

B 0.54 (0.47–0.59)⁎ 0.68 (0.63–0.73)⁎ 0.67 (0.62–0.73)⁎

C 0.56 (0.50–0.61) 0.77 (0.72–0.80) 0.84 (0.79–0.87)
D 0.60 (0.55–0.67) 0.82 (0.77–0.86) 0.88 (0.84–0.91)

ðv̂;ΛÞR A 0.68 (0.62–0.74) 0.83 (0.79–0.87)⁎ 0.89 (0.85–0.91)
B 0.71 (0.66–0.77) 0.83 (0.78–0.86)⁎ 0.89 (0.85–0.91)
C 0.71 (0.66–0.76) 0.85 (0.81–0.88) 0.90 (0.86–0.93)
D 0.70 (0.64–0.76) 0.87 (0.84–0.90) 0.92 (0.88–0.94)

ðv̂;ΛÞL A 0.72 (0.66–0.76) 0.85 (0.81–0.88) 0.89 (0.86–0.92)⁎

B 0.69 (0.64–0.75) 0.84 (0.81–0.88) 0.88 (0.84–0.91)⁎

C 0.70 (0.65–0.76) 0.85 (0.82–0.88) 0.91 (0.87–0.93)
D 0.71 (0.66–0.75) 0.88 (0.84–0.90) 0.93 (0.90–0.95)

Area under the ROC curve. Numbers within parentheses are the 95% confidence interval.
The ‘⁎’ indicates significant difference (p b 0.001) between implementation D and A, B or
C for each respective feature and cohort comparison.
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Nonetheless, the use of different models in the longitudinal acquisi-
tion could show up in the linear fit residuals ξ (cfr. Longitudinal trend
section). Indeed, testing the ξ distributions revealed a significant alter-
ation in implementation A only (p b 0.001), which would suggest that
the adoption of an intra-subject template (used in B, C and D) is suffi-
cient to tame the inter-scanner reproducibility uncertainty. This finding
agreeswith Jovicich et al. (2013), where the introduction of longitudinal
methods for volumes extraction provides a lower and more homoge-
neous reproducibility error across different scanners.

Another point is the role of laterality. In this studywe treated left and
right hippocampi equally and separately to avoid any laterality bias in
the results.

The significance of a performance superiority of the left side was
investigated by comparing the R and L AUC values with a t-test, regard-
less of the implementation and cohort comparison, grouping only by
feature (v̂, Λ and ðv̂;ΛÞ). For instance, we tested the pooled set of AUC
values for v̂R vs. v̂L taking all implementations (A–D) and cohort compar-
ison shown in Table 3 (i.e., 12 values). The one-sample t-test was used
to assesswhether themeanof the difference AUCL−AUCRwas compat-
ible with zero.
Table 4
Performance comparison.

Impl. CTRL/MCI-co CTRL/A

v̂ Λ ðv̂;ΛÞ v̂

R A 0.79 0.69 0.83⁎† 0.86
B 0.79 0.71 0.83⁎† 0.85
C 0.82 0.78 0.85† 0.87
D 0.82 0.83 0.87⁎† 0.87

L A 0.82 0.68 0.85† 0.88
B 0.83 0.68 0.84† 0.88
C 0.84 0.77 0.85† 0.89
D 0.84 0.8 0.88⁎† 0.89

Performance (AUC) comparison for v̂, Λ and the combinedmarker. Significant changes (p b 0.00
are not significantly different from 0.5.
Results indicated that the R/L AUC differencewas significant for v̂LNv̂R,
(p b 0.001), moderately significant for ΛR N ΛL (p b 0.01) and not signifi-
cant for ðv̂;ΛÞ.

The left hippocampus is usually smaller but AD prediction accuracy
is less clearly tied to laterality, even though the left side seems to have
a prominent role as discussed in Apostolova et al. (2010), Okonkwo
et al. (2012). Our findings are in keeping with a meta-analysis pooling
together data from several studies, showing that left hippocampal atro-
phy is usually more severe than the right one (Shi et al., 2009) and with
Frankó et al. (2013), where the volume loss in MCI and AD was signifi-
cantly lower in the left hemisphere than in the right one.

Speculation on theweight of laterality in ADprediction is outside the
scope of this study. There are though important physiological findings
linking the hippocampal laterality to potential mechanisms of neurode-
generation. In a series of elderly subjects with cognitive disturbance of
increasing degrees of severity, a serum marker of oxidative stress was
shown to directly correlate with glucose metabolism of the left tempo-
ral lobe – including medial structures – but not of the right one (Picco
et al., 2014). Also, the multifunctional mitochondrial enzyme 17 β-
hydroxysteroid dehydrogenase type 10, with high-affinity binding to
amyloid-beta peptides, is more expressed in the left than in the right hip-
pocampus in patients with AD but not in patients with vascular dementia
(Hovorkova et al., 2008).

That said, the bilateral average usually offers a more robust estima-
tor. In all implementations the standard deviation of the bilateral aver-
age (σRL) is smaller than the mono-lateral counterparts. The relative
measure 2σRL/(σR + σL) ranges in 92%–96% for v̂ and 80%–90% for Λ.
This suggests that informed clinical use of atrophy rate should take
into account both hippocampi, as we did in Table 5 and in Fig. 6.

Longitudinal trend and combined markers

The annualized volume loss (atrophy rate) is in par with literature
results (Barnes et al., 2009; Leung et al., 2010). Although other authors
report different average values (Morra et al., 2009; Wolz et al., 2010b;
Schuff et al., 2009), these values do not contrast with our findings due
to the relatively large reported confidence intervals and possibly be-
cause of a potential difference in region definition, subjects selection
and methodology, as also discussed in the Barnes et al. (2009) meta-
analysis.

Compared to amore recentmeta-analysis by Fraser et al. (2015), the
present annual atrophy rate in elderly controls (1.6%) is higher than the
mean estimate reported in themeta-analysis (1.12%). However, there is
a rather high variability among studies, mainly accounted for by aging
and segmentation methods since 42% of reviewed papers reported
values close or even higher than ours. In Fraser et al. (2015) atrophy
rate in the elderly was lower with automatic segmentation methods
than with the reference manual segmentation. This bias is attributed
from the authors to inconsistencies of automatic methods allowing the
D MCI-nc/MCI-co

Λ ðv̂;ΛÞ v̂ Λ ðv̂;ΛÞ
0.69 0.89† 0.58‡ 0.67 0.66⁎

0.73 0.88† 0.58‡ 0.63 0.64
0.84 0.90† 0.62 0.64 0.66
0.89 0.92⁎ 0.62 0.71 0.72⁎

0.66 0.90† 0.61 0.62 0.66
0.67 0.88† 0.61 0.63 0.67⁎

0.84 0.91⁎† 0.64 0.71 0.71⁎

0.88 0.93⁎† 0.64 0.72 0.73⁎

1) aremarked as ‘⁎’ for the test ðv̂;ΛÞvs. v̂; ‘†’ for the test ðv̂;ΛÞvs. Λ. ‘‡’ shows the AUCwhich
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Fig. 5. Baseline volume v̂ and combinedmarkers ðv̂;ΛÞperformance comparison and implementation dependence. Area under the ROC curve (AUC) is shown for CTRL vs. MCI-co (full line)
and CTRL vs. AD subjects (dotted line).
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analysis of regions close to the hippocampus but with a lower atrophy
rate than the hippocampus itself. This explanation seems consistent
with the findings by Mulder et al. (2014) showing that manual segmen-
tation produced higher atrophy rates than Freesurfer (Reuter et al.,
2012b) or FIRST (Patenaude et al., 2011). In this regard, our method
seems closer to the referencemanual segmentation than other automatic
methods and, as such, potentially more accurate.

In terms of discrimination power among groups, rawperformance of
volume is comparable to Lötjönen et al. (2011) (CTRL / AD AUC= 0.89)
and atrophy rate relates to those in Wolz et al. (2010b) where their
method delivers AUC = 0.88–0.92 for CTRL vs. AD, AUC = 0.83–0.86
Table 5
Sample size calculation.

Impl. CTRL MCI-nc MCI-co AD

A 267 (210–357) 268 (211–359) 88 (69–117) 85 (67–114)
B 153 (120–204) 169 (133–227) 77 (61–104) 101 (79–135)
C 91 (72–122) 103 (81–138) 58 (46–78) 42 (33–57)
D 25 (20–33) 45 (35–60) 33 (26–44) 33 (26–44)

Estimated sample sizes for both arms that would be needed to detect a 25% reduction in
atrophy in all clinical cohorts and implementations. Numbers are given at fixed α =
0.05 and for power 1 − β = 0.8 (0.7− 0.9).
for CTRL vs. MCI-co, and AUC = 0.71–0.72 for MCI-nc vs MCI-co; num-
bers that agree with our integrated implementation D within the CL.

To be clinically relevant, the use of repeated scans should improve
on clinical group discrimination, and with respect to the baseline vol-
ume information.

Results indicate that we can get substantially more insight only using
implementationD,which comes at the expense of a partial segmentation,
that is one that does not deliver a tracing around the anatomical structure.
This can be understood if we consider that in hippocampal segmentation
literature near-boundary voxels are thosewho carry the burden of uncer-
tainty (in our study, the threshold applied to the probabilistic map is the
major source of error). Giving up the tracing we (re-)discover that the
probabilistic map does carry a significant information.

If we compare the effect of the implementation on the longitudinal
and baseline values while fixing the cohort comparison and feature
(Table 3), we find evidence that the use of an intra-subject template
(impl. B) is not enough to make the difference. The decisive approach
is the unified segmentation, in either variant (C and D).

In clinical practice physicians are used to evaluate basal information
on patient status, generate diagnostic hypothesis, plan treatment and
then evaluate response in the longitudinal assessment. Moreover the
trend observed in longitudinal assessment adds value to confirm or
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put in discussion the original assumption. Theoretically, this longitudi-
nal evaluation sounds more robust because intra-subject variance due
to confounders is smaller than between-subject variance in cross-
sectional data. Hence a longitudinal measure of hippocampal atrophy
could in principle be more informative than a spot measure whenever
taken during the patient history.

Translated into practice this would be similar to the advantage to
have – for instance – serial MMSE scores during patient follow-up as a
measure of disease worsening, but based on a solid neurodegeneration
marker. The pathological basis of our assumption is the ongoing neuro-
degeneration process in MTL structures during the early stages of the
disease leading to progressive atrophy that can be precisely detected
by adequate MRI measures.

As closing remark, the shorter the follow-up time, the higher the need
for sophisticated analysis tools. Probably a longer (say 5 years) period
would allow simpler methods to detect significant changes, although
that would void their need as the information would overlap with more
direct and simpler approaches. Restricting the investigation to the time-
varying hippocampal volume, it would be interesting to know whether
this measure (on 2-y period and with 1.5 T images) has reached an
upper limit in terms of added value. This could perhaps be challenged
by a longitudinal extension to the harmonized hippocampal segmenta-
tion study.

Study limitations

We considered 1.5 T images only. Surely 3 T images could provide
better contrast and potentially a more reliable segmentation (Chow
et al., 2015). In practice though, this and other studies (Lötjönen et al.,
2011; Macdonald et al., 2014) show that the advantages of 3 T images
do not necessarily translate into a decidedly smaller variance in test/
re-test conditions. Besides, clinical practice and still many trials must
cope with 1.5 T scanners. These reasons would qualify the present
study as delivering a lower bound, on which the use of better scanners
and acquisition protocols should only improve.

In addition, the use of a preliminary release (100 out of the now
available 135 labels) of the cross-sectional gold-standard tracings –
Fig. 6. Box plot of the bilateral average of the relative annualized loss λ on the CTRL and the
‘AD-like’ (AD + MCI-co) cohorts. Vertical lines shows three possible cut-off values:
maximum accuracy (solid line), 95% sensitivity and 95% specificity (dashed lines). The
median and its 95% conf. interval are marked with a dot and triangles on each bar.
without a longitudinal benchmark – did not provide a hint to the longi-
tudinal performance achievable by a given algorithm. Perhaps a further
evolution of the hippocampal protocol study could help in assessing
new methods cross-sectional as well as longitudinal performance.

Another point arises from the use of the hippocampal volume and its
derivative marker Λ, as they do not necessarily implement the most
sensitive measure of early AD. For instance, more sophisticated ap-
proaches based on local geometry measures could bemore informative
(see Frankó et al. (2013)). Still, the volume is a rather straightforward
and robustmeasure whichmore easily serves the purpose of confronta-
tion among algorithms and studies. In addition, the hippocampal vol-
ume is now a widely accepted marker among clinicians.

Wemust also consider that the cohorts in this study consist of rather
elderly subjects. It is conceivable that younger subjects (i.e., 40–60 y)
exhibit smaller longitudinal variability than their elderly counterparts.
In this case, the distinction between healthy controls and a population
at risk could be made more substantial and a longitudinal marker
would be instrumental. Further studies are needed on relatively young
subjects.
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Appendix A. Segmentation algorithm

TheGDIseg algorithm is based on a set of manually traced segmenta-
tions by expert and certified readers from the HarP project. At the time
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of this writing, 100 manual tracings were made available (58 1.5 T and
42 3 T)

ReferenceHarP imageswere processed as in Image processing section.
In addition we extracted the VOIs from the manually segmented masks,
using the same coordinates found for extracting the VOIs from the MRI.

We refer to the set of VOIs from the HarP MR images as Template
Boxes (TBs) and the set of the corresponding segmentedmasks as Tem-
plate Masks (TMs), both naturally comingwith the right (R) and left (L)
label. A pictorial overview of the segmentation process is shown in sup-
plemental Fig. S1.

For each new segmentation, the MRI goes through the pre-process
steps up to the extraction of both hippocampal VOIs (target VOIs).
Subsequently, each TB is mapped onto the target VOI with a deformable
registration transform, implemented in ITK with the “Diffeomorphic
Demons” algorithm (Thirion (1998) and http://hdl.handle.net/1926/
510). The resulting deformation field – one for each TB – is applied to
the corrensponding TM.

At this point of the procedure, we have 100 deformed TBs (δTBs) and
TMs (δTMs) to map the target VOI (L and R VOIs are run separately). Nat-
urally, the more similar the original TB is to the target VOI, the lesser de-
formation it experiences and themore it ideallymaps onto the target VOI.

A probabilistic atlas A is generated by weighted average of all de-
formed TMs, followed by a normalization. All VOIs, TBs, TMs and their de-
formed counterparts (δTBs, δTMs) have the samedimensions andnumber
of voxels, so that we can write

A ¼
XNt

i¼1

wi δTMi

where Nt is the number of templates.
In order to find the weights wi, the TBs are ranked according to the

Pearson correlation coefficient r with the target VOI. The correlation
coefficient is not computed over the whole volume of the VOI, but on
a subset of voxels corresponding to the volume surrounding the TM.
The detailed procedure consists in three steps: a) dilation of the binary
TM (distance of 3 mm), b) mapping of the dilated TM onto both the
target VOI and the TB (voxel selection), c) computation of the correlation
coefficient r between the intensities of both volumes over the selected
voxels.

This procedure is applied to each TB using the related TM as initial
mask to dilate. The dilation step is instrumental to capture the intensity
gradient of the hippocampal borders, thereby ranking TBs according to
their similarity to the target VOI more effectively. If we had used the
whole VOI volume, the correlation coefficient would have been swayed
by intensities coming from tissues unrelated to the hippocampus.

The correlation rank is used to compute the weights in the TMs
average, under the hypothesis that it contains information on the “true
segmentation”. In this sense, correlation values are used as proxies for
the segmentation similarity.

Since we do not know the target VOI true segmentation, we use a
surrogate target δTB* – that is the deformed TB with the best rank – in
place of the target VOI, with the benefit that the true segmentation
δTM* is now available.

Weights are thought to be a simple exponential functions of the
correlation coefficient, they are computed by minimizing the distance
m over the free parameter s (s ≥ 0)

m ¼
X

all voxels

δTM�−

XN
i¼1;i≠i�

wi δTMi

XN
i¼1;i≠i�

wi

0
BBBBB@

1
CCCCCA

2

wi ¼
ri

maxi rið Þ

 �s
where N is the number of templates, i* is the index of the surrogate tar-
get δTB* and ri are the correlation coefficients now computed between
the surrogate target δTB* and the TBs.

Oncewe find the optimal value of the parameter,we have a relation-
ship between the correlation coefficients and theweights, which is then
used to construct the probabilistic atlas.

The weight function optimizes the atlas generation by selecting TBs
with a non-linear proportionality relationship. This step is necessary
to the algorithm accuracy as a simple average (equal weights, s = 0)
of the deformedmasks typically results in smeared out atlas, not always
able to capture the subtle anatomical and intensity differences in the
target VOI.

The optimization is carried out for each target VOI, so that parameter
values are adapted to the target.We found that theweight functionwi is
usually rather steep (s≫ 1), that is only a small number of δTMs contrib-
ute to the probabilistic atlas.

The last step takes the probabilistic atlas A and applies a threshold t
on its intensity values to convert it to a binary mask: A(t) = {xi such as
A(xi) ≥ t}.

The optimal threshold is defined as

t� ¼ max
j

1
n

X
xi∈∂A tð Þ

∇A xið Þ½ �2
8<
:

9=
;

where ∇A is the 3D-gradient of the atlas A, xi is the i − th voxel, ∂A(t) is
the boundary of the thresholded atlas, n is the number of voxels xi
belonging to ∂A(t). That is, the optimal threshold is the intensity value
t* that maximizes the overlap of the thresholded atlas boundary onto
the atlas squared gradient.

Wehave found that themaximizationover the gradient gives superior
performance – in terms of DICE index – compared to the simple intensity
rule

t� ¼ 1
2
max
xi

A xið Þ

The thresholded atlas naturally yields the hippocampal volume v
which is used as base measure in this study.

The performance of the GDIseg procedure was tested on the same
HarP dataset using a 20-fold cross-validation method (kfcv) and it was
evaluated by three standard indexes: DICE (Dc, or F1-score), Recall (Rc,
or sensitivity) and Precision (Pr, or positive predictive value). Results
are shown in supplemental table S2.

Since the 100 images from the HarP database consisted in 58 1.5 T
and 42 3.0 T MRI, we show the performance by field strength, demon-
strating that the segmentation algorithm is not affected by the B-field
intensity.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.10.065.
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