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Is there an MCI reversion to cognitively normal? Analysis of
Alzheimer’s disease biomarkers profiles
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ABSTRACT

Background: We investigated the characteristics of Alzheimer’s disease (AD) biomarkers for mild cognitive
impairment (MCI) reversion to cognitively normal (CN).

Methods: Of a total of 1,233 participants from the ADNI database, 42 participants with MCI reversion to
CN (MCIr), 778 with MCI, and 413 CN were obtained. We evaluated demographics, clinical outcomes,
medication use, MCI type, and AD biomarkers, including genetic, cerebrospinal fluid, imaging, and
neuropsychological data.

Results: This study showed that the differences between MCIr and CN were only age, Mini-Mental State
Examination, and Clinical Dementia Rating – Sum of Boxes, but the differences between MCIr and MCI
were not only clinical outcomes but also AD biomarkers, including genetic, cerebrospinal fluid, imaging, and
neuropsychological data. Overall, MCIr may be similar to CN and not MCI in clinical characteristics.

Conclusions: With assessment of MCI reversion to CN, the possibility of false-positive errors should be
considered. With the assistance of AD biomarkers, MCI can be evaluated more accurately than the
conventional criteria.
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Introduction

Mild cognitive impairment (MCI), a high risk
condition for dementia, is regarded as a transitional
state between cognitively normal (CN) and
dementia (Petersen, 2011). However, some MCI
patients do not experience worsening, and they
fairly commonly revert back to CN (Larrieu et al.,
2002; Fisk et al., 2003; Ganguli et al., 2004; 2011;
de Jager and Budge, 2005; Busse et al., 2006;
Tyas et al., 2007; Mitchell and Shiri-Feshki, 2009;
Gallassi et al., 2010; Nordlund et al., 2010; Olazaran
et al., 2011; Han et al., 2012; Koepsell and Monsell,
2012; Roberts et al., 2014). Prevalence of MCI
reversion to CN has varied widely, ranging from 4 to
55% (Larrieu et al., 2002; Fisk et al., 2003; Ganguli
et al., 2004; 2010; de Jager and Budge, 2005;
Busse et al., 2006; Tyas et al., 2007; Mitchell and
Shiri-Feshki, 2009; Gallassi et al., 2010; Nordlund
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et al., 2010; Olazaran et al., 2011; Koepsell and
Monsell, 2012; Roberts et al., 2014). These diverse
results might depend on the heterogeneity of MCI
itself, study setting, study duration, or diagnostic
aspects (Ganguli et al., 2004; Edmonds et al., 2014;
Roberts et al., 2014). In spite of these findings, their
importance and the details of their reversion to CN
were highly controversial.

There have been several hypothesis of the
MCI reversion to CN. It was reported that the
patients who do revert from MCI to CN may
experience only a temporal remission of cognitive
impairment. This was referred to as “yo-yoing”
between normal cognitive performance and MCI
(Zonderman and Dore, 2014). Another study
reported that progression from CN to MCI or from
CN to MCI to dementia was not always linear;
these progressions came to be known as “unstable”
courses (Lopez et al., 2012). It was reported that
20% of incident MCI cases appeared to follow
an unstable course. It has also suggested that the
diagnosis of MCI is unreliable (Lezak et al., 2012)
and the conventional diagnosis of MCI may be
highly susceptible to false-positive diagnostic errors
(Edmonds et al., 2014), which is consistent with
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previous reports of high reversion rates or lack of
progression in those having MCI.

Alzheimer’s disease (AD) biomarkers have
been employed to provide evidence of ongoing
pathophysiological processes of AD, and these
techniques have also made it possible to make a
pre-dementia diagnosis of AD (Rosen et al., 2013).
The temporal dynamics of biomarker levels in
relation to changes in cognition have been described
in a hypothetical model using a biomarker-based
continuum of AD (Jack et al., 2010). There
have been few studies on MCI reversion with
AD biomarkers, including genetic, cerebrospinal
fluid (CSF), imaging, and neuropsychological
biomarkers. We assessed whether the patients who
revert from MCI to CN or have the yo-yoing
phenomenon of cognition have different profiles
of clinical characteristics or AD biomarkers in
the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) cohort.

Methods

Participants
Data used in the preparation of this paper were ob-
tained from the ADNI database (adni.loni.usc.edu).
The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB),
the Food and Drug Administration (FDA),
private pharmaceutical companies, and non-profit
organizations as a $60 million, five-year public–
private partnership. The primary goal of ADNI
has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and
neuropsychological assessment can be combined to
measure the progression of MCI and early AD.
Determination of sensitive and specific markers
of very early AD progression is intended to
aid researchers and clinicians to develop new
treatments and monitor their effectiveness as well
as lessen the time and cost of clinical trials.

The principal investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center
and University of California – San Francisco,
California. ADNI is the result of efforts of
many co-investigators from a broad range of
academic institutions and private corporations, and
participants have been recruited from over 50 sites
across the United States and Canada. The initial
goal of ADNI was to recruit 800 participants but
ADNI has been followed by ADNI-GO and ADNI-
2. To date these three protocols have recruited over
1,500 adults, aged 55 to 90 years, to participate
in the research and comprises cognitively normal

older individuals, people with early or late MCI,
and people with early AD. The follow-up duration
of each group is specified in the protocols for
ADNI-1, ADNI-2, and ADNI-GO. Participants
originally recruited for ADNI-1 and ADNI-GO had
the option to be followed in ADNI-2. For up-to-
date information, see www.adni-info.org.

Classification of subgroups
We selected the study participants from the ADNI
participants: 820 diagnosed as MCI at their initial
evaluation based on ADNI diagnostic criteria
(Petersen et al., 2010) and 413 classified as
CN. Detailed diagnostic, inclusion, and exclusion
criteria are described on the ADNI website (ADNI,
2013a). Criteria for MCI were (1) subjective
memory complaint reported by participant or
study partner; (2) Mini-Mental State Examination
(MMSE) scores between 24 and 30 (inclusive); (3)
global Clinical Dementia Rating (CDR) score of
0.5; (4) abnormal memory function documented
by scoring below education-adjusted cutoffs for
delayed free recall on story A of the Wechsler
Memory Scale-Revised (WMS-R) Logical Memory
II subtest; and (5) general cognition and functional
performance sufficiently preserved to an extent that
one could not qualify for a diagnosis of AD. Criteria
for CN were (1) MMSE scores between 24 and 30
(inclusive); (2) global CDR of 0; (3) non-depressed;
(4) non-MCI; and (5) without dementia. The age
range of CN was roughly matched with that of MCI
and AD patients.

Among the participants with MCI, 779 MCI
patients were classified as “amnestic MCI” and
38 were classified as “non-amnestic MCI” by
ADNI. We in addition classified as “MCI reverters
(MCIr)” if they reverted back to CN based on
ADNI diagnostic criteria at any point during the
follow-up period. Thus, the final categories of
participants included 413 CN, 42 MCIr, and 778
MCI without reversion (MCI).

Demographic data and AD biomarkers
Baseline data of demographics and AD biomarkers
were downloaded from the ADNI clinical data
repository (ADNI, 2013b). We assessed the
following demographic data: age, gender, level
of education, marital status, length of evaluation
period, diagnosis throughout the evaluation period,
MCI type, and medication use. We evaluated the
following AD biomarkers to adapt the hypothetical
model of AD continuum (Jack et al., 2010): CSF
amyloid-β 1 to 42 peptide (Aβ42), CSF total tau
(t-tau), CSF tau phosphorylated at the threonine
181 position (p-tau181p), fluorodeoxyglucose 18F
uptake on brain PET (FDG-PET), [11C] Pittsburgh
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Compound-B PET (11C-PiB PET), brain structural
MRI, and neuropsychological data. We used the
average FDG-PET data on angular, temporal, and
posterior cingulate, of which glucose metabolism
normalized to pons and the average 11C-PiB
standard uptake volume ratio of the frontal cortex,
anterior cingulate, precuneus cortex, and parietal
cortex. The volume of the hippocampus on MRI
was used to evaluate the brain structure, which was
correlated with AD histopathology and structural
atrophy of AD-related neurodegeneration. For
the neuropsychological assessments, we evaluated
participants’ performance on MMSE, CDR-Sum
of Boxes (CDR-SB), cognitive subscale of the
Alzheimer’s Disease Assessment Scale (ADAS-
Cog; the standard ADAS-Cog scale includes 11
items: ADAS 11; the modified version of ADAS-
Cog scale includes delayed word recall and number
cancellation: ADAS 13), Rey Auditory Verbal
Learning Test (RAVLT; Immediate, Learning,
Forgetting, Percentage Forgetting), and Functional
Activities Questionnaire (FAQ). In addition,
APOE ε4 carrier status (ε4+ vs. ε4−) was
evaluated as a genetic biomarker, white matter
hyperintensities were evaluated as burden of small-
vessel cerebrovascular changes and medication use
of the cholinesterase inhibitors (ChEIs) included
donepezil, rivastigmine, and galantamine, and
the N-methyl-D-aspartate partial receptor agonist
memantine was evaluated.

Since MCIr and CN had no 11C-PiB PET scan
at the time of their ADNI baseline assessments,
the 11C-PiB PET data analyzed here were acquired
at the twelve-month follow-up assessments. There
were various missing data for each of the AD
biomarkers (Table 1).

Statistical analyses
Categorical variables were represented as frequency
(percentage). Continuous variables were represen-
ted as mean values ± SD for normally distributed
data and as medians (interquartile ranges) for non-
normally distributed data. Dichotomous measures
were defined as positive with commonly used
cut-offs obtained from samples other than these
ADNI participants (<192 pg/mL for Aβ42, >93
pg/mL for t-tau, >23 pg/mL for p-tau181p, >0.39
for t-tau/Aβ42, and >1.465 for 11C-PiB PET)
(Mormino et al., 2009; Shaw et al., 2009). In
demographics, categorical variables were conducted
with statistical difference using χ2 tests and
continuous variables were conducted with statistical
difference using non-parametric analysis of variance
(Kruskal–Wallis) after checking normal distribution
(Kolmogorov–Smirnov test) and/or equality of
variances (Levene’s test). Post hoc pairwise

comparisons were conducted after Bonferroni
correction. CSF, imaging, and neuropsychological
biomarkers were assessed by the analysis-of-
covariance (ANCOVA) model for continuous
variables or the binary logistic regression for
dichotomous variables after adjusting for covariates
those variables that had statistically different
distributions in demographics. All reported p-values
are based on two-sided tests. Statistical significance
was set at p < 0.05 unless otherwise noted. All
statistical analyses were performed using SPSS for
Windows, version 20.0 (IBM Corp., Armonk, NY,
USA).

Results

The study consisted of 1,233 participants (median
age, 73.6 years; 43.2% females; median level of
educational, 16.0 years; 74.8% married; median
follow-up, 23.93 months). The demographic
characteristics in each category were slightly
different in age, gender, and marital status
(Table 1). Since this study focused on MCIr, post
hoc test was shown between MCIr and the other
groups in Table 1. Only age (z = −3.132, p =
0.005) of MCIr was different from those of CN in
demographics. Between MCIr and MCI, there was
no statistical difference in use of medication (ChEIs
and memantine), and in MCI type (amnestic or
non-amnestic; Table 1).

The last follow-up periods were 24.59 (16.79–
45.71) months for MCIr, 24.26 (12.13–71.70)
months for CN, and 23.87 (12.03–36.26) months
for MCI. Post hoc analysis for the last follow-up
periods showed no statistical difference among three
groups (all p-values > 0.05).

For clinical outcomes, diagnosis on last
evaluation was assessed. Of the 42 MCIr, 36
(85.7%) were continuously diagnosed as CN
(MCIrCN) and 6 (14.3%) had regressed back to
MCI (MCIrMCI). Of the 352 CN, 10 (2.4%)
had progressed to dementia and 47 (11.4%) had
progressed to MCI. Of the 778 MCI, 242 (31.1%)
had progressed to dementia.

Genetic, CSF, imaging, and neuropsychological
biomarkers were also assessed (Table 1). Overall
distribution of these biomarkers was statistically
different except 11C-PiB PET positive. Post hoc
analysis showed that these biomarkers in MCIr were
statistically different from those in MCI, and those
in MCIr were not statistically different from the
ones in MCI except MMSE and CDR-SB.

Between MCIrCN and MCIrMCI, there was no
difference in age (68.15 (63.73–78.88) for MCIrCN

vs. 71.35 (68.93–76.90) for MCIrMCI), female
gender (16 (44.4%) vs. 3 (50.0%)), education (16.5
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Table 1. Baseline demographics and AD biomarkers

POST HOC

P A R T I C I P A N T S MCIr MCIr
W I T H A V A I L A B L E O V E R A L L VS. VS.
D A T A, NO. MCIr CN MCI P-VALUE CN MCI

............................................................................................................................................................................................................................................................................................................................................................................................................................................................

Demographics
Age, years 1,233 (42,413,778) 70.4 (63.9–78.0) 74.0 (70.9–78.4) 73.6 (68.1–78.8) 0.001 0.005 0.089
Gender, female 1,233 (42,413,778) 19 (45.2) 200 (48.4) 314 (40.4) 0.027 0.694 0.531
Education, year 1,233 (42,413,778) 16.5 (15.0–18.0) 16.0 (14.0–18.0) 16.0 (14.0–18.0) 0.073
Marital status, married 1,233 (42,413,778) 36 (85.7) 285 (69.0) 601 (77.2) 0.002 0.071 0.199

Clinical outcomes 1,233 (42,413,778) <0.001 0.524 <0.001
CN 36 (85.7) 356 (86.2) 0 (0.0)
MCI 6 (14.3) 47 (11.4) 536 (68.9)
Dementia 0 (0.0) 10 (2.4) 242 (31.1)

Medication use
ChEIs 628 (22,191,415) 1 (4.5) 0 (0.0) 111 (26.7) <0.001 0.009 0.060
Memantine 628 (22,191,415) 0 (0.0) 0 (0.0) 33 (8.0) <0.001 - 0.507

MCI type 817 (41,-,776) 0.490
Amnestic 40 (97.6) – 739 (95.2)
Non-amnestic 1 (2.4) – 37 (4.8)

Genetic biomarker†

APOE ε4 carrier 1,215 (42,339,774) 14 (33.3) 111 (27.8) 402 (51.9) <0.001 0.719 0.012
CSF biomarkers†

CSF Aβ42, pg/mL 870 (27,272,571) 211.2 (161.0–249.9) 209.1 (157.9–243.3) 153.3 (129.5–209.3) <0.001 0.890 <0.001
CSF t-tau, pg/mL 845 (26,265,554) 61.9 (35.9–74.0) 59.8 (45.5–84.9) 80.1 (54.0–117.9) <0.001 0.898 <0.001
CSF p-tau181p, pg/mL 624 (21,189,414) 23.9 (18.9–31.3) 28.5 (20.5–42.2) 36.0 (22.6–54.0) <0.001 0.355 0.006
CSF t-tau/Aβ42 845 (26,265,554) 0.25 (0.19–0.38) 0.28 (0.21–0.46) 0.51 (0.26–0.86) <0.001 0.921 0.001
CSF Aβ42 positive (<192 pg/mL) 870 (27,272,571) 11 (40.7) 117 (43.0) 383 (67.1) <0.001 0.872 0.013
CSF t-tau positive (>93 pg/mL) 845 (26,265,554) 2 (7.7) 53 (20.0) 210 (37.9) <0.001 0.209 0.008
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Table 1. Continued.

POST HOC

P A R T I C I P A N T S MCIr MCIr
W I T H A V A I L A B L E O V E R A L L VS. VS.
D A T A, NO. MCIr CN MCI P-VALUE CN MCI

............................................................................................................................................................................................................................................................................................................................................................................................................................................................

CSF p-tau181p positive (>23 pg/mL) 624 (21,189,414) 11 (52.4) 124 (65.6) 306 (73.9) 0.013 0.361 0.047
CSF t-tau/Aβ42 positive (>0.39) 845 (26,265,554) 6 (23.1) 89 (33.6) 336 (60.6) <0.001 0.510 0.001

Imaging biomarkers†

FDG-PET 921 (36,290,595) 1.30 ± 0.11 1.31 ± 0.12 1.24 ± 0.13 <0.001 0.198 <0.001
11C-PiB PET 68 (6,17,45) 1.75 (1.45–1.96) 1.36 (1.20–1.92) 2.03 (1.36–2.17) 0.034 0.333 0.493
11C-PiB PET positive (>1.465) 68 (6,17,45) 4 (66.7) 7 (41.2) 29 (64.4) 0.162
Hippocampal volume, cm3 1,034 (32,365,637) 7.72 (6.88–8.18) 7.40 (6.74–7.91) 6.73 (5.92–7.53) <0.001 0.591 <0.001
White matter hyperintensities, cc 1,189 (42,388,759) 0.71 (0.16–3.03) 0.77 (0.20–2.04) 1.24 (0.27–4.86) 0.001 0.520 0.012

Neuropsychological biomarkers†

MMSE 1,233 (42,413,778) 29.0 (27.0–29.3) 29.0 (29.0–30.0) 28.0 (26.0–29.0) <0.001 0.002 0.002
CDR-SB 1,233 (42,413,778) 1.0 (0.5–1.5) 0.0 (0.0–0.0) 1.5 (1.0–2.0) <0.001 <0.001 <0.001
ADAS 11 1,232 (42,413,777) 5.5 (4.2–9.0) 6.0 (4.0–8.0) 10.0 (7.0–13.3) <0.001 0.333 <0.001
ADAS 13 1,229 (42,413,774) 10.0 (6.8–14.0) 9.0 (6.0–12.0) 17.0 (12.0–21.3) <0.001 0.164 <0.001
RAVLT immediate 1,231 (42,411,778) 44.0 (33.8–50.0) 44.0 (37.0–51.0) 32.0 (26.0–40.0) <0.001 0.060 <0.001
RAVLT learning 1,231 (42,411,778) 5.0 (3.8–7.3) 6.0 (4.0–7.0) 4.0 (2.0–6.0) <0.001 0.191 <0.001
RAVLT forgetting 1,231 (42,411,778) 3.0 (1.0–6.0) 3.0 (2.0–5.0) 5.0 (3.0–6.0) <0.001 0.985 0.014
RAVLT percentage forgetting 1,230 (42,411,777) 25.0 (15.1–60.0) 30.8 (15.4–50.0) 63.6 (36.4–100.0) <0.001 0.598 <0.001
FAQ 1,228 (42,413,773) 0.0 (0.0–1.0) 0.0 (0.0–0.0) 2.0 (0.0–5.0) <0.001 0.327 <0.001

Notes: Data are expressed as median (interquartile range), mean ± SD, or frequency (percentage) except the number of participants is expressed as total (MCIr, CN, and MCI, in subscript).
Demographics, clinical outcomes, medication use, and MCI type were assessed by χ2 test for categorical variables and the Kruskal–Wallis test for continuous variables. In post hoc analysis,
Bonferroni-corrected p-values are shown after controlling for multiple comparisons.
†Genetic, CSF, imaging, and neuropsychological biomarkers were assessed by the analysis-of-covariance (ANCOVA) model or binary logistic regression after adjustment for age, gender, and
marital status. (p < 0.05, in bold).
Abbreviations. MCIr: mild cognitive impairment reverter; CN: cognitively normal; MCI: mild cognitive impairment; APOE: apolipoprotein E; CSF: cerebrospinal fluid; Aβ42: amyloid-beta 1 to
42 peptide; t-tau: total tau; p-tau181p: tau phosphorylated at the threonine 181 position; FDG-PET: fluorodeoxyglucose 18F uptake on brain positron emission tomography; 11C-PiB PET: [11C]
Pittsburgh Compound-B PET; ADAS 11: the standard Alzheimer’s Disease Assessment Scale – cognitive subscale includes 11 items; ADAS 13: the modified version of Alzheimer’s Disease
Assessment Scale – cognitive subscale includes delayed word recall and number cancellation; FAQ: Functional Activities Questionnaire.
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(15.0–18.0) vs. 17.0 (14.8–18.5)), MCI amnestic
type (34 (97.1%) vs. 6 (100.0%)), APOE ε4 carrier
(13 (36.1%) vs. 1 (16.7%)), FDG-PET (1.31 ±
0.10 vs. 1.23 ± 0.11), hippocampal volume (7.60 ±
0.72 vs. 7.41 ± 1.17), white matter hyperintensities
(0.71 (0.18–2.18) vs. 0.66 (0.35–2.16)), MMSE
(29.0 (27.0–29.0) vs. 29.0 (26.8–30.0)), CDR-SB
(0.75 (0.50–1.50) vs. 1.25 (0.88–1.75)), ADAS
11 (6.62 ± 3.12 vs. 5.56 ± 2.39), ADAS 13
(10.51 ± 4.55 vs. 8.89 ± 4.49), RAVLT immediate
(41.50 ± 9.71 vs. 49.33 ± 18.45), RAVLT learning
(5.28 ± 2.73 vs. 6.00 ± 2.90), RAVLT forgetting
(4.00 ± 2.96 vs. 1.83 ± 2.32), RAVLT percentage
forgetting (25.83 (17.05–60.00) vs. 7.14 (0.00–
43.93)) and FAQ (0.00 (0.00–1.00) vs. 0.00
(0.00–1.25)) (all, p-values > 0.05). Since there
were too small numbers of MCIrMCI with CSF
biomarkers (n = 3), medication use (n = 2), and
11C-PiB PET (n = 0), these biomarkers were
not compared statistically between MCIrCN and
MCIrMCI.

Discussion

This study provided a comprehensive evaluation
of the MCIr with ADNI data, including genetic,
CSF, imaging, and neuropsychological biomarkers.
This study showed that the differences between
MCIr and CN were only age, MMSE, and CDR-
SB, but the differences between MCIr and MCI
were not only clinical outcomes but also genetic,
CSF, imaging, and neuropsychological biomarkers.
Overall, MCIr may be similar to CN and not MCI
in clinical characteristics.

For MCI reversion, several possible factors could
be considered. A previous study has reported a
patient who was unmarried, had an APOE ε4 allele,
worse functional measures, poor cognitive function
and amnestic MCI, and multiple-domain MCI was
less likely to revert to CN (Roberts et al., 2014).
Another study reported the number of impaired
cognitive domains but not the presence of memory
impairment associated with MCI reversion (Han
et al., 2012). Still another study reported that
patient who was younger, had more recent symptom
onset, did not have clinician-reported declines in
memory, judgment, or problem-solving, did not
self-report memory decline, and did not have an
APOE ε4 allele was more likely to revert to CN
(Koepsell and Monsell, 2012). This study showed
that MCIr has clinical similarity to CN. All of
these have commonly suggested that better clinical
condition or better performance was associated with
MCI reversion.

For the diagnosis of MCI, recent criteria, as
continuum of AD, had proposed core clinical

criteria with clinical and cognitive evaluation,
and research criteria incorporating biomarkers
(Albert et al., 2011). It was suggested that
biomarkers reflecting Aβ and neuronal injury may
be used to provide increasing levels of certainty
for the diagnosis of MCI as prodromal AD. It
is already known that the patients with MCI
who have biomarker evidence of AD are more
likely to decline than those who lack abnormal
biomarkers, and the patients with MCI who have
no abnormal biomarkers had a favorable prognosis
(Albert et al., 2011). It was also suggested that
patient with preclinical AD, who was cognitively
normal with biomarker evidence of brain amyloid
deposition, was at high risk of AD (Sperling
et al., 2011). This research recommendation, using
biomarkers, has been widely accepted (Albert
et al., 2011). However, most previous studies on
MCI reversion had evaluated clinical criteria with
neuropsychological data only (Larrieu et al., 2002;
Fisk et al., 2003; de Jager and Budge, 2005; Busse
et al., 2006; Gallassi et al., 2010; Ganguli et al.,
2011; Olazaran et al., 2011) or with the frequency
of APOE ε4 allele and neuropsychological data
only (Ganguli et al., 2004; Tyas et al., 2007;
Han et al., 2012; Koepsell and Monsell, 2012;
Roberts et al., 2014). This study compared AD
biomarkers, including genetic, CSF, imaging, and
neuropsychological data, between MCIr and others.
Especially CSF Aβ42, CSF t-tau, FDG-PET, and
11C-PiB PET in MCIr, which became abnormal
earlier in an hypothetical model of dynamic AD
biomarkers (Sperling et al., 2011) were similar to
those of CN in this study. The results in this study
suggested that the clinical properties of MCIr were
similar to those of CN.

Similar patterns were also observed in clinical
outcomes of MCIr. Previous studies had suggested
that diagnosis of MCI at any time is eventually
associated with dementia (Zonderman and Dore,
2014) because MCIr had a high risk of progression
to dementia at the end (Koepsell and Monsell,
2012; Roberts et al., 2014). However, these previous
studies evaluated only patients with MCI and MCIr
(Koepsell and Monsell, 2012), or MCIr had a
relatively higher risk of progression to dementia than
CN although MCIr had a relatively lower risk of
progression to dementia than MCI (Roberts et al.,
2014). If the participants of these previous studies
could be further classified according to biomarkers
of Aβ deposition and neuronal injury, then
comparison between patients having a favorable
prognosis and those having a worse prognosis would
be more helpful to understand MCI reversion. In
this study, MCIr had similar clinical outcomes
of CN and a favorable prognosis compared with
MCI.
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For neuropsychological measures, this study
showed no statistical difference in most of the
neuropsychological data between MCIr and CN.
The MMSE and CDR-SB scores were different
between MCIr and CN. However, it was well
known that MMSE had ceiling effects and
lacked sensitivity to detect subclinical conditions
(Klekociuk et al., 2014). This study showed
that the differences in the MMSE score were
less than 1.0 between MCIr and the other two
groups. Although there was a statistical difference
in MMSE between MCIr and CN, we thought
these differences were difficult to apply in clinical
practice. The distribution of CDR-SB score had
the differences like MMSE in this study. However,
these differences could be due to different inclusion
criteria of CDR among three groups in ADNI. The
other comprehensive neuropsychological measures
showed no statistical difference between MCIr and
CN.

Together with the results of biomarker profiles
and clinical outcomes, there was no difference
between MCIr and CN. In other words, the
possibility of false-positive error in MCIr cannot
be excluded. If MCI is degenerative in prognosis,
then recovery of function in individuals identified
with MCI is diagnostically erroneous (Klekociuk
et al., 2014). Thus, these results suggested that
MCIr has similarity of CN in clinical and biomarker
profiles, or MCIr, at least in our study, may
have come from false-positive error. Especially, it
was suggested that the conventional diagnosis of
MCI may be highly susceptible to false-positive
diagnostic errors (Edmonds et al., 2014; Klekociuk
et al., 2014). It was suggested that comprehensive
neuropsychological measures could improve the
specificity of diagnosis of MCI (Klekociuk et al.,
2014) and a significant proportion of MCI
ADNI participants can be classified into normal
group by cluster analysis with neuropsychological
data (Edmonds et al., 2014). It was reported
that the original ADNI diagnosis of MCI was
considered accurate, but the conventional criteria
are susceptible to false-positive errors (Edmonds
et al., 2014).

This study has several limitations. First, as
suggested in a previous study (Edmonds et al.,
2014) with ADNI data, conventional criteria in
ADNI relies on a single cognitive measure and
some crude rating scale may be susceptible to false-
positive errors. It was known that misdiagnosis
can occur as a consequence of interpreting one or
few neuropsychological scores below expectations
as pathological when within-person variability is
common and does not necessarily signify the
presence of MCI (Lezak et al., 2012). Second,
the follow-up duration was relatively short (median

< 2 years) and the sample size of MCIr patients
was small (n = 42), which may limit the
generalizability of our observations. However, most
similar, previous studies also included relatively
small numbers of MCIr patients. A more broadly
representative sample of MCIr patients might
be helpful to better determine whether these
findings are generalizable. Third, the large amount
of missing data for various AD biomarkers
precluded more detailed analysis of the role of
AD biomarkers in MCIr. If there are additional
neuropathological data, it could allow a clinician’s
judgment on the suspected underlying cause of
MCI. More information on comorbidities, such
as cerebrovascular disease, hypertension, diabetes,
obesity, dyslipidemia, or metabolic syndrome,
which are linked to the development of AD (Reitz
et al., 2011), would help assess the properties of
MCI.

In conclusion, this study showed that the AD
biomarker profiles and clinical outcomes of MCIr
were more similar to those of CN than of MCI.
With assessment of MCI reversion to CN, the
possibilities of false-positive errors or non-AD
pathology should be considered. With the assistance
of AD biomarkers, MCI can be evaluated more
accurately than the conventional criteria.
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