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Summary. The aim of this paper is to develop a general regression framework for

the analysis of manifold-valued response in a Riemannian symmetric space (RSS)

and its association with multiple covariates of interest, such as age or gender, in Eu-

clidean space. Such RSS-valued data arises frequently in medical imaging, surface

modeling, and computer vision, among many others. We develop an intrinsic re-

gression model solely based on an intrinsic conditional moment assumption, avoiding

specifying any parametric distribution in RSS. We propose various link functions to

map from the Euclidean space of multiple covariates to the RSS of responses. We

develop a two-stage procedure to calculate the parameter estimates and determine

their asymptotic distributions. We construct the Wald and geodesic test statistics to

test hypotheses of unknown parameters. We systematically investigate the geometric

invariant property of these estimates and test statistics. Simulation studies and a real

data analysis are used to evaluate the finite sample properties of our methods.
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1. Introduction

Manifold-valued responses in curved spaces frequently arise in many disciplines in-

cluding medical imaging, computational biology, and computer vision, among many

others. For instance, in medical and molecular imaging, it is interesting to delineate

the changes in the shape and anatomy of a molecule. See Figure 1 for four different

examples of manifold-valued data. Regression analysis is a fundamental statistical

tool for relating a response variable to covariate, such as age. In particular, when

both the response and the covariate(s) are in Euclidean space, the classical linear

regression model and its variants have been widely used in various fields (McCullagh

and A.Nelder, 1989). However, when the response is in a Riemannian symmetric

space (RSS) and the covariates are in Euclidean space, developing regression models

for this type of data raises both computational and theoretical challenges. The aim

of this paper is to develop a general regression framework to address these challenges.

Little has been done on the regression analyses of manifold-valued response data.

The existing statistical methods for general manifold-valued data are primarily de-

veloped to characterize the population ‘mean’ and ‘variation’ across groups (Bhat-

tacharya and Patrangenaru, 2003, 2005; Fletcher et al., 2004; Dryden and Mardia,

1998; Huckemann et al., 2010). In contrast, even for the ‘simplest’ directional data,

there is a sparse literature on regression modeling of a single directional response and

multiple covariates (Mardia and Jupp, 2000). In addition, these regression models

of directional data are primarily based on a specific parametric distribution, such

as the von Mises-Fisher distribution (Mardia and Jupp, 2000; Kent, 1982). How-

ever, it can be very challenging to assume useful parametric distributions for general

manifold-valued data, and thus it is difficult to generalize these regression models of

directional data to general manifold-valued data except for some specific manifolds

(Shi et al., 2012; Fletcher, 2013; Kim et al., 2014; Shi et al., 2009; Zhu et al., 2009).

There is also a great interest in developing nonparametric regression models for

manifold-valued response data and multiple covariates (Bhattacharya and Dunson,
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2010, 2012; Samir et al., 2012; Su et al., 2012; Muralidharan and Fletcher, 2012;

Machado and Leite, 2006; Machado et al., 2010; Yuan et al., 2012).

An intriguing question is whether there is a general regression framework for

manifold-valued response in a RSS and covariates in a multidimensional Euclidean

space. The aim of this paper is to give an affirmative answer to such a question.

The theoretical development is challenging but of great interest for carrying out

statistical inferences on regression coefficients. We make five major contributions in

this paper as follows: (i) We propose an intrinsic regression model solely based on

an intrinsic conditional moment for the response in a RSS, thus avoiding specifying

any parametric distributions in a general RSS - the model can handle multiple

covariates in Euclidean space. (ii) We develop several ‘efficient’ estimation methods

for estimating the regression coefficients in this intrinsic model. (iii) We develop

several test statistics for testing linear hypotheses of the regression coefficients. (iv)

We develop a general asymptotic framework for the estimates of the regression

coefficients and test statistics. (v) We systematically investigate the geometrical

properties (e.g., chart invariance) of these parameter estimates and test statistics.

The paper is organized as follows. In Section 2, we review the basic notion

and concepts of Riemannian geometry. In Section 3, we propose the intrinsic re-

gression models and propose various link functions for several specific RSS’s. In

Section 4, we develop estimation and test procedures for the intrinsic regression

models. In Section 5, we carry out a detailed data analysis on the shape of Cor-

pus Callosum (CC) contours obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) study. Finally, we conclude with some discussions in Section

6. Technical conditions, simulation studies, theoretical examples, and proofs are

deferred to the Supplementary document. Our code and data are available from

http://www.bios.unc.edu/research/bias.

2. Differential Geometry Preliminaries

We briefly review some basic facts about the theory of Riemannian geometry and

present more technical details in the Supplementary Report. The reader can refer

to (Helgason, 1978; Spivak, 1979; Lang, 1999) for more details.
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Let M be a smooth manifold and dM be its dimension. A tangent vector of

M at p ∈ M is defined as the derivative of a smooth curve γ(t) with respect to t

evaluated at t = 0, denoted as γ̇(0), where γ(0) = p. The tangent space of M at p

is denoted as TpM and is the set of all tangent vectors at p.

A Riemannian manifold (M,m) is a smooth manifold together with a family

of inner products, m = {mp}, on the tangent spaces TpM’s that vary smoothly

with p ∈ M, and m is called a Riemannian metric. This metric induces a so-called

geodesic distance distM onM. The geodesics are, by definition, the locally distance-

minimizing paths. If the metric space (M,distM) is complete, the exponential map

at p is defined on the tangent space TpM by ExpMp (V ) = γ(1; p, V ), where t →
γ(t; p, V ) is the geodesic with γ(0; p, V ) = p and γ̇(0; p, V ) = V . ExpMp is well-

defined near 0 and is a diffeomorphism on an open neighborhood V of the origin

in TpM onto U with V such that tV ∈ V for 0 ≤ t ≤ 1 and V ∈ V. The inverse

map is the logarithmic map at p, denoted by LogMp . Then, for q ∈ U , distM(p, q) =

‖LogMp (q)‖p. The radius of injectivity ofM at p, denoted by ρ∗(M,p), is the largest

r > 0 such that ExpMp is a diffeomorphism on the open ball Bmp
(0, r) ⊂ TpM

onto an open set in M near p. Any basis in the tangent space TpM induces an

isomorphism from TpM to RdM , and then the logarithmic map Logp provides a

local chart near p. If TpM is endowed with an orthonormal basis, such a chart is

called a normal chart and the coordinates are called normal coordinates.

A Lie group G is a group together with a smooth manifold structure such that

the operations of multiplication and inversion are smooth maps. Many common ge-

ometric transformations of Euclidean spaces that form Lie groups include rotations,

translations, dilations, and affine transformations on Rd. In general, Lie groups can

be used to describe transformations of smooth manifolds.

An RSS is a connected Riemannian manifold M with the property that at each

point, the mapping that reverses geodesics through that point is an isometry. Ex-

amples of RSS’s include Euclidean spaces, Rk, spheres, Sk, projective spaces, PRk,

and hyperbolic spaces, Hk, each with their standard Riemannian metrics. Symmet-

ric spaces arise naturally from Lie group actions on manifolds, see Helgason (1978).

Given a smooth manifold M and a Lie group G, a smooth group action of G on

M is a smooth mapping G × M → M, (a,p) 7→ a · p such that e · p = p and
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(aa′) · p = a · (a′ · p) for all a, a′ ∈ G and all p ∈ M. The group action should

be interpreted as a group of transformations of the manifold M, namely, {La}a∈G,

La(p) = a · p for p ∈ M. The La is a smooth transformation on M and its inverse

is La−1 . The orbit of a point p ∈ M is defined as G(p) = {a · p | a ∈ G}. The

orbits form a partition of M. If M consists of a single orbit, the group action is

transitive or G acts transitively on M, and we call M a homogeneous space. The

isotropy subgroup of a point p ∈ M is defined as Gp = {a ∈ G | a · p = p}. When

G is a connected group of isometries of the RSS M, M can always be viewed as a

homogeneous space, M∼= G/Gp, and the isotropy subgroup Gp is compact.

From now on, we will assume that the manifold M is an RSS and M = G/Gp

with G being a Lie group of isometries acting transitively on M. Geodesics on M
are computed through the action of G on M. Due to the transitive action of the

group G of isometries onM, it suffices to consider only the geodesic starting at the

base point p. Geodesics on M starting from p are the images of the action of a

1-parameter subgroup of G acting on the base point p. That is, for any geodesic

γ on M, γ(·) : R → M, starting from p, there exists a 1-parameter subgroup

c(·) : R→ G such that γ(t) = c(t) · p for all t ∈ R.

3. Intrinsic Regression Model

Let (M,m) be a (C∞) RSS of dimension dM and geodesically complete with an inner

product mp and let G be a Lie group of isometries acting smoothly and transitively

on M with the identity element e.

3.1. Formulation

Consider n independent observations (y1,x1), . . . , (yn,xn), where yi is theM-valued

response variable and xi = (xi1, · · · , xidx)T is a dx× 1 vector of multiple covariates.

Our objective is to introduce an intrinsic regression model for RSS responses and

multiple covariates of interest from n subjects.

The specification of the intrinsic regression model involves three key steps includ-

ing (i) a link function mapping from the space of covariates toM, (ii) the definition

of a residual, and (iii) the action of transporting all residuals to a common space.
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First, we explicitly formalize the link function. From now on, all covariates have

been centered to have mean zero. We consider a single-center link function given by

µ(x, q,β) : Rdx ×M×Rdβ →M, (1)

where µ(x, q,β) is a known link function, q ∈M can be regarded as the intercept or

center, and β = (β1, . . . , βdβ)T is a dβ×1 vector of regression coefficients. Moreover,

it is assumed that µ(x, q,β) satisfies a single-center property as follows:

µ(0, q,β) = µ(x, q,0) = q. (2)

When the regression coefficient vector β equals 0, the link function is independent

of the covariates and thus, it reduces to the single center (or ‘mean’) q ∈M. When

all the covariates are equal to zero, the link function is independent of the regression

coefficients and reduces to the center q ∈ M. An example of the single-center link

function is the geodesic link function in (Kim et al., 2014; Fletcher, 2013), which is

given by

µ(x, q,β) = ExpMq (

dx∑
k=1

xikVk), (3)

where Vk’s are tangent vectors in TqM and β includes all unknown parameters

associated with the tangent vectors.

More generally, we will consider a multicenter link function to account for the

presence of multiple discrete covariates and even a general link function defined as

µ(x,θ) : Rdx ×Θ→M , where θ is a vector of unknown parameters in a parameter

space Θ. For the multicenter link function, θ contains all unknown intercepts,

denoted as q(xD), corresponding to each discrete covariate class and all regression

parameters β corresponding to continuous covariates and their potential interactions

with the discrete variables. However, the details on these link functions are presented

in the Supplementary document, and here, for notational simplicity, we focus on (1)

from now on.

Second, we introduce a definition of “residual” to ensure that µ(xi, q,β) is the

proper “conditional mean” of yi given xi, which is the key concept of many regres-

sion models (McCullagh and A.Nelder, 1989). For instance, in the classical linear

regression model, the response can be written as the sum of the regression function

https://www.researchgate.net/publication/257672097_Geodesic_Regression_and_the_Theory_of_Least_Squares_on_Riemannian_Manifolds?el=1_x_8&enrichId=rgreq-73370db35df34b3ac20459845a8d145c-XXX&enrichSource=Y292ZXJQYWdlOzI5OTI2NjU1MjtBUzozNTgwMzEwNjY5NzYyNTZAMTQ2MjM3MjY2NjQxMA==
https://www.researchgate.net/publication/284531151_Generalized_Linear_Models?el=1_x_8&enrichId=rgreq-73370db35df34b3ac20459845a8d145c-XXX&enrichSource=Y292ZXJQYWdlOzI5OTI2NjU1MjtBUzozNTgwMzEwNjY5NzYyNTZAMTQ2MjM3MjY2NjQxMA==
https://www.researchgate.net/publication/270827454_Multivariate_General_Linear_Models_MGLM_on_Riemannian_Manifolds_with_Applications_to_Statistical_Analysis_of_Diffusion_Weighted_Images?el=1_x_8&enrichId=rgreq-73370db35df34b3ac20459845a8d145c-XXX&enrichSource=Y292ZXJQYWdlOzI5OTI2NjU1MjtBUzozNTgwMzEwNjY5NzYyNTZAMTQ2MjM3MjY2NjQxMA==
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and a residual term and the regression function is the conditional mean of the re-

sponse only when the conditional mean of the residual is equal to zero. Given the

points yi and µ(xi, q,β) on a RSS M, we need to define the residual as “a differ-

ence” between yi and µ(xi, q,β). Assume that yi and µ(xi, q,β) are “close enough”

to each other in the sense that there is an open ball B(0, ρ) ⊂ Tµ(xi,q,β)M such that

for all i = 1, . . . , n,

yi ∈ Expµ(xi,q,β) (B(0, ρ)) or Logµ(xi,q,β)(yi) ⊂ B(0, ρ). (4)

However, according to a result in Le and Barden (2014), Logµ(xi,q,β)(yi) is well

defined under some very mild conditions, which require that
∫
M distM(p, yi)

2dp(yi)

be finite and achieve a local minimum at µ(xi, q,β), where p(yi) is any finite measure

of yi on M. Thus, Logµ(xi,q,β)(yi) makes it a good candidate to play the role of a

‘residual’. These residuals, however, lie on different tangent spaces to M, so it is

difficult to carry out a multivariate analysis of these residuals.

Third, since M is a RSS, this enables us to “transport” all the residuals, sepa-

rately, to a common space, say TpM, by exploiting the fact that the parallel trans-

port along the geodesics can be expressed in terms of the action of G onM. Indeed,

since M is a symmetric space, the base point p and the point µ(xi, q,β) can be

joined in M by a geodesic, which can be seen as the action of a one-parameter

subgroup c(t;xi, q,β) of G such that c(1;xi, q,β) · p = µ(xi, q,β).

We define the rotated residual E(yi,xi; q,β) of yi ∈M with respect to µ(xi, q,β)

as the parallel transport of the actual residual, Logµ(xi,q,β)(yi), along the geodesic

from the conditional mean, µ(xi, q,β), to the base point p. That is,

E(yi,xi; q,β) = Ei(q,β) := Logp

(
c(1;xi, q,β)−1 · yi

)
∈ TpM (5)

for i = 1, . . . , n, where TpM is identified with RdM . The intrinsic regression model

on M is defined by

E[E(yi,xi; q∗,β∗)|xi] = 0, (6)

where (q∗,β∗) denotes the true value of (q,β) and the expectation is taken with

respect to the conditional distribution of yi given xi. Model (6) is equivalent to

E[Logµ(xi,q∗,β∗)
(yi)|xi] = 0 for i = 1, . . . , n, since the tangent map of the action of
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c(1;xi, q∗,β∗)
−1 onM is an isomorphism of linear spaces (invariant under the metric

m) between the fibers of the tangent bundle TM. This model does not assume

any parametric distribution for yi given xi, and thus it allows for a large class of

distributions. The model is essentially semi-parametric, since the joint distribution

of (y,x) is not restricted except by the zero conditional moment requirement in (6).

3.2. A Theoretical Example: The Unit Sphere Sk

We investigate the intrinsic regression model for Sk-valued responses and include

several other examples in the supplementary document. We review some basic facts

about the geometric structure ofM = Sk = {x ∈ Rk+1 : ||x||
2

= 1} (Shi et al., 2012;

Mardia and Jupp, 2000; Healy and Kim, 1996; Huckemann et al., 2010). For q ∈ Sk,
TqS

k is given by TqS
k = {v ∈ Rk+1 : v>q = 0}. The canonical Riemannian metric

on Sk is that induced by the canonical inner product on Rk+1. Under this metric, the

geodesic distance between any two points q and q′ is equal to ψq,q′ = arccos(qTq′)

If the points are not antipodal (i.e. q′ 6= −q), then there is a unique geodesic path

that joins them. Therefore, the radius of injectivity is ρ(Sk) = π. For v ∈ TqS
k, the

Riemannian Exponential map is given by Expq(v) = cos(‖v‖)q + sin(‖v‖)v/ ‖v‖.
(Here, sin(0)/0 = 1.) If q and q′ are not antipodal, the Riemannian Logarithmic

map is given by Logq(q′) = arccos(qTq′)v/ ‖v‖, where v = q′ − (qTq′)q 6= 0.

The special orthogonal group G = SO(k + 1) is a group of isometries on Sk and

acts transitively and simply on Sk via the left matrix multiplication. Specifically,

the rotation matrix Rq,q′ , which rotates q to q′ ∈ Sk, is given by

Rq,q′ = Ik+1 + sin(ψq,q′){q′q̃T − q̃q′
T }+ {cos(ψq,q′)− 1}{q′q′T + q̃q̃T },

where q̃ = {q − (qTq′)q′}/
√

1− (qTq′)2. Thus, q′ = Rq,q′q and Rq,q′v ∈ Tq′S
k, for

any v ∈ TqS
k. Moreover, (−π, π) 3 t 7→ cq′,q(t) · q′ is the unique geodesic curve in

Sk joining q′ with q, where cq′,q(t) takes the form

cq′,q(t) = Ik+1 + sin(t){q̃q′
T − q′q̃T }+ {cos(t)− 1}{q′q′T + q̃q̃T }.

Suppose that we observe {(yi,xi) : i = 1, . . . , n}, where yi ∈ Sk for all i. We

introduce the three key components of our intrinsic regression model for Sk−valued

responses. First, we consider several examples of the general link function µ(xi,θ).

https://www.researchgate.net/publication/41910450_Intrinsic_MANOVA_for_Riemannian_Manifolds_with_an_Application_to_Kendall's_Space_of_Planar_Shapes?el=1_x_8&enrichId=rgreq-73370db35df34b3ac20459845a8d145c-XXX&enrichSource=Y292ZXJQYWdlOzI5OTI2NjU1MjtBUzozNTgwMzEwNjY5NzYyNTZAMTQ2MjM3MjY2NjQxMA==
https://www.researchgate.net/publication/38348790_An_empirical_Bayes_approach_to_directional_data_and_efficient_computation_on_the_sphere?el=1_x_8&enrichId=rgreq-73370db35df34b3ac20459845a8d145c-XXX&enrichSource=Y292ZXJQYWdlOzI5OTI2NjU1MjtBUzozNTgwMzEwNjY5NzYyNTZAMTQ2MjM3MjY2NjQxMA==
https://www.researchgate.net/publication/220049082_In_Directional_Statistics?el=1_x_8&enrichId=rgreq-73370db35df34b3ac20459845a8d145c-XXX&enrichSource=Y292ZXJQYWdlOzI5OTI2NjU1MjtBUzozNTgwMzEwNjY5NzYyNTZAMTQ2MjM3MjY2NjQxMA==
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Specifically, without loss of generality, we fix the “north pole” p = (0, . . . , 0, 1)T ∈
Rk+1 as a base point. Let ej be the (k+1)×1 vector with a 1 at the j-th component

and a 0 otherwise for j = 1, . . . , k. Let q ∈ Sk be the ‘center’, and we consider two

link functions as follows:

µ(xi, q,β) = Expq(

k∑
j=1

f(xi,β)jcp,q(arccos(pTq))ej),

µ(xi, q,β) = c−p,q(arccos(−pTq))(T−1
st,−p((f(xi,β)T ,−1)T )), (7)

where Tst,−p is the stereographic projection mapping from Sk \ {p} onto the d-

dimensional hyperplane Rk×{−1} and f(x,β) is a function mapping from Rdx×Rdβ

to Rk with f(0, ·) = f(·,0) = 0. A simple example of f(·, ·) is f(xi,β) = Bxi, where

B is a k × dx matrix of regression coefficients and β includes all components of B.

Second, we define residuals for our intrinsic regression model. The residual in

(4) requires that yi is not antipodal to µ(xi,θ). In this case, the residual for the

i-th subject is given by Logµ(xi,θ)(yi) = arccos(µ(xi,θ)T yi)vi/||vi||, where vi =

yi − (µ(xi,θ)T yi)µ(xi,θ). However, when yi = −µ(xi,θ) holds, there is an infinite

number of geodesics connecting µ(xi,θ) and yi. In this case, Logµ(xi,θ)(yi) is not

uniquely defined, whereas their geodesic distance is unique. However, according to

the results in Le and Barden (2014), Logµ(xi,q,β)(yi) is well defined almost surely.

Third, we transport all the residuals, separately, to a common space, say TpS
k.

The rotated residual is given by

E(yi,xi;θ) = Logp(cp,µ(xi,θ)(− arccos(pTµ(xi,θ))) · yi). (8)

Our intrinsic regression model is defined by the zero conditional mean assumption

in (6) on the above rotated residuals (8). A graphic illustration of the stereographic

link functions in (7), rotated residual, and parallel transport is given in Figure 2.

Alternatively, we may consider some parametric spherical regression models for

spherical responses. As an illustration, we consider the von Mises-Fisher (vMF)

regression model. Specifically, it is assumed that yi|xi ∼ vMF(µ(xi,θ), κ) or,

equivalently, Rµ(xi,θ),pyi|xi ∼ vMF(p, κ), for i = 1, . . . , n, where κ is a positive

concentration parameter and is assumed to be known for simplicity. Calculating

the maximum likelihood estimate of θ is equivalent to solving a score equation
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given by
∑n

i=1 y
T
i ∂θµ(xi,θ) = 0, where ∂θ = ∂/∂θ. Since ||µ(xi,θ)|| = 1 and

{∂θµ(xi,θ)}Tµ(xi,θ) = 0 for all subcomponents of θ, we have

yTi ∂θµ(xi,θ) =
√

2

√
1− (µ(xi,θ)T yi)2

arccos(µ(xi,θ)T yi)
{Rµ(xi,θ),p∂θµ(xi,θ)}TE(yi,xi;θ), (9)

which is a linear combination of the rotated residual.

4. Estimation and Test Procedures

4.1. Generalized Method of Moment Estimators

We consider the generalized method of moment estimator (GMM estimator) to esti-

mate the unknown parameters in model (6) (Hansen, 1982; Newey, 1993; Korsholm,

1999). We may view the TpM-valued function E as a function with values in RdM .

Let h(x; q,β) be a s × dM matrix of functions of (x, q,β) with s ≥ dM + dβ and

Wn be a random sequence of positive definite s× s weight matrices. It follows from

(6) that

E{h(xi; q∗,β∗)E[E(yi,xi; q∗,β∗)|xi]} = 0. (10)

We define Qn(q,β) = [Pn(h(x; q,β)E(y,x; q,β))]T Wn [Pn(h(x; q,β)E(y,x; q,β))] ,

where Pnf(y,x) = n−1
∑n

i=1 f(yi,xi) for a real-vector valued function f(y,x). The

GMM estimator (q̂G, β̂G), or simply (q̂, β̂), of (q,β) associated with (h(·, ·, ·),Wn)

is defined as

(q̂G, β̂G) = argmin
(q,β)∈M×Rdβ

Qn(q,β). (11)

Under some conditions detailed below, we can show the first order asymptotic

properties of (q̂G, β̂G) including consistency and asymptotic normality of GMM-

estimators. We introduce some notation. Let || · || denote the Euclidean norm of a

vector or a matrix; ∂lf(t,β)/{∂(t,β)l} = ∂l(t,β)f(t,β) for l = 1, . . . ; a⊗2 = aaT for

any matrix or vector a; V = Var[h(x; q∗,β∗)E(y,x; q∗,β∗)]; Id is the identity matrix;
d→ and

p→, respectively, denote convergence in distribution and in probability. We

obtain the following results, whose detailed proofs can be found in the supplementary

document.

https://www.researchgate.net/publication/4895197_Large_Sample_Properties_Generalized_Method_of_Moments_Estimators?el=1_x_8&enrichId=rgreq-73370db35df34b3ac20459845a8d145c-XXX&enrichSource=Y292ZXJQYWdlOzI5OTI2NjU1MjtBUzozNTgwMzEwNjY5NzYyNTZAMTQ2MjM3MjY2NjQxMA==
https://www.researchgate.net/publication/243765963_16_Efficient_estimation_of_models_with_conditional_moment_restrictions?el=1_x_8&enrichId=rgreq-73370db35df34b3ac20459845a8d145c-XXX&enrichSource=Y292ZXJQYWdlOzI5OTI2NjU1MjtBUzozNTgwMzEwNjY5NzYyNTZAMTQ2MjM3MjY2NjQxMA==
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Theorem 4.1. Assume that (yi,xi), i = 1, . . . , n, are iid random variables in

M × Rdx. Let (q∗,β∗) be the exact value of the parameters satisfying (6). Let

{Wn}n be a random sequence of s×s symmetric positive semi-definite matrices with

s ≥ dM + dβ.

(a) Under assumptions (C1)-(C5) in the Supplementary document, (q̂G, β̂G) in (11)

is consistent in probability as n→∞.

(b) Under assumptions (C1)-(C4) and (C6)-(C10) in the Supplementary document,

for any local chart (U, φ) on M near q∗ as n→∞, we have

√
n [(φ(q̂G)T , β̂

T

G)T − (φ(q∗)
T ,βT∗ )T ]

d→ NdM+dβ(0,Σφ), (12)

where Σφ = (GTφWGφ)−1GTφWVWGφ(GTφWGφ)−1, in which Gφ is defined in (C9).

Moreover, for any other chart (U, φ′) near q∗, we have

Σφ′ = diag(J(φ′ ◦ φ−1)φ(q∗), Idβ)Σφdiag(J(φ′ ◦ φ−1)φ(q∗), Idβ)T , (13)

where J(·)t denotes the Jacobian matrix evaluated at t.

Theorem 4.1 establishes the first-order asymptotic properties of (q̂G, β̂G) for

the intrinsic regression model (6). Theorem 4.1 (a) establishes the consistency of

(q̂G, β̂G). The consistency result does not depend on the local chart. Theorem 4.1

(b) establishes the asymptotic normality of (φ(q̂G), β̂G) for a specific chart (U, φ)

and the relationship between the asymptotic covariances Σφ′ and Σφ for two different

charts. It follows from the lower-right dβ×dβ submatrix of Σφ′ that the asymptotic

covariance matrix of β̂ does not depend on the chart. However, the asymptotic nor-

mality of q̂G does depend on a specific chart. A consistent estimator of the asymp-

totic covariance matrix Σφ is given by (ĜTφWnĜφ)−1ĜTφWnV̂ WnĜφ(ĜTφWnĜφ)−1

with Ĝφ = n−1
∑n

i=1[h(xi; q̂, β̂) ∂
∂(t,β)E(yi,xi;φ

−1(t), β̂)
∣∣
t=φ(q̂)

] and

V̂ = n−1
n∑
i=1

[h(xi; q̂, β̂)E(yi,xi; q̂, β̂)]⊗2.

This estimator is also compatible with the manifold structure of M.

We consider the relationship between the GMM estimator and the intrinsic least

squares estimator (ILSE) of (q,β), denoted by (q̂I , β̂I). The (q̂I , β̂I) minimizes the
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total residual sum of squares GI,n(q,β) as follows:

(q̂I , β̂I) = argmin
(q,β)∈M×Rdβ

GI,n(q,β) = argmin
(q,β)∈M×Rdβ

n∑
i=1

distM(yi,µ(xi, q,β))2. (14)

According to (2), the ILSE is closely related to the intrinsic mean q̂IM of y1, · · · , yn ∈
M, which is defined as

q̂IM = argmin
q∈M

n∑
i=1

distM(yi, q)2 = argmin
q∈M

n∑
i=1

distM(yi,µ(0, q,β))2.

Recall that µ(0, q,β) is independent of β.

The (q̂I , β̂I) can be regarded as a special case of the GMM estimator when we set

Wn = IdM+dβ and h’s rows hj(x, q,β) = (Lc(1;x,q,β)−1.∗(∂tjµ(x, φ−1(t),β)|t=φ(q)))
T

for j = 1, . . . , dM, and hdM+j(x, q,β) = (Lc(1;x,q,β)−1.∗(∂βjµ(x, q,β)))T for j =

1, . . . , dβ, where (U, φ) is a chart on M and each row of h(x, q,β) is in R1×dM via

the identification TpM∼= RdM corresponding to (U, φ). It follows from Theorem 4.1

that under model (6), (q̂I , β̂I) enjoys the first-order asymptotic properties as well.

4.2. Efficient GMM Estimator

We investigate the most efficient estimator in the class of GMM estimators. For a

fixed h(·; ·, ·), the optimal choice of W is W opt = V −1, and the use of Wn = W opt

leads to the most efficient estimator in the class of all GMM estimators obtained

using the same h(·) function (Hansen, 1982). Its asymptotic covariance is given by

(GφV
−1Gφ)−1. An interesting question is what the optimal choice of hopt(·) is.

We first introduce some notation. For a chart (U, φ) on M near q∗, let

Dφ(x) = E[∂(t,β)E(y,x;φ−1(t),β∗)
∣∣
t=φ(q∗)

|x]T , h∗φ(x) = Dφ(x)Ω(x)−1,

W ∗φ = E[Dφ(x)Ω(x)−1Dφ(x)T ]−1, Ω(x) = Var(E(y,x; q∗,β∗)|x).

Let (q̂∗, β̂
∗
) be the GMM estimator of (q,β) based on h∗φ(x) and W ∗φ . Generally, we

obtain an optimal result of hopt(·), which generalizes an existing result for Euclidean-

valued responses and covariates (Newey, 1993), as follows.

Theorem 4.2. Suppose that (C2)-(C8) and (C10)-(C12) in the Supplementary

document hold for h∗φ(x) and W ∗φ . We have the following results:

https://www.researchgate.net/publication/4895197_Large_Sample_Properties_Generalized_Method_of_Moments_Estimators?el=1_x_8&enrichId=rgreq-73370db35df34b3ac20459845a8d145c-XXX&enrichSource=Y292ZXJQYWdlOzI5OTI2NjU1MjtBUzozNTgwMzEwNjY5NzYyNTZAMTQ2MjM3MjY2NjQxMA==
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(i) (q̂∗, β̂
∗
) is asymptotically normally distributed with mean 0 and covariance W ∗φ ;

(ii) (q̂∗, β̂
∗
) is optimal among all GMM estimators for model (6);

(iii) (q̂∗, β̂
∗
) is independent of the chart.

Theorem 4.2 characterizes the optimality of h∗φ(x) and W ∗φ among regular GMM

estimators for model (6). Geometrically, (q̂∗, β̂
∗
) is independent of the chart. Specif-

ically, for any other chart (U, φ′) near q∗, we have

Dφ′(x) = diag
(
[J(φ′ ◦ φ−1)φ(q∗)]

−1, Idβ
)T
Dφ(x),

h∗φ′(x) = diag
(
[J(φ′ ◦ φ−1)φ(q∗)]

−1, Idβ
)T
h∗φ(x),

W ∗φ′ = diag(J(φ′ ◦ φ−1)φ(q∗), Idβ)W ∗φdiag(J(φ′ ◦ φ−1)φ(q∗), Idβ)T .

Thus, the quadratic form in (11) associated with h∗φ′(x) and W ∗φ′ is the same as

that which is associated with h∗φ(x) and W ∗φ . It indicates that the GMM estimator

(q̂∗, β̂
∗
)φ based on h∗φ(x) and W ∗φ is independent of the chart (U, φ).

The next challenging issue is the estimation of Dφ(x) and Ω(x). We may pro-

ceed in two steps. The first step is to calculate a
√
n-consistent estimator (q̂I , β̂I)

of (q,β), such as the ILSE. The second step is to plug (q̂I , β̂I) into the functions

Ei(q̂I , β̂I) and ∂(t,β)E(yi,xi;φ
−1(t), β̂I)|t=φ(q̂I) for all i and then use them to con-

struct the nonparametric estimates of Dφ(x) and Ω(x) (Newey, 1993). Specifi-

cally, let K(·) be a dx-dimensional kernel function of the l0-th order satisfying∫
K(u1, . . . , udx)du1 . . . dudx = 1,

∫
ulsK(u1, . . . , udx)du1 . . . dudx = 0 for any s =

1, . . . , dx and 1 ≤ l < l0, and
∫
ul0s K(u1, . . . , udx)du1 . . . dudx 6= 0. Let Kτ (u) =

τ−1K(u/τ), where τ > 0 is a bandwidth. Then, a nonparametric estimator of

Dφ(x) can be written by

D̂φ(x)T =

n∑
i=1

ωi(x; τ)∂(t,β)E(yi,xi;φ
−1(t), β̂I)|t=φ(q̂I), (15)

where ωi(x; τ) = Kτ (x − xi)/{
∑n

k=1Kτ (x − xk)}. Although we may construct

a nonparametric estimator of Ω(x) similar to (15), we have found that even for

moderate dx, such an estimator is numerically unstable. Instead, we approximate

Ω(xi) = Var(E(y,x; q∗,β∗)|x = xi) by its mean VE∗ = Var(E(y,x; q∗,β∗)). In this

https://www.researchgate.net/publication/243765963_16_Efficient_estimation_of_models_with_conditional_moment_restrictions?el=1_x_8&enrichId=rgreq-73370db35df34b3ac20459845a8d145c-XXX&enrichSource=Y292ZXJQYWdlOzI5OTI2NjU1MjtBUzozNTgwMzEwNjY5NzYyNTZAMTQ2MjM3MjY2NjQxMA==
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case, h∗φ(x) and W ∗φ , respectively, reduce to

h∗E,φ(x) = Dφ(x)V −1
E∗ and W ∗E,φ = {E[Dφ(x)V −1

E∗ Ω(x)V −1
E∗ Dφ(x)T ]}−1. (16)

For any local chart (U, φ) with q̂I ∈ U , we construct the estimators of h∗E,φ and

W ∗E,φ as follows. Let V̂ (q,β) = PnE(y,x; q,β)⊗2, we have

ĥE,φ(xi) = D̂φ(xi)V̂ (q̂I , β̂I)
−1, ŴE,φ =

{
Pn[ĥE,φ(x)E(y,x; q̂I , β̂I)]

⊗2
}−1

. (17)

Then, we substitute ĥE,φ and ŴE,φ into (11) and then calculate the GMM estimator

of (q,β), denoted by (q̂E , β̂E). Similar to (q̂∗, β̂
∗
), it can be shown that (q̂E , β̂E) is

independent of the chart (U, φ) onM near q∗ with q̂I ∈ U . For sufficiently large n,

distM(q̂I , q∗) can be made sufficiently small and any maximal normal chart on M
centered at q̂I contains the true value q∗ with probability approaching one.

We calculate a one-step linearized estimator of (q,β), denoted by (q̃E , β̃E), to ap-

proximate (q̂E , β̂E). Computationally, the linearized estimator does not require iter-

ation, whereas, theoretically, it shares the first asymptotic properties with (q̂E , β̂E)

as shown below. Specifically, in the chart (U, φ) near q̂I , we have

(t̃TE,φ, β̃
T
E,φ)T − (φ(q̂I)

T , β̂
T

I )T = (18){
−Pn[ĥE,φ(x)∂(t,β)E(y,x;φ−1(t), β̂I)|t=φ(q̂I)]

}−1
Pn
[
ĥE,φ(x)Ei(y,x; q̂I , β̂I)

]
.

Furthermore, if (U ′, φ′) is another chart on M near q̂I , then we have

(t̃TE,φ′ , β̃
T
E,φ′)

T − (φ′(q̂I)
T , β̂

T

I )T

=

(
Jφ(q̂I)(φ

′ ◦ φ−1) 0

0 Idβ

)
[(t̃TE,φ, β̃

T
E,φ)T − (φ(q̂I)

T , β̂
T

I )T ].

Thus, β̃E,φ is independent of the chart φ and {t̃E,φ − φ(q̂I) |φ is a chart on M}
defines a unique tangent vector to M at q̂I . Moreover, if φ and φ′ are maximal

normal charts centered at q̂I , then γφ(τ) = φ−1(τ t̃E,φ) and γφ′(τ) = φ′−1(τ t̃E,φ′)

are two geodesic curves onM starting from the same point q̂I with the same initial

velocity vector, and thus these two geodesics coincide. Therefore, φ−1(t̃E,φ) is in-

dependent of the normal chart φ centered at q̂I . Finally, we can establish the first

order asymptotic properties of (q̃E , β̃E) as follows.
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Theorem 4.3. Assume that (C2)-(C11) and (C13)-(C18) are valid. As n→∞,

we have the following results:

√
n [(φ(q̃E)T , β̃

T
E)T − (φ(q∗)

T ,βT∗ )T ]
d→ NdM+dβ(0,ΣE,φ), (19)

where ΣE,φ = (Gφ,h∗E,φW
∗
E,φGφ,h∗E,φ)−1. In addition, ΣE,φ is invariant under the

change of coordinates in M and the asymptotic distribution of β̃E does not depend

on the chart (U, φ). Also, if we set

Σ̂E,φ = n−1
{
Pn[D̂φ(x)V̂ (q̂I , β̂I)

−1D̂φ(x)T ]
}−1

×
{
Pn[D̂φ(x)V̂ (q̂I , β̂I)

−1E(y,x, q̃I , β̃I)
⊗2V̂ (q̂I , β̂I)

−1D̂φ(x)T ]
}

(20)

×
{
Pn[D̂φ(x)V̂ (q̂I , β̂I)

−1D̂φ(x)T ]
}−1

,

then nΣ̂E,φ is a consistent estimator of ΣE,φ, i.e. nΣ̂E,φ
p→ ΣE,φ. This estimator is

also compatible with the manifold structure of M.

Theorem 4.3 establishes the first-order asymptotic properties of (q̃E , β̃E). If

Ω(x) = Ω for a constant matrix Ω, then it follows from Theorems 4.2 and 4.3

that (q̃E , β̃E) is optimal. If Ω(x) does not vary dramatically as a function of x,

then (q̃E , β̃E) is nearly optimal. If Ω(x) varies dramatically as a function of x,

one can replace V̂ (q̂I , β̂I) in (17) by Ω̂(xi) to obtain ĥE,φ(x) = D̂φ(x)Ω̂(x)−1 and

ŴE,φ = {Pn[ĥE,φ(x)E(y,x; q̂I , β̂I)]
⊗2}−1, where Ω̂(xi) is a consistent estimator of

Ω(xi) for all i, then the optimality of (q̃E , β̃E) still holds. We have the following

theorem.

Theorem 4.4. Assume that (C2)-(C17) and (C19) are valid. Then, as n→∞,

we have

√
n [(φ(q̃E)T , β̃

T
E)T − (φ(q∗)

T ,βT∗ )T ]
d→ NdM+dβ(0,Σ∗φ), (21)

in which Σ∗φ is given in Theorem 4.2. If we set Σ̂E,φ = n−1
{
Pn[D̂φ(x)Ω̂(x)−1D̂φ(x)T ]

}−1
,

then nΣ̂E,φ is a consistent estimator of Σ∗φ.

4.3. Computational Algorithm

Computationally, an annealing evolutionary stochastic approximation Monte Carlo

(SAMC) algorithm (Liang et al., 2010) is developed to compute (q̂I , β̂I) and (q̂E , β̂E).

https://www.researchgate.net/publication/265327201_Advanced_Markov_Chain_Monte_Carlo_Methods_Learning_from_Past_Samples?el=1_x_8&enrichId=rgreq-73370db35df34b3ac20459845a8d145c-XXX&enrichSource=Y292ZXJQYWdlOzI5OTI2NjU1MjtBUzozNTgwMzEwNjY5NzYyNTZAMTQ2MjM3MjY2NjQxMA==
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See the supplementary document for details. Although some gradient-based opti-

mization methods, such as the quasi-Newton method, have been used to optimize

Qn(q,β) (Kim et al., 2014; Fletcher, 2013), we have found that these methods

strongly depend on the starting value of (q,β). Specifically, when E(y,x; q,β) takes

a relatively complicated form, Qn(q,β) is generally not convex and can easily con-

verge to local minima. Moreover, we have found that it can be statistically mis-

leading to carry out statistical inference, such as the estimated standard errors of

(q̂E , β̂E), at those local minima. The annealing evolutionary SAMC algorithm con-

verges fast and distinguishes from many gradient-based algorithms, since it possesses

a nice feature in that the moves are self-adjustable and thus not likely to get trapped

by local energy minima. The annealing evolutionary SAMC algorithm (Liang et al.,

2010) represents a further improvement of stochastic approximation Monte Carlo

for optimization problems by incorporating some features of simulated annealing

and the genetic algorithm into its search process.

4.4. Hypotheses Testing

Many scientific questions involve the comparison of theM-valued data across groups

and subjects and the detection of the change in theM-valued data over time. Such

questions usually can be formulated as testing the hypotheses of q and β. We

consider two types of hypotheses as follows:

H
(1)
0 : C0β = b0 vs. H

(1)
1 : C0β 6= b0, (22)

H
(2)
0 : q = q0 vs. H

(2)
1 : q 6= q0, (23)

where C0 is an r× dβ matrix of full row rank and q0 and b0 are specified inM and

Rr, respectively. Further extensions of these hypotheses are definitely interesting

and possible. For instance, for the multicenter link function, we may be interested

in testing whether all intercepts are independent of the discrete covariate class.

We develop several test statistics for testing the hypotheses given in (22) and

(23). First, we consider the Wald test statistic for testing H
(1)
0 against H

(1)
1 in (22),

which is given by

W
(1)
n,φ = (C0β̃E − b0)T

[
C0Σ̂E,φ;22CT

0

]−1
(C0β̃E − b0),

https://www.researchgate.net/publication/265327201_Advanced_Markov_Chain_Monte_Carlo_Methods_Learning_from_Past_Samples?el=1_x_8&enrichId=rgreq-73370db35df34b3ac20459845a8d145c-XXX&enrichSource=Y292ZXJQYWdlOzI5OTI2NjU1MjtBUzozNTgwMzEwNjY5NzYyNTZAMTQ2MjM3MjY2NjQxMA==
https://www.researchgate.net/publication/265327201_Advanced_Markov_Chain_Monte_Carlo_Methods_Learning_from_Past_Samples?el=1_x_8&enrichId=rgreq-73370db35df34b3ac20459845a8d145c-XXX&enrichSource=Y292ZXJQYWdlOzI5OTI2NjU1MjtBUzozNTgwMzEwNjY5NzYyNTZAMTQ2MjM3MjY2NjQxMA==
https://www.researchgate.net/publication/257672097_Geodesic_Regression_and_the_Theory_of_Least_Squares_on_Riemannian_Manifolds?el=1_x_8&enrichId=rgreq-73370db35df34b3ac20459845a8d145c-XXX&enrichSource=Y292ZXJQYWdlOzI5OTI2NjU1MjtBUzozNTgwMzEwNjY5NzYyNTZAMTQ2MjM3MjY2NjQxMA==
https://www.researchgate.net/publication/270827454_Multivariate_General_Linear_Models_MGLM_on_Riemannian_Manifolds_with_Applications_to_Statistical_Analysis_of_Diffusion_Weighted_Images?el=1_x_8&enrichId=rgreq-73370db35df34b3ac20459845a8d145c-XXX&enrichSource=Y292ZXJQYWdlOzI5OTI2NjU1MjtBUzozNTgwMzEwNjY5NzYyNTZAMTQ2MjM3MjY2NjQxMA==
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where Σ̂E,φ is given in Theorem 4.3 or Theorem 4.4 , and Σ̂E,φ;22 is its lower-right

dβ×dβ submatrix. Since β̃E and its asymptotic covariance matrix are independent

of the chart on M, the test statistic W
(1)
n,φ is independent of the chart.

Second, we consider the Wald test statistic for testing the hypotheses given in

(23) when there is a local chart (U, φ) onM containing both q̂E and q0. Specifically,

the Wald test statistic for testing (23) is defined by

W
(2)
n,φ = (φ(q̃E)− φ(q0))T

[
(IdM 0)Σ̂E,φ(IdM 0)T

]−1
(φ(q̃E)− φ(q0)).

Third, we develop an intrinsic Wald test statistic, that is independent of the chart,

for testing the hypotheses given in (23). We consider the asymptotic covariance

estimator Σ̂E,φ based on q̃E and its upper-left dM × dM submatrix Σ̂E,φ;11. Since

both are compatible with the manifold structure of M, Σ̂E,φ;11 defines a unique

non-degenerate linear map Σ̂E;11(·) from the tangent space Tq̃EM ofM at q̃E onto

itself, which is independent of the chart (U, φ). In a maximal normal chart centered

at q̃E , then in any such normal chart, the Wald test statistic for testing (23) is given

by

W
(2)
M,n = mq̃E((Σ̂E;11)−1(Logq̃Eq0),Logq̃Eq0).

We obtain the asymptotic null distributions of W
(1)
n,φ, W

(2)
n,φ, and W

(2)
M,n as follows.

Theorem 4.5. Let (U, φ) be a local chart on M so that q̃E , q∗ ∈ U . Assume

that all conditions in Theorem 4.3 hold. Under the corresponding null hypothesis,

we have the following results:

(i) W
(1)
n,φ and W

(2)
n,φ are asymptotically distributed as χ2

r and χ2
dM

, respectively;

(ii) W
(1)
n,φ is independent of the chart (U, φ);

(iii) W
(2)
n,φ′ = W

(2)
n,φ + op(1), for any other local chart (U, φ′) with q̃E and q0 in U ;

(iv) W
(2)
n,φ = W

(2)
M,n, for any normal chart (U, φ) centered at q̃E.

Theorem 4.5 has several important implications. Theorem 4.5 (i) characterizes

the asymptotic null distributions of W
(1)
n,φ and W

(2)
n,φ. Theorem 4.5 (ii) shows that

W
(1)
n,φ does not depend the choice of the chart (U, φ) onM. Theorem 4.5 (iii) shows

that W
(2)
n,φ′ and W

(2)
n,φ are asymptotically equivalent for any two local charts. Theorem

4.5 (iv) shows that W
(2)
n,φ′ can be used to construct an intrinsic test statistic.
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We consider a local alternative framework for (22) and (23) as follows:

H
(1)
0 : C0β = b0 vs. H

(1)
1,n : C0β = b0 + δ/

√
n+ o(1/

√
n), (24)

H
(2)
0 : q = q0 vs. H

(2)
1,n : q = Expq0

(v/
√
n+ o(1/

√
n)), (25)

where δ and v are specified (and fixed) in Rr and Tq0
M, respectively, and we

establish the asymptotic distributions of W
(1)
n,φ, W

(2)
n,φ, and W

(2)
M,n under these local

alternatives.

Theorem 4.6. Let (U, φ) be a local chart on M so that q̃E , q∗ ∈ U . Assume

that all conditions in Theorem 4.3 hold. Under the local alternatives (24) and (25),

we have the following results:

(i) Under H
(1)
1,n, W

(1)
n,φ is asymptotically distributed as noncentral χ2

r with noncen-

trality parameter δT
[
C0Σ̂E,φ;22CT

0

]−1
δ.

(ii) Under H
(2)
1,n, W

(2)
n,φ is asymptotically distributed as noncentral χ2

dM
, with non-

centrality parameter J(φ ◦ Expq0
)0(v)T

[
Σ̂E,φ;11

]−1
J(φ ◦ Expq0

)0(v). The noncen-

trality parameter does not depend on the choice of the coordinate system at q0. Here,

J(f)a denotes the Jacobian matrix of map f at a.

(iii) Under H
(2)
1,n, W

(2)
M,n is asymptotically distributed as noncentral χ2

dM
, with

noncentrality parameter mq̃E((Σ̂E;11)−1(J(Logq̃E)q0
(v)), (J(Logq̃E)q0

(v))). The non-

centrality parameter does not depend on the choice of the coordinate systems at q̃E

and q0, respectively.

We consider another scenario that there are no local charts on M containing

both q̃E and q0. In this case, we restate the hypotheses H
(2)
0 and H

(2)
1 as follows:

H
(2)
0 : distM(q, q0) = 0 vs. H

(2)
1 : distM(q, q0) 6= 0. (26)

We propose a geodesic test statistic given by

Wdist = distM(q̃E , q0)2, (27)

which is independent of the chart (U, φ). Theoretically, we can establish the asymp-

totic distribution of Wdist under both the null and alternative hypotheses as follows.

Theorem 4.7. Assume that all conditions in Theorem 4.5 hold.
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(a) Under H
(2)
0 , nWdist is asymptotically weighted chi-square χ2(λ1, . . . , λdM) dis-

tributed, where the weights λ1, . . . , λdM are the eigenvalues of the matrix ΣE,Logq0
,11,

which is the upper-left dM × dM submatrix of the asymptotic covariance matrix

ΣE,Logq0
of q̃E in a normal chart centered at q0. Moreover, the weights are inde-

pendent, up to a permutation, of the choice of the normal chart centered at q∗.

(b) Under the alternative hypothesis, Wdist is asymptotically normal distributed

and we have

√
n(Wdist − distM(q∗, q0)2)

d→ NdM(0, DT
distΣE,Logq∗ ,11Ddist),

where Ddist is the column vector representation of gradq∗(dist(·, q0)2) with respect

to the orthonormal basis of Tq∗M associated with the normal chart used to represent

the asymptotic covariance of q̃E as the matrix ΣE,Logq∗
. In particular, when q0 is

close to q∗, then

√
n(Wdist − distM(q∗, q0)2)

d→ NdM(0, 4[Logq∗q0]TΣE,Logq∗ ,11[Logq∗q0]).

Theorem 4.7 establishes the asymptotic distribution of Wdist when q̃E and q0 do

not belong to the same chart of M. In practice, the covariance matrix ΣE,Logq∗ ,11

is not available, since ΣE,Logq∗
is not known; it also depends on the unknown true

value β∗, so we may use the estimate Σ̂E,Logq∗
as defined in Theorems 4.3 and 4.4.

Therefore, under the null hypothesis, the asymptotic distribution of Wdist can be

approximated by the weighted chi-square distribution χ2(λ̂1, . . . , λ̂dM), in which the

weights λ̂1, . . . , λ̂dM are the eigenvalues of the covariance matrix (Σ̂E,Logq0
)11/n.

Finally, we develop a score test statistic for testing H
(2)
0 against H

(2)
1 . An advan-

tage of using the score test statistic is that it avoids the calculation of an estimator

under the alternative hypothesis H
(2)
1 . For notational simplicity, we only consider

the ILSE estimator of (q,β), denoted by (q0, β̃I), under the null hypothesis H
(2)
0 .

For any chart (U, φ) on M with q0 ∈ U , we define

Fφi = (F>φi,1, F
>
φi,2)> = ∂(t,β)distM(f(xi, φ

−1(t),β), yi)
2
∣∣
t=φ(q0),β̃I

,

Uφ =

(
Utt Utβ

Uβt Uββ

)
=

n∑
i=1

∂2
(t,β)distM(f(xi, φ

−1(t),β), yi)
2
∣∣∣
t=φ(q0),β̃I

,

where the subcomponents Fφi,1 and Fφi,2 correspond to t and β, respectively. It
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can be shown that the score test WSC,φ reduces to

WSC,φ = (

n∑
i=1

Fφi,1)>Σ̃−1
φ,q(

n∑
i=1

Fφi,1), (28)

where Σ̃φ,q = (IdM ,−UtβU−1
ββ)[

∑n
i=1(Fφi−Fφ)⊗2](IdM ,−UtβU−1

ββ)>, in which Fφ =

n−1
∑n

i=1 Fφi. Theoretically, we can establish the asymptotic distribution of WSC,φ

under the null hypothesis.

Theorem 4.8. Assume that all conditions in Theorem 4.5 hold. We have the

following results:

(i) For any suitable local chart (U, φ), the score test statistic WSC,φ is asymptot-

ically distributed as χ2
dM

under the null hypothesis H
(2)
0 .

(ii) Under H
(2)
0 , for any other local chart (U, φ′) with q0 ∈ U , we have

WSC,φ′ = WSC,φ.

5. Real Data Example

5.1. ADNI Corpus Callosum Shape Data

Alzheimer disease (AD) is a disorder of cognitive and behavioral impairment that

markedly interferes with social and occupational functioning. It is an irreversible,

progressive brain disease that slowly destroys memory and thinking skills, and even-

tually even the ability to carry out the simplest tasks. AD affects almost 50% of

those over the age of 85 and is the sixth leading cause of death in the United States.

The corpus callosum (CC), as the largest white matter structure in the brain,

connects the left and right cerebral hemispheres and facilitates homotopic and het-

erotopic interhemispheric communication. It has been a structure of high interest

in many neuroimaging studies of neuro-developmental pathology. Individual differ-

ences in CC and their possible implications regarding interhemispheric connectivity

have been investigated over the last several decades (Paul et al., 2007).

We consider the CC contour data obtained from the ADNI study. For each

subject in ADNI dataset, the segmentation of the T1-weighted MRI and the calcu-

lation of the intracranial volume were done in the FreeSurfer package‡ (Dale et al.,

‡http://surfer.nmr.mgh.harvard.edu/

https://www.researchgate.net/publication/6432467_Agenesis_of_the_corpus_callosum_Genetic_developmental_and_functional_aspects_of_connectivity?el=1_x_8&enrichId=rgreq-73370db35df34b3ac20459845a8d145c-XXX&enrichSource=Y292ZXJQYWdlOzI5OTI2NjU1MjtBUzozNTgwMzEwNjY5NzYyNTZAMTQ2MjM3MjY2NjQxMA==
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1999), while the midsagittal CC area was calculated in the CCseg package, which is

measured by using subdivisions in Witelson (1989) motivated by neuro-histological

studies. Finally, each T1-weighted MRI image and tissue segmentation were used

as the input files of CCSeg package to extract the planar CC shape data.

5.2. Intrinsic Regression Models

We are interested in characterizing the change of the CC contour shape as a function

of three covariates including gender, age, and AD diagnosis. We focused on n = 409

subjects with 223 healthy controls (HCs) and 186 AD patients at baseline of the

ADNI1 database. We observed a CC planar contour Yi with 32 landmarks and three

clinical variables including gender xi,1 (0-female, 1-male), age xi,2, and diagnosis xi,3

(0-control, 1-AD) for i = 1, . . . , 409. The demographic info is presented in Table 1.

We treat the CC planar contour Yi as a RSS-valued response in the Kendall’s

planar shape space Σ32
2 . The geometric structure of Σk

2 for k > 2 is included in the

supplementary document. Each Yi is specified as a 32 × 2 real matrix, whose rows

represent the planar coordinates of 32 landmarks on yi. Moreover, Yi = (Yi,1 Yi,2)

can be represented as a complex vector zi = Yi,1 + jYi,2 in C32, where j =
√
−1 and

C is the standard complex space. After removing the translations and normalizing

to the unit 2-norm, each contour Yi can be view as an element zi ∈ D32 = {z =

(z1, · · · , z32)T ∈ C32 |
∑32

m=1 z
m = 0 and ‖z‖2 = 1}. Then, after removing the

2-dimensional rotations, we obtain an element yi = [zi] in Kendall’s planar shape

space, Σ32
2 = D32/S1, which has dimension 30 and is identified with the complex

projective space CP 30.

In order to use our intrinsic regression model, we determined the base point p and

an orthonormal basis {Z1, . . . , Z30} for TpΣ32
2 as follows. We initially set p0 = [z0]

with z0 = (1,−1, 0, · · · , 0)T /
√

2 and an orthonormal basis {Z̃1, . . . , Z̃30} in Tp0
Σ32

2 ,

where Z̃l = (1, · · · , 1,−(l + 1), 0, · · · , 0)T /
√

(l + 1)(l + 2). Then, we projected all

yi’s onto Tp0
Σ32

2 and calculated Logp0
(yi) for all i. Finally, we set the base point

p as Expp0
(n−1

∑n
i=1 Logp0

(yi)) and then used the parallel transport to rotate the

initial basis {Z̃1, . . . , Z̃30} to obtain a new orthonormal basis {Z1, . . . , Z30} at p.

We consider an intrinsic regression model with yi ∈ Σ32
2 as a response vector

and a vector of four covariates including gender, age, diagnosis, and the interac-
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tion age*diagnosis, that is, xi = (xi,1, xi,2, xi,3, xi,4)T with xi,4 = xi,2xi,3. We used a

single-center link function with model parameters (q,β) ∈ Σ32
2 ×R240 as follow. The

intercept q is specified by q = φ−1
p (t) = Expp

(∑30
`=1(t2`−1 + jt2`)Z`

)
, where t =

(t1, . . . , t60)T ∈ R60. The regression coefficient vector β includes four 60× 1 subvec-

tors including β(g), β(a), β(d), and β(ad), which correspond to xi1, xi2, xi3, and xi4,

respectively. Therefore, there are 300 unknown parameters in (tT ,βT )T . We define a

30×4 complex matrix as B = Bo+jBe, with Bo =
(
β

(g)
o β

(a)
o β

(d)
o β

(ad)
o

)
, Be =(

β
(g)
e β

(a)
e β

(d)
e β

(ad)
e

)
∈ R30×4, where β

(·)
o and β

(·)
e are the subvectors of β(·)

formed by the odd-indexed and even-indexed components, respectively, and a link

function by µ(xi, q,β) = Expq ([Up,qZ1, . . . , Up,qZ30]Bxi) ∈ Σ32
2 , where Uq1,q2

v =

Uzq1 ,z∗q2v, with q1 = [zq1
], q2 = [zq2

], z∗q2
= ejθ

∗
zq2

the optimal rotational alignment

of zq2
to zq1

, given by z̄Tq2
zq1

= ejθ
∗ |z̄Tq2

zq1
|, and Uz1,z2v for any v ∈ Ck takes the

form of

v − (z1
Tv)z1 − (z̃2

T
v)z̃2 + {(z1

T z2)(z1
Tv)−

√
1− |z1

T z2|2 (z̃2
T
v)}z1

+{
√

1− |z1
T z2|2 (z1

Tv) + (z1
T z2)(z̃2

T
v)}z̃2,

in which z̃2 = {z2−(z1
T z2)z1}/

√
1− |z1

T z2|2, for z1, z2 ∈ D32. Finally, our intrinsic

model is defined by E
[
Logp

(
U
T
p,µ(xi,q,β) yi

) ∣∣xi] = 0, for i = 1, . . . , 409.

5.3. Results

We first calculated (q̂I , β̂I) = (φ−1
p (t̂I), β̂I) in (14) and (q̃E , β̃E) = (φ−1

p (t̃E), β̃E)

in (18). The intercept estimates q̂I and q̂E are very close to each other with

distΣ32
2

(q̂I , q̂E) < 0.0005. Second, we compared the efficiency gain in the estimates of

β. The estimates β̂I and β̂E of regression coefficients and their standard deviations

are displayed in Figure 3 (a) & (b). The efficiency gain in Stage II is measured by

the relative reduction in the variances of β̂E relative to those of β̂I , which is shown

in Figure 3 (c). There is an average variance relative reduction of about 16.77%

across all parameters in β. There is an average variance relative reduction of about

12.25% for parameters in β(ad), whereas there is an average relative reduction of

19.98% for parameters in β(g).

Third, we assessed whether there is an age×diagnosis interaction effect on the

shape of the CC contour or not. We tested H0 : β(ad) = 060 versus H1 : β(ad) 6= 060.
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The Wald test statistic equals W
(1)
n,φ = 98.20 with its p-value around 0.001. Thus,

the data contains enough evidence to reject H0, indicating that there is a strong

age dependent diagnosis effect on the shape of the CC contours. The mean age-

dependent CC trajectories for HCs and ADs within each gender group are shown in

Figure 4. It can be observed that there is a difference in shape along the inner side

of the posterior splenium and isthmus subregions in both male and female groups.

The splenium seems to be less rounded and the isthmus is thinner in subjects with

AD than in HCs.

Fourth, we assessed whether there is a gender effect on the shape of the CC

contour or not. We tested H0 : β(g) = 060 versus H1 : β(g) 6= 060. The Wald

test statistic is W
(1)
n,φ = 73.34 with its p-value 0.116. Thus, it is not significant at

the 0.05 level of significance. It may indicate that there is no gender effect on the

shape of the CC contours. The mean age-dependent CC trajectories for the female

and male groups within each diagnosis group are shown in Figure 5. We observed

similar shapes of CC contours in males and females.

6. Discussion

We have developed a general statistical framework for intrinsic regression models

of responses valued in a Riemannian symmetric space in general, and Lie groups

in particular, and their association with a set of covariates in a Euclidean space.

The intrinsic regression models are based on the generalized method of moment

estimator and therefore the models avoid any parametric assumptions regarding the

distribution of the manifold-valued responses. We also proposed a large class of link

functions to map Euclidean covariates to the manifold of responses. Essentially, the

covariates are first mapped to the tangent bundle to the Riemmanian manifold, and

from there further mapped, via the manifold exponential map, to the manifold itself.

We have adapted an annealing evolutionary stochastic algorithm to search for the

ILSE, (q̂I , β̂I), of (q,β), in the Stage I of the estimation process, and a one-step

procedure to search for the efficient estimator (q̃E , β̃E) in Stage II. Our simulation

study and real data analysis demonstrate that the relative efficiency of the Stage II

estimator improves as the sample size increases.
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Table 1. Demographic information for the processed ADNI CC

shape dataset including disease status, age, and gender.

Disease Range of age Gender

status No. in years (mean) (female/male)

Healthy Control 223 62-90 (76.25) 107/116

AD 186 55-92 (75.42) 88/98
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(a) (b) (c) (d) 

Fig. 1. Examples of manifold-valued data: (a) diffusion tensors along white matter fiber

bundles and their ellipsoid representations; (b) principal direction map of a selected slice for

a randomly selected subject and the directional representation of some randomly selected

principal directions on S2; (c) median representations and median atoms of a hippocampus

from a randomly selected subject; and (d) an extracted contour and landmarks along the

contour of the midsagittal section of the corpus callosum (CC) from a randomly selected

subject.
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Fig. 2. Graphical illustration of (a) stereographic projection and (b) rotated residual and

parallel transport. In panel (a), N and O denote the north pole (0, 0, 1) and the origin

(0, 0, 0), respectively. In panel (b), y, µ = µ(x, q,β), εD = Logµ(y), E(y,x; q,β), and

p, respectively, represent an observation, the conditional mean, the residual, the rotated

residual, and the base point.

(a)

(b) (c)

Fig. 3. Regression coefficient estimates (a) and their standard deviations (b) from Stages

I and II; and (c) the relative reduction in the variances of β̂E relative to those of β̂I . There

is an average of 16.77% relative decrease in variances all parameters in β, corresponding

to 12.25% for β(ad) and 19.98% for β(g).
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Fig. 4. Age-trajectories of the intrinsic mean shapes by diagnosis within each gender group.

Fig. 5. Age-trajectories of the intrinsic mean shapes by gender within each diagnosis group.
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