IMPORTANCE Late-onset Alzheimer disease (AD) is highly heritable. Genome-wide association studies have identified more than 20 AD risk genes. The precise mechanism through which many of these genes are associated with AD remains unknown.

OBJECTIVE To investigate the association of the top 20 AD risk variants with brain amyloidosis.

DESIGN, SETTING, AND PARTICIPANTS This study analyzed the genetic and flortetapir F 18 data from 322 cognitively normal control individuals, 496 individuals with mild cognitive impairment, and 159 individuals with AD dementia who had genome-wide association studies and 18F-florbetapir positron emission tomographic data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), a prospective, observational, multisite tertiary center clinical and biomarker study. This ongoing study began in 2005.

MAIN OUTCOMES AND MEASURES The study tested the association of AD risk allele carrier status (exposure) with flortetapir mean standard uptake value ratio (outcome) using stepwise multivariable linear regression while controlling for age, sex, and apolipoprotein E ε4 genotype. The study also reports on an exploratory 3-dimensional stepwise regression model using an unbiased voxelwise approach in Statistical Parametric Mapping 8 with cluster and significance thresholds at 50 voxels and uncorrected P < .01.

RESULTS This study included 977 participants (mean [SD] age, 74 [7.5] years; 535 [54.8%] male and 442 [45.2%] female) from the ADNI-1, ADNI-2, and ADNI–Grand Opportunity. The adenine triphosphate–binding cassette subfamily A member 7 (ABCA7) gene had the strongest association with amyloid deposition ($\chi^2 = 8.38$, false discovery rate–corrected P < .001), after apolipoprotein E ε4. Significant associations were found between ABCA7 in the asymptomatic and early symptomatic disease stages, suggesting an association with rapid amyloid accumulation. The fermitin family homolog 2 (FERMT2) gene had a stage-dependent association with brain amyloidosis ($\chi^2 = 3.53$, false discovery rate–corrected P = .05), which was most pronounced in the mild cognitive impairment stage.

CONCLUSIONS AND RELEVANCE This study found an association of several AD risk variants with brain amyloidosis. The data also suggest that AD genes might differentially regulate AD pathologic findings across the disease stages.
Recent genome-wide association studies (GWASs) have identified and validated 20 novel AD genetic risk loci. Few of these loci are in or near genes associated with Aβ aggregation and clearance and are thought to influence amyloid deposition. For the remainder, the precise disease-associated mechanism remains unknown.

Several imaging genetics studies have reported associations of some of the AD risk genes with brain amyloidosis or neurodegeneration. Phosphatidylinositol-binding clathrin assembly protein (PICALM) (OMIM 603025) rs3851179, bridging integrator 1 (BINI) (OMIM 601248) rs7561528, complement component receptor 1 (CR1) rs1408077 (OMIM I20620), adenosine triphosphate–binding cassette subfamily A member 7 (ABCA7) (OMIM 605414) rs3764650, and membrane-spanning 4-domains, subfamily A, member 6a (MS4A6A) (OMIM 606548) rs610932 are associated with cortical and hippocampal atrophy. The ABCA7 and BINI genes are involved in beta-secretase regulation and are associated with Aβ clearance.

Additionally, the clinical description of the ADNI cohort has been previously published. Diagnosis of AD was based on the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association criteria. Individuals with AD dementia were required to have Mini-Mental State Examination (MMSE) scores between 20 and 26 and a Clinical Dementia Rating (CDR) score of 0.5 to 1 at baseline. Qualifying individuals with mild cognitive impairment (MCI) had memory concerns but no significant functional impairment, scored between 24 and 30 on the MMSE, had a global CDR score of 0.5, had a CDR memory score of 0.5 or greater, and had objective memory impairment on the Wechsler Memory Scale–Logical Memory II test.

The controls had MMSE scores between 24 and 30, had a global CDR score of 0.0, and did not meet criteria for MCI and AD. Individuals were excluded if they refused or were unable to undergo MRI; had other neurologic disorders, active depression, a history of psychiatric diagnosis, a history of alcohol or other substance dependence within the past 2 years; had less than 6 years of education; or were not fluent in English or Spanish. The full list of inclusion and exclusion criteria can be accessed on pages 23 to 29 of the online ADNI protocol (http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf). Written informed consent was obtained from all participants, and all data were deidentified.

Gene Variant Selection and Imputation

The ADNI-1 participants were genotyped using the Illumina Human610-Quad BeadChip array (Illumina Inc), whereas the
ADNI-2 and the ADNI-Grand Opportunity (GO) participants were genotyped using the Illumina HumanOmniExpress BeadChip (Illumina Inc) according to the manufacturer’s protocol. We focused on the 20 well-established AD risk genes identified and validated in the largest AD GWASs to date.10–15 In addition to the variants reported in these articles, we included all other variants that were previously associated with brain amyloidosis16–19 (eTable 1 in the Supplement), which yielded a total of 36 variants.

Missing genotypes (eTable 2 in the Supplement) were imputed using MACH and minimac in a 2-stage procedure using the 1000 Genomes project pilot data as a reference panel. Minimac yielded the posterior probabilities of the imputed genotypes at ungenotyped marker loci for each individual. The threshold to accept each imputed genotype was set at $r^2 = 0.30$.35

Nine genes were represented by more than 1 single-nucleotide polymorphism (SNP). Because linkage disequilibrium (LD) introduces colinearity bias, we performed LD analyses followed by Cohen k statistics (eFigure 1 and eTable 3 in the Supplement). When choosing between 2 variants with significant overlap (high LD and high k), we retained the variant with least data missingness. Our final number of variants was thus reduced to 27, ABCA7, BIN1, CLU, CRI, EphA1 (EPHA1) (OMIM 179610), and sortilin-related receptor (SORL1) (OMIM 602005) were represented with more than 1 variant in the analyses (eTable 3 in the Supplement).

Allele frequencies for each gene variant were assessed. Genotypes were collapsed when the minor allele homozygote frequency was less than 2% as follows: ABCA7 rs3764650 GG/GT vs TT, Cass scaffolding protein family member 4 (CASS4) (HGNC15878) rs7274581 CC/TC vs TT, and desmoglein 2 (DSG2) (OMIM 125671) rs8093731 TT/TC vs CC, desmoglein 2 (DSG2) (OMIM 125671) rs8093731 TT/TC vs CC, Cass scaffolding protein family member 4 (CASS4) (HGNC15878) rs7274581 CC/TC vs TT, and SORL1 rs112183431 CC/TC vs TT. The remaining variants were coded by minor allele dosage.

Florbetapir F 18 PET Data Acquisition Protocol and Analyses

The florbetapir F 18 PET acquisition and preprocessed protocols are available at http://www.adni-info.org. In our main analyses, we used the mean whole-brain standard uptake volume ratios (SUVRs) from University of California, Berkeley downloaded from the ADNI database (http://adni.loni.usc.edu). This variable was obtained by averaging the SUVRs obtained using whole cerebellum as the reference region across the frontal, anterior-posterior cingulate, lateral-parietal, and lateral-temporal gray matter regions.36 The University of California, Berkeley, protocols for 18F-florbetapir pre-processing, coregistration, and normalization have been previously described.36

To visualize the regional pattern of associations in 3 dimensions, we downloaded all preprocessed 18F-florbetapir data from the Laboratory of Neuroimaging Image Data Archive (https://ida.loni.usc.edu). We aligned the images to the corresponding MRI from the same visit, normalized to MNI space using measures obtained from the MRI spatial transformation and intensity normalized to the intensity of the whole cerebellum reference region to create SUVR images, as previously described.37

Statistical Analysis

R Statistical Analyses

Clinical and demographic characteristics (age, sex, educational level, MMSE, APOE ε4 genotype, and diagnosis) for each variant were compared using t tests or χ^2 tests with 2-sided P values as appropriate. Stepwise multivariable linear regression models with all 27 AD risk variants were performed first in the pooled sample and second in each diagnostic category using amyloid PET mean SUVR as the outcome measure. An additional model in the pooled sample using only amyloid-positive individuals (SUVR > 1.17) is available in the eResults in the Supplement. All regression models included age, sex, and APOE ε4 genotype as covariates. The regression model for the pooled sample was also corrected for diagnosis. The decision to exclude variables was based on the Akaike information criterion critical P value threshold of .16.38 Because we included only previously validated candidate genes, our significance threshold was set at $P < .05$. Correction for false discovery rate (FDR) was applied.

Analyses in Imaging Space

All imaging analyses were performed in an exploratory fashion. To explore the spatial distribution of the associations, we reproduced the final stepwise regression models using voxelwise regression in Statistical Parametric Mapping 8 (SPM8; Wellcome Department of Cognitive Neuroscience). The SPM8 models included all variants retained in the R statistical models (including those that were retained based on the Akaike information criterion) covared for age, sex, and APOE ε4 genotype. The pooled model also included diagnosis as a covariate. Because of the exploratory nature of our secondary results, we allowed a less stringent visualization threshold: voxelwise threshold of $P < .01$ (uncorrected) with a minimum cluster size (k) of 50 voxels. We also computed familywise error (FWE) and FDR-corrected cluster and peak statistics as appropriate.

Results

The study population was composed of participants from the ADNI-1, ADNI-2, and ADNI-GO stages39 and consisted of 322 controls, 496 individuals with MCI, and 159 individuals with AD who had available GWAS and 18F-florbetapir PET data (mean [SD] age, 74 [7.5] years; 535 [54.8%] male and 442 [45.2%] female). Group comparisons of demographic characteristics and distribution of the genotypes that were retained in the regression models are given in Table 1. APOE ε4 had significant associations with brain amyloidosis (eFigure 2 in the Supplement). There were no significant differences in age, sex, educational level, MMSE score, and APOE ε4 distribution between carriers and noncarriers or by allele dosage for any of the genotypes except for zinc finger CW-type and PWPP domain containing 1 (ZCWPWD) (HGNC 23486) for which risk allele homozygotes were less educated ($P = .02$).

Pooled Sample

In the pooled sample, the stepwise linear regression model achieved an R^2 of 0.35 (95% CI, 0.33-0.37; $P < .001$). ABCA7

© 2018 American Medical Association. All rights reserved.
Association of Alzheimer Disease Risk Variants With Brain Amyloidosis

Table 1. Demographic Characteristics and Distribution of Genotypes

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control Group (n = 322)</th>
<th>MCI Group (n = 496)</th>
<th>AD Dementia Group (n = 159)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), y</td>
<td>75 (6.5)</td>
<td>73 (7.8)</td>
<td>75 (7.8)</td>
<td><.001</td>
</tr>
<tr>
<td>Male sex, No. (%)</td>
<td>156 (48.4)</td>
<td>284 (57.3)</td>
<td>95 (59.7)</td>
<td>.02</td>
</tr>
<tr>
<td>Educational level, mean (SD), y</td>
<td>16.6 (2.6)</td>
<td>16.2 (2.7)</td>
<td>15.9 (2.7)</td>
<td>.03</td>
</tr>
<tr>
<td>MMSE score, mean (SD)</td>
<td>28.9 (2.1)</td>
<td>27.8 (2.6)</td>
<td>22.8 (2.9)</td>
<td><.001</td>
</tr>
<tr>
<td>APOE ε4, 0/1/2, %</td>
<td>72.4/25.8/1.9</td>
<td>53.4/37.3/9.3</td>
<td>32.7/48.4/18.9</td>
<td><.001</td>
</tr>
<tr>
<td>Amyloid positive, No. (%)</td>
<td>85 (26.4)</td>
<td>252 (50.8)</td>
<td>133 (83.6)</td>
<td><.001</td>
</tr>
<tr>
<td>ABCA7 rs3752246, % 0/1/2 alleles</td>
<td>69.3/28.3/2.5</td>
<td>67.7/28.4/3.8</td>
<td>64.8/30.8/4.4</td>
<td>.47</td>
</tr>
<tr>
<td>ABCA7 rs3764650, % 0/1 or 2 alleles</td>
<td>82.9/17.1</td>
<td>81.3/18.8</td>
<td>83.6/16.4</td>
<td>.72</td>
</tr>
<tr>
<td>CLU rs11136000, % 0/1/2 alleles</td>
<td>35.4/50.6/14.0</td>
<td>35.9/49.6/14.5</td>
<td>39.6/44.7/15.7</td>
<td>.91</td>
</tr>
<tr>
<td>CLU rs9331949, % 0/1 or 2 alleles</td>
<td>94.7/5.3</td>
<td>96.6/3.4</td>
<td>94.3/5.7</td>
<td>.32</td>
</tr>
<tr>
<td>DSG2 rs8093731, % 0/1 or 2 alleles</td>
<td>97.8/2.2</td>
<td>98.0/2.0</td>
<td>98.1/1.9</td>
<td>.98</td>
</tr>
<tr>
<td>EPHA1 rs11771145, % 0/1/2 alleles</td>
<td>44.7/43.8/11.5</td>
<td>44.8/42.3/12.9</td>
<td>33.3/49.7/17.0</td>
<td>.02</td>
</tr>
<tr>
<td>FERMT2 rs17125944, % 0/1 or 2 alleles</td>
<td>82.9/17.1</td>
<td>85.1/14.9</td>
<td>81.8/18.2</td>
<td>.53</td>
</tr>
<tr>
<td>PICALM rs3851179, % 0/1/2 alleles</td>
<td>40.4/46.6/13.0</td>
<td>42.3/45.2/12.5</td>
<td>42.8/48.4/8.8</td>
<td>.59</td>
</tr>
<tr>
<td>PTK2B rs28834970, % 0/1/2 alleles</td>
<td>42.2/41.9/15.8</td>
<td>43.1/42.7/14.1</td>
<td>39.0/46.5/14.5</td>
<td>.74</td>
</tr>
<tr>
<td>SORL1 rs1131497, % 0/1/2 alleles</td>
<td>33.5/47.8/18.6</td>
<td>31.9/52.0/16.1</td>
<td>38.4/48.4/13.2</td>
<td>.26</td>
</tr>
<tr>
<td>ZCWPW1 rs1476679, % 0/1/2 alleles</td>
<td>50.6/40.1/9.3</td>
<td>52.4/39.5/8.1</td>
<td>54.7/37.7/5.5</td>
<td>.62</td>
</tr>
</tbody>
</table>

Abbreviation: MMSE, Mini-Mental State Examination.

rs3752246 (χ² = 8.38, FDR-corrected P < .001), EPHA1 rs17771145 (χ² = 4.08, FDR-corrected P = .03), and PICALM rs3851179 (χ² = 3.67, FDR-corrected P = .04) were significantly associated with mean SUVR in the pooled sample. Other associations were as follows: ZCWPW1 rs1476679 (χ² = 2.74, FDR-corrected P = .08), FERMT2 rs17125944 (χ² = 3.63, FDR-corrected P = .08), and protein tyrosine-kinase 2β (PTK2B) rs28834970 (OMIM 601212) (χ² = 2.52, FDR-corrected P = .01). ABCA7 rs3764650 and CLU rs11360000 were included in the model based on the Akaikie selection criterion. A reduced model that included only age, sex, educational level, and APOE ε4 achieved a reduced R² of 0.31 (95% CI, 0.29-0.33). The interaction term ABCA7 × age, sex, educational level, and ε4 was χ² = 3.08 (FDR-corrected P = .08). The association for rs3752246 was included in the model based on the Akaikie selection criterion. In the MCI group, the model achieved an R² of 0.3 (95% CI, 0.27-0.32; P < .001; reduced R² = 0.24; 95% CI, 0.21-0.27; R²-reduced R² difference = 0.058; 95% CI, 0.042-0.074). The association for rs3752246 was χ² = 7.22, FDR-corrected P = .002), EPHA1 rs17771145 (χ² = 3.74, FDR-corrected P = .03), FERMT2 rs17125944 (χ² = 10.38, FDR-corrected P = .002), and SORL1 rs1131497 (χ² = 3.66, FDR-corrected P = .03) were significantly associated with mean SUVR. The association for ABCA7 rs3764650 was χ² = 2.9 (FDR-corrected P = .09).

In the dementia group, the model achieved an R² of 0.35 (95% CI, 0.29-0.41; P < .0001; reduced R² = 0.22; 95% CI, 0.16-0.28; R²-reduced R² difference = 0.13; 95% CI, 0.09-0.17). Other associations were as follows: EPHA1 rs17771145 (χ² = 5.05, FDR-corrected P = .01), ZCWPW1 rs1476679 (χ² = 3.79, FDR-corrected P = .04), DSG2 rs8093731 (χ² = 3.27, FDR-corrected P = .08), CLU rs9331949 (χ² = 4.09, FDR-corrected P = .058), and SORL1 rs1131497 (χ² = 2.51, FDR-corrected P = .08).

Figure 1 and Figure 2 present exploratory visualization of these associations, and Table 2 presents the FWE- and FDR-corrected cluster-level results and within-cluster peak associations for genetic variants identified in our models.

Interaction Analyses
To further test for the presence of a stage-specific association, we conducted a linear regression analysis in the pooled sample including interaction terms. FERMT2 was the only variant that had a significant interaction (FERMT2 × diagnosis χ² = 3.53, FDR-corrected P = .05). The effect sizes for the remaining genes remained unchanged. Figure 3 shows the β-coefficient maps of the main effect size of FERMT2 and its interaction with diagnosis as well as the FERMT2 effect size within each diagnostic group.

Exploratory Analyses Within Diagnostic Groups
In the control group, the model achieved an R² of 0.17 (95% CI, 0.14-0.21; P < .001; reduced R² = 0.14; 95% CI, 0.11-0.17; R²-reduced R² difference = 0.032; 95% CI, 0.015-0.05). Significant associations were seen for PICALM rs3851179 (χ² = 3.56, FDR-corrected P = .04). The association for ABCA7 rs3764650 was χ² = 3.16 (FDR-corrected P = .09).

Discussion
Improved understanding of the polygenetic risk factors that are associated with AD could enable personalized risk assessment. To our knowledge, this is the first comprehensive analysis of the association of the top 20 AD risk variants with brain amyloidosis. We were able to confirm the previously reported association between ABCA7 and brain amyloidosis as described by Shulman et al16 and Hughes et al.18 Our study found that after APOE e4, ABCA7 has the strongest associa-

jamaneurology.com

© 2018 American Medical Association. All rights reserved.
We were unable to confirm the reported associations of CR1 likely because the associations previously reported were determined using a univariate approach. It is plausible that the previously reported CR1 association is better accounted for by other AD-related genes, which were not part of the original analysis. We also found evidence of a stage-dependent gene association of FERMT2 with brain amyloidosis. This is, to our knowledge, the first report of such an association.

Several genes had associations with brain amyloidosis. ABCA7 encodes a 2146–amino acid ABC family transporter protein. The ABC protein family is responsible for the transport of a variety of molecules across cellular membranes, primarily lipids. ABCA7 is expressed in nervous tissue, with the highest expression in microglia. Loss of function of ABCA7 was associated with increased β-secretase cleavage of amyloid precursor protein (APP), leading to higher levels of Aβ in vitro and in vivo. A previous ADNI study analyzed the associations of 15 ABCA7 loci with cerebrospinal fluid Aβ and florbetapir SUVR. Three variants (rs3752242, rs3752240, and rs4147912) were significantly associated with brain amyloidosis but not with brain atrophy. One of these 3 SNPs (rs3752242) is in LD with ABCA7 rs3752246, lending support to our findings. Further evidence of the role of ABCA7 in AD comes from a study that reported one rare missense variant (rs72973581; minor allele frequency of 4.3%) to confer a significant protection against AD. In a previous publication, a late but profound effect of ABCA7 was found on neurodegeneration. Individuals with AD dementia had significant associations of ABCA7 rs3752246 with gray matter density throughout the brain. Individuals with MCI and controls did not have such an association.

CLU encodes for clusterin, an extracellular chaperone protein that consists of 427 amino acids.CLU is highly expressed in neurons and ependymal cells. It seems to be involved in a variety of processes throughout the body, including synaptic maintenance and programmed cell death. Under physiologic conditions, clusterin reduces aggregation and promotes clearance of Aβ. CLU is highly expressed in the hippocampi in patients with AD and Pick disease. Clusterin protein levels are also elevated in AD, and its pattern of distribution correlates positively with that of Aβ42 and Aβ40 in postmortem tissue.

DSG2 encodes a cell adhesion desmosome cadherin protein. DSG2 binds plaque proteins and intermediate filaments and seems to play a role in inflammation.
Figure 2. Association of Alzheimer Disease Risk Genes With Brain Amyloidosis in the Normal Control, Mild Cognitive Impairment, and Dementia Groups

A Normal controls
ABCA7 rs3752246

B Mild cognitive impairment
ABCA7 rs3752246
EPHA1 rs11771145

C Dementia
DSG2 rs8093731
CLU rs9331949

Images were visualized using \(P < .01 \) (uncorrected) and cluster size (k) of 50 voxels. Scale indicates T values.
Table 2. FWE- and FDR-Corrected Cluster Analyses and Within-Cluster Peak Effects

<table>
<thead>
<tr>
<th>Gene Variant</th>
<th>CDR- and FDR-Corrected Cluster Analyses and Within-Cluster Peak Effects</th>
<th>Peak Level</th>
<th>Pooled Sample</th>
<th>Normal Control Group</th>
<th>Mild Cognitive Impairment Group</th>
<th>Dementia Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene Variant</td>
<td>Cluster Level</td>
<td>Peak Level</td>
<td>Pooled Sample</td>
<td>Normal Control Group</td>
<td>Mild Cognitive Impairment Group</td>
<td>Dementia Group</td>
</tr>
<tr>
<td></td>
<td>FWE-Corrected P Value</td>
<td>FDR-Corrected q Value</td>
<td>Cluster Size, Voxels</td>
<td>Uncorrected P Value</td>
<td>Talairach Coordinates, x/y/z</td>
<td>Brain Region</td>
</tr>
<tr>
<td>Gene Variant</td>
<td>Cluster Level</td>
<td>Peak Level</td>
<td>Pooled Sample</td>
<td>Normal Control Group</td>
<td>Mild Cognitive Impairment Group</td>
<td>Dementia Group</td>
</tr>
<tr>
<td></td>
<td>FWE-Corrected P Value</td>
<td>FDR-Corrected q Value</td>
<td>Cluster Size, Voxels</td>
<td>Uncorrected P Value</td>
<td>Talairach Coordinates, x/y/z</td>
<td>Brain Region</td>
</tr>
<tr>
<td>Pooled Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCA7 rs3752246</td>
<td><.001</td>
<td><0.0001</td>
<td>96687</td>
<td><.001</td>
<td>6.01</td>
<td><.001</td>
</tr>
<tr>
<td>CLU rs11136000</td>
<td>.07</td>
<td>0.101</td>
<td>1246</td>
<td>.002</td>
<td>3.64</td>
<td><.001</td>
</tr>
<tr>
<td>EPHA1 rs11771145</td>
<td>.03</td>
<td>0.033</td>
<td>1484</td>
<td>.001</td>
<td>4.18</td>
<td><.001</td>
</tr>
<tr>
<td>FERMT2 rs17125944</td>
<td>.01</td>
<td>0.020</td>
<td>1871</td>
<td><.001</td>
<td>4.48</td>
<td><.001</td>
</tr>
<tr>
<td>ZCWPW1 rs1476679</td>
<td>.047</td>
<td>0.082</td>
<td>1380</td>
<td><.001</td>
<td>3.57</td>
<td><.001</td>
</tr>
</tbody>
</table>

Normal Control Group

<table>
<thead>
<tr>
<th>Gene Variant</th>
<th>CDR- and FDR-Corrected Cluster Analyses and Within-Cluster Peak Effects</th>
<th>Peak Level</th>
<th>Pooled Sample</th>
<th>Normal Control Group</th>
<th>Mild Cognitive Impairment Group</th>
<th>Dementia Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cluster Level</td>
<td>Peak Level</td>
<td>Pooled Sample</td>
<td>Normal Control Group</td>
<td>Mild Cognitive Impairment Group</td>
<td>Dementia Group</td>
</tr>
<tr>
<td></td>
<td>FWE-Corrected P Value</td>
<td>FDR-Corrected q Value</td>
<td>Cluster Size, Voxels</td>
<td>Uncorrected P Value</td>
<td>Talairach Coordinates, x/y/z</td>
<td>Brain Region</td>
</tr>
<tr>
<td></td>
<td>FWE-Corrected P Value</td>
<td>FDR-Corrected q Value</td>
<td>Cluster Size, Voxels</td>
<td>Uncorrected P Value</td>
<td>Talairach Coordinates, x/y/z</td>
<td>Brain Region</td>
</tr>
<tr>
<td>Pooled Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCA7 rs3752246</td>
<td>.006</td>
<td>0.008</td>
<td>1914</td>
<td><.001</td>
<td>4.14</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>.01</td>
<td>0.008</td>
<td>1728</td>
<td><.001</td>
<td>3.79</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>.054</td>
<td>0.027</td>
<td>1236</td>
<td><.001</td>
<td>3.61</td>
<td><.001</td>
</tr>
</tbody>
</table>

Mild Cognitive Impairment Group

<table>
<thead>
<tr>
<th>Gene Variant</th>
<th>CDR- and FDR-Corrected Cluster Analyses and Within-Cluster Peak Effects</th>
<th>Peak Level</th>
<th>Pooled Sample</th>
<th>Normal Control Group</th>
<th>Mild Cognitive Impairment Group</th>
<th>Dementia Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cluster Level</td>
<td>Peak Level</td>
<td>Pooled Sample</td>
<td>Normal Control Group</td>
<td>Mild Cognitive Impairment Group</td>
<td>Dementia Group</td>
</tr>
<tr>
<td></td>
<td>FWE-Corrected P Value</td>
<td>FDR-Corrected q Value</td>
<td>Cluster Size, Voxels</td>
<td>Uncorrected P Value</td>
<td>Talairach Coordinates, x/y/z</td>
<td>Brain Region</td>
</tr>
<tr>
<td></td>
<td>FWE-Corrected P Value</td>
<td>FDR-Corrected q Value</td>
<td>Cluster Size, Voxels</td>
<td>Uncorrected P Value</td>
<td>Talairach Coordinates, x/y/z</td>
<td>Brain Region</td>
</tr>
<tr>
<td>Normal Control Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCA7 rs3752246</td>
<td>.006</td>
<td>0.008</td>
<td>1914</td>
<td><.001</td>
<td>4.14</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>.01</td>
<td>0.008</td>
<td>1728</td>
<td><.001</td>
<td>3.79</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>.054</td>
<td>0.027</td>
<td>1236</td>
<td><.001</td>
<td>3.61</td>
<td><.001</td>
</tr>
</tbody>
</table>

Dementia Group

<table>
<thead>
<tr>
<th>Gene Variant</th>
<th>CDR- and FDR-Corrected Cluster Analyses and Within-Cluster Peak Effects</th>
<th>Peak Level</th>
<th>Pooled Sample</th>
<th>Normal Control Group</th>
<th>Mild Cognitive Impairment Group</th>
<th>Dementia Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cluster Level</td>
<td>Peak Level</td>
<td>Pooled Sample</td>
<td>Normal Control Group</td>
<td>Mild Cognitive Impairment Group</td>
<td>Dementia Group</td>
</tr>
<tr>
<td></td>
<td>FWE-Corrected P Value</td>
<td>FDR-Corrected q Value</td>
<td>Cluster Size, Voxels</td>
<td>Uncorrected P Value</td>
<td>Talairach Coordinates, x/y/z</td>
<td>Brain Region</td>
</tr>
<tr>
<td></td>
<td>FWE-Corrected P Value</td>
<td>FDR-Corrected q Value</td>
<td>Cluster Size, Voxels</td>
<td>Uncorrected P Value</td>
<td>Talairach Coordinates, x/y/z</td>
<td>Brain Region</td>
</tr>
<tr>
<td>Dementia Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLU rs931949</td>
<td>.01</td>
<td>0.017</td>
<td>1966</td>
<td><.001</td>
<td>3.99</td>
<td><.001</td>
</tr>
<tr>
<td>DSG2 rs8093731</td>
<td><.001</td>
<td><0.0001</td>
<td>5428</td>
<td><.001</td>
<td>4.96</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td><.001</td>
<td><0.0001</td>
<td>4200</td>
<td><.001</td>
<td>4.39</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>.047</td>
<td>0.049</td>
<td>1480</td>
<td><.001</td>
<td>4.09</td>
<td><.001</td>
</tr>
<tr>
<td>ZCWPW1 rs1476679</td>
<td><.001</td>
<td><0.0001</td>
<td>17559</td>
<td><.001</td>
<td>5.14</td>
<td><.001</td>
</tr>
</tbody>
</table>

Abbreviations: BA, Brodmann area; FDR, false discovery rate; FWE, familywise error.

In the pooled sample, ABCA7 rs3764650, PICALM rs3851179, and PTK2B rs28834970 had no significant clusters; in the control group, ABCA7 rs3764650 and PICALM rs3851179 had no significant clusters; and in the dementia group, EPHA1 rs11771145 and SORL1 rs1131497 had no significant clusters.
was reported to be associated with AD risk, a mechanistic explanation of this association has not yet been elucidated. DSG2 is expressed in epithelial-derived tissues, such as epithelial cell lines, epithelial malignant tumors, and the brain, especially the corpus callosum region. We found an association with amyloid deposition later in the disease course, indicating a late modulatory effect on amyloid deposition.

EPHA1 encodes a 976-amino acid protein that belongs to the EPH family of receptor tyrosine kinases. EPHA1 plays a role in contact-dependent signaling and nervous system development. EPHA1 is highly expressed in the cerebral cortex and hippocampus. A previous analysis of ADNI-1 data reported that EPHA1 rs11771145 is associated with less brain atrophy and higher cerebral metabolic rate in MCI. Analyses of the cognitively normal imaging subcohort of the Ginkgo Evaluation of Memory study implicated another EPHA1 allele (rs11767557), which is in LD with ours, to have a negative effect on brain amyloidosis.

FERMT2 encodes a 680-amino acid scaffolding extracellular matrix protein that plays a role in cell adhesions. FERMT2 is expressed in the brain (http://www.proteinatlas.org/ENSG00000073712-FERMT2/tissue). FERMT2 is upregulated in atherosclerotic plaques, suggesting a possible role in inflammation and leukocyte extravasation. FERMT2 is a coactivator of β3-integrin—a microglial and reactive astrocyte marker that plays a role in poststroke brain tissue recovery. FERMT2 has also been associated with a cognitive decline in AD and modifies tau neurotoxicity in a Drosophila model. PICALM encodes a 652-amino acid protein that binds to clathrin’s heavy chain and assists in vesicle assembly and endocytosis. PICALM was recently identified as a risk gene for late-onset AD. PICALM colocalizes with APP. PICALM knockdown resulted in a reduction in the amount of APP internalized and a reduction in Aβ generation. In a previous study, PICALM was found to modulate the clearance of tau and thus autophagy. PICALM has been associated with brain changes in AD. Morgen et al reported a negative association with prefrontal brain volume and working memory, whereas Biffi et al found associations with hippocampal amygdalar and white matter lesion volume, as well as with entorhinal, parahippocampal, and temporal pole cortical thickness.

SORL1 encodes a 2186-amino acid protein from the low-density lipoprotein receptor family. SORL1 readily binds APOE and lipoprotein lipase and localizes to both the Golgi apparatus and the plasma membrane, where it likely mediates endocytosis. SORL1 plays a role in APP trafficking and recycling. SORL1 is downregulated in lymphoblasts and cortical pyramidal neurons of patients with AD. The neuronal SORL1 protein level determines cognitive decline and conversion from MCI to AD. The protein level also correlates with the levels of the APP soluble products that result from β-secretase cleavage. An SNP in LD with our variant (rs1133174) has also been linked to brain atrophy in AD.

ZCWPW1 gene codes for a 648-amino acid protein. ZCWPW1 is considered to be a risk gene for late-onset AD.
Its proposed mechanism of action is through epigenetic regulation of gene expression.87-89

Strengths and Limitations
Several strengths and limitations of our study warrant discussion. One of the major strengths lies in the careful clinical, biomarker, and genetic characterization of all individuals enrolled in the ADNI. The ADNI protocol uses unified subject assessment, standardization of all imaging, biofluid and DNA and RNA data collection and processing, and meticulous data quality control across all study sites. Another strength of the study is the fairly large sample size that allowed us to achieve enough statistical power to test the associations of 27 AD-associated risk variants using a polygenic model.

A major limitation of our study is that we only report cross-sectional analyses; thus, we cannot make definitive conclusions regarding genetic effects on amyloid deposition over time. From our cross-sectional observations across the disease continuum, we drew conclusions about early vs late genetic influences on brain amyloidosis that will need to be further tested using a longitudinal design, which is what we plan to do next. Another limitation of our work is that the sample size was not big enough to allow us to test for gene–gene and gene–environment interactions. Last but not least, the ADNI uses rigorous exclusion criteria typical of clinical trials, rendering the ADNI cohort not representative of the general population, which may negatively affect the generalizability of our results. Thus, our next steps will be to validate our findings in a large, independent, longitudinal cohort.

Conclusions
We found an association of genetic variants with brain amyloidosis, the salient pathognomonic feature of AD. Four of the genetic variants reported here, ABCA7, CLU, EPHA1, and SORL1, have been previously linked to the amyloidogenic AD pathways. To our knowledge, we are the first to report a stage-specific association for a genetic variant (ie, FERMT2).

ARTICLE INFORMATION
Accepted for Publication: October 19, 2017.
Published Online: January 16, 2018.

Author Affiliations: Department of Neurology, School of Medicine, Indiana University, Indianapolis (Apostolova, Duran, Stage, Phillips); Department of Radiology and Imaging Sciences, Center for Neuroimaging; School of Medicine, Indiana University, Indianapolis (Apostolova, Risacher, West, Nho, Saykin); Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis (Apostolova, Saykin); Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California (Goukasian, Do); Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, California (Grottis, Wilhame, Elashoff).

Author Contributions: Dr Apostolova had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Apostolova, Saykin.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Apostolova, Stage, Goukasian, Grottis, Nho.

Critical revision of the manuscript for important intellectual content: Apostolova, Risacher, Duran, Stage, Goukasian, West, Do, Wilhame, Nho, Phillips, Elashoff, Saykin.

Obtained funding: Apostolova, Saykin.

Administrative, technical, or material support: Apostolova, Risacher, Stage, Do, Phillips, Saykin.

Study supervision: Apostolova.

Conflict of Interest Disclosures: Dr Apostolova reported serving on an advisory board for Eli Lilly and Company and on the speaker’s bureau for Piramal and Eli Lilly and Company and receiving research support from GE Healthcare. Dr Saykin reported receiving research support from Eli Lilly and Company and AVID Radiopharmaceuticals. No other disclosures were reported.

Funding/Support: The design and conduct of the study, data analysis and interpretation, and preparation, review, and approval of the manuscript were funded by grants R01 AG040770 (Dr Apostolova), NIA K02 AG048240 (Dr Apostolova), NIA P30 AG010333 (Dr Saykin), and NIA K01 AG049050 (Dr Risacher) from the National Institute on Aging, the Alzheimer’s Association (Dr Risacher), the Easton Consortium for Alzheimer’s Drug Discovery and Biomarker Development (Dr Apostolova), the Indiana University Strategic Research Initiative (Dr Apostolova), the Indiana University Physician Science Initiative (Dr Apostolova), and the Indiana Clinical and Translational Science Institute (Dr Risacher). Data collection and sharing for this project were funded by grant U01 AG024904 from the National Institutes of Health and award W81XWH-12-2-0012 from the US Department of Defense to the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The ADNI is funded by the National Institute on Aging, by the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association, Alzheimer’s Drug Discovery Foundation, Arclon Biotech, Bioclinica Inc, Biogen, Bristol-Myers Squibb Company, CereSpir Inc, Cogstate, Eisai Inc, Elan Pharmaceuticals Inc, Eli Lilly and Company, Euroimmun, F. Hoffmann-La Roche Ltd and its affiliated company Genentech Inc, Fujirebio, GE Healthcare, Ixico Ltd, Janssen Alzheimer Immunotherapy Research & Development LLC, Johnson & Johnson Pharmaceutical Research & Development LLC, Lumosity, Lundbeck, Merck & Co Inc, Meso-Scale Diagnostics LLC, NeuroRx Research, NeuroTechX, Novartis Pharmaceuticals Corporation, Pfizer Inc, Piramal Imaging, Servier, Takeda Pharmaceutical Company, and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health. The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California.

Role of the Funder/Sponsor: The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Group Information: A complete listing of Alzheimer’s Disease Neuroimaging Initiative (ADNI) investigators is as follows: ADNI-I, GO, II, and III Leadership and Infrastructure: Principal Investigator: Michael W. Weiner, MD, University of California, San Francisco; ATRI PI and Director of Coordinating Center Clinical Core: Paul Aisen, MD, University of Southern California; Executive Committee: Michael Weiner, MD, University of California, San Francisco; Paul Aisen, MD, University of Southern California; Ronald Petersen, MD, PhD, Mayo Clinic, Rochester; Clifford R. Jack, Jr, MD, Mayo Clinic, Rochester; William Jagust, MD, University of California, Berkeley; John Q. Trojanowski, MD, PhD, University of Pennsylvania; Arthur W. Toga, PhD, University of Southern California; Laurel Beckett, PhD, University of California, Davis; Robert C. Green, MD, MPH, Brigham and Women’s Hospital/Harvard Medical School; Andrew J. Saykin, PsyD, Indiana University; John Morris, MD, Washington University, St Louis; Leslie M. Shaw, University of Pennsylvania; ADNI External Advisory Board: Zaven Khachaturian, PhD, Prevent Alzheimer’s Disease 2020 (chair); Greg Sorensen, MD, Siemens; Maria Carrillo, PhD, Alzheimer’s Association; Lew Kuller, MD, University of Pittsburgh; Marc Raichle, MD, Washington University, St Louis; Steven Paul, MD, Cornell University; Peter Davies, MD, Albert Einstein College of Medicine of Yeshiva University; Howard Fillit, MD, AD Drug Discovery Foundation; Franz Hefti, PhD, Acumen Pharmaceuticals; David Holtzman, MD, Washington University, St Louis; M. Marcel Mesulam, MD, Northwestern University;
Association of Alzheimer Disease Risk Variants With Brain Amyloidosis

Original Investigation Research

PhD, University of Southern California; Mike Donohue, PhD, University of Southern California; Clinical Informatics, Operations and Regulatory Affairs: Gustavo Jimenez, MBS, University of Southern California; Devon Gessert, BS, University of Southern California; Kelly Harless, BA, University of Southern California; Jennifer Salazar, MBS, University of Southern California; Yuliana Cabrera, BS, University of Southern California; Sarah Walter, MSc, University of Southern California; Lindsey Hersheyger, BS, University of Southern California; Elizabeth Shaffer, BS; Psychiatry Site Leaders and Key Personnel: Scott Mackin, PhD, University of California, San Francisco; Craig Nelson, MD, University of California, San Francisco; David Bickford, BA, University of California, San Francisco; Meryl Butters, PhD, University of Pittsburgh; Michelle Zmuda, MA, University of Pittsburgh; MRI Core Leaders and Key Personnel: Clifford R. Jack, Jr, MD, Mayo Clinic, Rochester (core principal investigator); Matthew Bernstein, PhD, Mayo Clinic, Rochester; Bret Borowski, RT, Mayo Clinic, Rochester; Jeff Gunter, PhD, Mayo Clinic, Rochester; Matt Senjem, MS, Mayo Clinic, Rochester; Kejal Kantarcı, MD, Mayo Clinic, Rochester; Chad Ward, BA, Mayo Clinic, Rochester; Denise Reyes, BS, Mayo Clinic, Rochester; PET Core Leaders and Key Personnel: Robert A. Koeppe; PhD, University of Michigan Susan Lawand, PhD, University of California, Berkeley; Informatics Core Leaders and Key Personnel: Arthur W. Toga, PhD, University of Southern California (core principal investigator); Karen Crawford, PhD, University of Southern California; Genetics Core Leaders and Key Personnel: Andrew J. Saykin, PsyD, Indiana University; Tatiana M. Foroud, PhD, Indiana University; Kelley M. Faber, MS, CCRC, Indiana University; Kwangsoo Nho, PhD, Indiana University; Kelly N. Nudelman, Indiana University; Part B: Investigators by Site: University of California, San Francisco: Scott Mackin, PhD, Howard Rosen, MD; Craig Nelson, MD; David Bickford, BA; Yiu Ho Au, BA; Kelly Scherer, BS; Daniel Catalinotto, BA; Samuel Stark, BA; Elise Ong, BA; Daniella Fernandez, BA, University of Pittsburgh: Meryl Butters, PhD; Michelle Zmuda, MA; Oscar L. Lopez, MD; MaryAnn Oakley, MA; Donna M. Simpson, CRNP, MPH.

Additional Information: Data used in preparation of this article were obtained from the ADNI database (http://adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. The ADNI Imaging Core contributed to the image preprocessing, the members of the ADNI Biomarker Core performed the cerebrospinal fluid biomarker analyses, and the investigators at the University of Pittsburgh performed the Pittsburgh compound B standard uptake value ratio analyses.

REFERENCES

