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Abstract

This paper aims to study the abnormal patterns of brain glucose metabolism co-variations in Alzheimer disease (AD) and
Mild Cognitive Impairment (MCI) patients compared to Normal healthy controls (NC) using the Alzheimer Disease
Neuroimaging Initiative (ADNI) database. The local cerebral metabolic rate for glucose (CMRgl) in a set of 90 structures
belonging to the AAL atlas was obtained from Fluro-Deoxyglucose Positron Emission Tomography data in resting state. It is
assumed that brain regions whose CMRgl values are significantly correlated are functionally associated; therefore, when
metabolism is altered in a single region, the alteration will affect the metabolism of other brain areas with which it
interrelates. The glucose metabolism network (represented by the matrix of the CMRgl co-variations among all pairs of
structures) was studied using the graph theory framework. The highest concurrent fluctuations in CMRgl were basically
identified between homologous cortical regions in all groups. Significant differences in CMRgl co-variations in AD and MCI
groups as compared to NC were found. The AD and MCI patients showed aberrant patterns in comparison to NC subjects,
as detected by global and local network properties (global and local efficiency, clustering index, and others). MCI network’s
attributes showed an intermediate position between NC and AD, corroborating it as a transitional stage from normal aging
to Alzheimer disease. Our study is an attempt at exploring the complex association between glucose metabolism, CMRgl
covariations and the attributes of the brain network organization in AD and MCI.
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Introduction

The Alzheimer Disease is the most common cause of dementia

in older adults and accounts for 50%–60% of all cases. This

neurodegenerative disorder is characterized by deficits in cognitive

and behavioral functions, personality changes and impaired

activities of daily living [1] leading to complete need for care

within several years after clinical diagnosis. According to the 2011

World Alzheimer report, 36 million people worldwide are living

with dementia, with numbers doubling every 20 years to 66

million by 2030 (World Alzheimer report 2011, http://www.alz.

co.uk/research/worldreport). With the size of the elderly popu-

lation rising and incidence of dementia also increasing AD soon

could be define as a modern epidemic with an enormous economic

impact.

Neurodegenerative diseases like Alzheimer are not random or

confluent, especially target large-scale distributed networks. The

progression of two principal neuropathological biomarkers:

accumulation of b-amyloid (Ab) plaques and neurofibrillary

tangles composed of tau amyloid fibrils show a spatiotemporal

mechanism through vulnerable pathways connecting coactive

distant brain structures rather than through neighbor regions [2–

6]. On the other hand, it has been evidenced in transgenic mice

that the AD develops in an anatomical cascade contrasting the

hypothesis of individual failure events [7,8]. In summary, these

studies in animals and humans suggest that the Alzheimer Disease
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is a ‘disconnection syndrome’, where the impairment of high-level

cognitive functions is associated with functional and structural

disruptions between anatomically distant brain regions [9]. Hence,

the brain network analysis could potentially provide new

phenotypes and biomarkers of the AD pathology to be used with

diagnostic and therapeutic purposes to control the impact of this

disease.

Recently, brain network analysis based on graph theory has

been applied to study the connectivity patterns and its underlying

topological properties in AD through different neuroimaging

techniques [10–16]. From these studies, as the most relevant issue,

it was shown that AD patients exhibit abnormal segregated

connectivity patterns and disruptive system integrity in large-scale

brain networks (see review in [17]).

Yet, this attractive approach to characterize complex brain

networks has not been practically explored using the regional

cerebral metabolic rate for glucose (CMRgl) information provided

by the 18F-labelled Fluro-Deoxyglucose Positron Emission

Tomography (FDG-PET) technique. To date, the measurement

of the CMRgl driven by basal neuronal activity is considered as an

imaging biomarker with a good sensitivity in the early diagnosis of

AD [18,19]. The CMRgl reductions are thought to reflect declines

in the activity or density of terminal neuronal fields or perisynaptic

glials cells, mitochondrial or other metabolic dysfunctions, or a

combination of these factors. Consistently, several studies have

found reduced CMRgl in the entorhinal cortex, hippocampus,

precuneus, posterior cingulate, parietal and temporal cortex in AD

patients. However, glucose hypometabolism are found in frontal

cortex and many brain regions as the illness becomes more severe

[20–24]. This pattern of regional hypometabolism appears to be

strongly associated with AD, yielding sensitivity and specificity

between 84%–93% [25,26]. Thus, FDG-PET technique provides

unique information that can be used for tracking physiologically

relevant AD disease processes, from the early diagnosis, to

monitoring progression and evaluation of AD-modifying treat-

ments in the clinical and preclinical stages of the disease [27,28].

Albeit FDG-PET technique have been widely employed to

explore different processes underlying the normal and pathological

brain states, only a short list of papers have studied the glucose

uptake co-variations between pairs of brain regions. Some of these

studies [29–31] suggest that cerebral structures whose CMRgl

values are significantly correlated are functionally associated, and

that the strength of this association is proportional to the

magnitude of the correlation coefficient. In particular, Metter

et al. 1984 introduced the first study evaluating CMRgl co-

variations patterns in AD patients using FDG-PET technique,

assuming that the alteration of the metabolism in a single region

will affect the metabolism of other brain areas with which it

interrelates. Three years later, Horwitz et al. 1987 studied the

patterns of the cerebral metabolic correlations comparing 21

Alzheimer’s disease patients and 21 healthy age-matched controls

in resting state. In this case the authors computed the partial

correlation coefficients between pairs of 59 anatomical structures

accounting for the total CMRgl. Some relevant findings were: a)

AD patients had significantly fewer consistent partial correlation

coefficients compared to healthy controls and b) the number of

reliable correlations between many bilaterally symmetric brains

regions was reduced in the Alzheimer patients.

We have identified three others different approaches, making

use of the same principle of functional association between brain

areas based on correlation in CMRgl, that have also revealed

abnormal processes related to default metabolic connectivity in

AD subjects. The first uses the SPM (Statistical Parametric

Mapping) to explore systematically connectivity based on voxel-

wise interregional correlation analysis (IRCA) [32–34]. The

second employs multivariate decomposition methods such as

sICA (spatial Independent Component Analysis) and PCA

(Principal Component Analysis) to capture the spatially distributed

covariation of CMRgl uptake across the subjects [35–39]. The last

of these approaches proposes a method based upon inverse

covariance estimation (SICE) to identify CMRgl functional

connectivity networks for a large number of anatomical regions

and small sample sizes [40].

In spite of previous attempts, a general and integral study about

the organization of the brain glucose metabolism co-variations

when the CMRgl correlation coefficients matrix is considered to

represent a metabolic network is an attractive strategy almost

unexplored in the literature so far [41]. In the present paper we

propose for the first time to study the topology of CMRgl networks

through the graph theory framework in AD, Mild Cognitive

Impairment (MCI) and healthy elder control (NC) populations.

This approach will let us answer questions and shed light on issues

such as: How the AD, MCI and NC functional CMRgl networks

are organized in terms of global efficiency, clustering index, local

efficiency? Are there differences in these primary attributes among

AD, MCI and NC networks? Could MCI be considered a

transitional stage showing an intermediate position between AD

and NC in terms of network attributes? How much the CMRgl

covariations could be modified by patterns of abnormal glucose

metabolism in AD and MCI?

To carry out our study we made use of FDG-PET data coming

from the Alzheimer Disease Neuroimaging Initiative (ADNI)

database. ADNI is an ongoing, large, and longitudinal-designed

study to develop clinical, imaging, genetic, and biochemical

biomarkers for the early detection and tracking of Alzheimer’s

disease [42,43]. More than 360 papers have been published as a

direct result of this international database in the first 6 years,

providing valuable evidences about the anatomical, morphological

and functional processes related to this disease [43]. In line with

this, our study can be considered another step to integrate

knowledge (based on a same database) in the quest for unraveling

the complex processes of this important and urgent health

problem worldwide.

Materials and Methods

ADNI Database
As mentioned above, data used in the preparation of this article

were obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was

launched in 2003 by the National Institute on Aging (NIA), the

National Institute of Biomedical Imaging and Bioengineering

(NIBIB), the Food and Drug Administration (FDA), private

pharmaceutical companies and non-profit organizations, as a

$60 million, 5-year public-private partnership. The primary goal

of ADNI has been to test whether serial magnetic resonance

imaging (MRI), positron emission tomography (PET), other

biological markers, and clinical and neuropsychological assessment

can be combined to measure the progression of mild cognitive

impairment (MCI) and early Alzheimer’s disease (AD). Determi-

nation of sensitive and specific markers of very early AD

progression is intended to aid researchers and clinicians to develop

new treatments and monitor their effectiveness, as well as lessen

the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W.

Weiner, MD, VA Medical Center and University of California –

San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and
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private corporations, and subjects have been recruited from over

50 sites across the U.S. and Canada. The initial goal of ADNI was

to recruit 800 adults, ages 55 to 90, to participate in the research,

approximately 200 cognitively normal older individuals to be

followed for 3 years, 400 people with MCI to be followed for 3

years and 200 people with early AD to be followed for 2 years. For

up-to-date information, see www.adni-info.org. Full details of

subject recruitment, PET scanning protocols, and data prepro-

cessing were published elsewhere [23,42,44] (http://www.loni.

ucla.edu/ADNI/) and only a brief account is given here.

Ethics Statement
Study subjects gave written informed consent at the time of

enrollment for imaging and genetic sample collection and

completed questionnaires approved by each participating sites

Institutional Review Board (IRB). For more information, please

refer to the ADNI website (http://www.adni-info.org). The

authors state that they have obtained approval from the ADNI

Data Sharing and Publications Committee for use of the data and

confirm that the data was analyzed anonymously.

Subjects
The data used in our study come from a subset of AD, MCI,

and cognitively normal ADNI participants who had completed at

least two visits at the time of this study and fulfilled other criteria

explained below. For ADNI full inclusion/exclusion criteria see

http://www.adni-info.org.

Subjects between the ages of 55 and 90 were enrolled in the

ADNI study. Eligibility criteria were as follows (see Petersen et al.,

2010, for a description of participant recruitment and classification

protocol). Normal elderly controls had a Mini Mental State

Examination (MMSE) score of 24 or higher [45], a Clinical

Dementia Rating (CDR) of 0 [46], and no diagnosis of

neurological disease or psychiatric disorder. MCI patients had a

MMSE score of 24 or higher, a subjective memory complaint,

objective memory loss measured by education adjusted scores on

the Wechsler Memory Scale Logical Memory II, a CDR score of

0.5, absence of significant levels of impairment in other cognitive

domains, preserved activities of daily living (ADLs), and an

absence of dementia [47]. Participants with mild AD were enrolled

if they had a MMSE score between 20 and 26 (inclusive), a CDR

score of 0.5 or 1.0, and met NINCDS-ADRDA criteria for

probable AD [48].

At the initiation of our study, 489 ADNI participants with both

baseline FDG-PET and MRI data were available for downloading

from the ADNI LONI (University of California, Los Angeles)

website (http://www.loni.ucla.edu/ADNI/) to be included in this

study.

Finally we used imaging data from 199 participants (69 AD, 62

MCI, 68 NC), whose group wise characteristics are provided in

Table 1. These subjects met the following criteria: anatomical

study acquired in a 1.5 Tesla MRI machine, right handedness, the

period between baseline MRI and PET-FDG acquisitions was less

than 2 months, good image quality for MRI and PET acquisitions,

and the neuropsychological variables were in accordance with

eligibility criteria that characterize the AD, MCI and NC groups

defined above.

ADNI FDG-PET Acquisition
The FDG-PET images had been acquired using Siemens, GE

and Philips PET scanners according to one of three standard

protocols (30–60 minute dynamic, 30–60 minute static, 0–60

minute dynamic) following the intravenous injection of

185619 MBq of FDG. Data were corrected for both scatter and

measured attenuation, which was determined using the CT scan

for PET/CT scanners, and a transmissions scan with 68Ge or
137Cs rotating rod sources for PET-only scanners. Images were

reconstructed using scanner-specific algorithms, and sent to the

University of Michigan, where they were reviewed for artifacts, de-

identified, and transmitted to the Laboratory of Neuroimaging

(LONI) for storage. Further details are available in the ADNI PET

technical procedures manual (ADNI PET Core) [44].

FDG-PET Image Pre-processing
The 199 FDG-PET scans matching to the first MRI acquisition

were downloaded from LONI Image Data Archive in Nifti format.

Each image was examined for major artifacts, and its orientation

adjusted if necessary. The 30–60 minute dynamic scans were

corrected for patient motion using SPM5 (http://www.fil.ion.ucl.

ac.uk/spm/software/spm5) to register each of the subsequent

frames rigidly to the image’s first frame. The resulting co-

registered frames were averaged to produce a single 30–60 minute

static image. For the 0–60 minute dynamic scans, the final six 5-

minute frames were extracted, and concatenated into a static

image in the same way. This procedure has been used previously

by other authors based on ADNI data [49–52].

ADNI MRI Acquisition and Pre-processing
Pre-processed versions of the 199 baseline T1-weighted 1.5 T

MRI scans were downloaded from the LONI Image Data Archive

in Nifti format. These had been acquired using Siemens, GE and

Philips MRI scanners, according to a standard protocol involving

two scans per subject that were based on a 3-D MPRAGE imaging

sequence. Further details are available in the ADNI MRI technical

procedures manual (ADNI MRICore, 2005). From the two images

acquired per subject, the ADNI quality assurance team selected

the best image for pre-processing, based on the presence and

severity of common image artifacts, as well as other criteria. Pre-

processing involved the application of a scanner-specific correction

for gradient non-linearity distortion (Gradwarp; [53]), followed by

a correction for image intensity non-uniformity (B1; [54]), and

finally a histogram peak sharpening algorithm for bias field

correction (N3; [55]). Only the N3 pre-processing step was

necessary for images acquired on Philips scanners, since B1

correction was already implemented, and their gradient systems

tended to be linear [54].

Co-registration between FDG-PET and Structural MRI
For each subject, the pre-processed FDG-PET image was co-

registered with the corresponding pre-processed MRI image by

means of the between modality coregistration methodology using

information theory, and finally re-sampled to the higher resolution

of the MRI. The Normalized Mutual Information cost function

was employed to estimate a 12-parameter (degree of freedom)

affine transformation matrix to transform voxels from PET to

MRI space. SPM5 tools (http://www.fil.ion.ucl.ac.uk/spm5/)

were used to perform non-linear registration.

MRI and PET Parcellation. Assessing Brain Structures
Volumes Based on the High Resolution MRI Imaging.
Construction of the CMRgl Data Matrix using the FDG-
PET Imaging

Using IBASPM toolbox (Individual Brain Atlases using the

Statistical Parametric Mapping (SPM) available at http://www.fil.

ion.ucl.ac.uk/spm/ext/#IBASPM) [56], the gray matter tissue of

the T1- weighted and FDG-PET images were automatically

segmented into 90 anatomical structures using the AAL atlas

Abnormal CMRgl Networks in AD and MCI
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described in Tzourio-Mazoyer et al. (2002) (the full list of the

structures can be found in Table S1). Volumes of the 90 structures

were computed from these segmented T1 images to be used as a

covariate to subtract partial volume effects of the matched mean

glucose metabolism images. From the segmented FDG-PET

images the mean glucose metabolism for each AAL’s structure

were extracted to obtain the CMRgl data matrix. CMRgl data

matrix is M x N, where ‘M’ rows represent the number of subjects,

and ‘N’ the number of AAL structures. In addition, PET images

were also segmented in 71 structures using the Jacob Atlas

developed at the Montreal Neurological Institute (MNI, http://

www.mni.mcgill.ca/) that includes the brainstem. Mean glucose

metabolism of the brainstem was used for FDG-PET normaliza-

tion purposes. The multiregion FDG-PET data using AAL atlas

(or equivalent resolution) has been previously used without finding

any relevant effect on the results [40,49,52]. However a possible

non-independence of regions should always be taken into account

when interpreting the results.

In short, the IBASPM methodology consists of two main steps.

Firstly, the MR image is normalized to MNI (Montreal

Neurological Institute) space using a nonlinear normalization to

obtain the spatial transformation matrix. Additionally, in this step

the individual images are segmented in three different brain tissues

(cerebral spinal fluid, gray matter and white matter). Secondly,

each individual gray matter voxel is labeled based on an MNI

anatomical atlas (constructed by manual segmentation for a group

of subjects) and the transformation matrix obtained in the previous

step. The volume of each structure was obtained as the number of

voxels belonging to each structure multiplied by the voxel’s

volume. A flowchart of the IBASPM pipeline can be found at the

web page: http://www.thomaskoenig.ch/Lester/ibaspm.htm. The

IBASPM procedure has been used by previous authors (cited 67

times so far) for studying volume and surface area morphometric

descriptors in normal and pathological brains (for a paper which

has been recently published studying AD see [57]).

FDG-PET Normalization
FDG-PET image normalization is often performed relative to

the cerebral global mean. However, due to the nature of the

disease process, both MCI and AD patients have a lower glucose

metabolic rate than normal subjects across the whole brain.

Normalization to the cerebral global mean therefore artificially

scales up values from patients, whilst scaling down those from

normal subjects, resulting in under-estimation of the relative

hypometabolism in patients compared to normal subjects [58].

Recent work suggests that improved group discrimination can be

achieved by using the signal intensity in the cerebellum, brainstem,

basal ganglia, and sensorimotor cortex [26], relatively preserved

regions of the brain for normalization, rather than the cerebral

global mean value [59,60]. Our analysis makes use of this

normalization method using the brainstem as ‘reference cluster’

[61,62], obtained from IBASPM segmentation of the PET-FDG

images using Jacob atlas (see previous section).

CMRgl Connectivity Matrix Construction
Prior to the CMRgl correlation analysis, a linear regression was

performed at every region to remove the effects of age, gender,

age–gender interaction, total CMRgl (sum of CMRgl of all

anatomical structures belonging to the AAL parcellation), struc-

ture’s volume and education. The structure’s volume was

introduced as a covariate in the linear regression in order to

reduce the partial volume effects present in PET images. It was not

found significant effect of the education variable on any regional

CMRgl (p.0.05) despite the differences between AD and MCI

groups reported in Table 1. Therefore this variable was not

included in the final linear regression model to remove confound

effects. The residuals of this regression then replaced the raw

values of the CMRgl data matrix.

We defined a connection as statistical associations in glucose

metabolism between each pair of brain regions for a parcellation

scheme of 90 anatomical structures [63,64]. The statistical

similarity or synchronized co-variations in glucose metabolism

between two regions was measured by computing the Pearson’s

correlation coefficient, across subjects. Hence, the interregional

Pearson’s correlation matrix (N6N, N is the number of brain

regions, here N = 90) of such connections or ‘CMRgl connectivity

matrix’ was obtained using all pairs of anatomical structures. The

element Cij is the value of the Pearson’s correlation between

regions i and j. Self-connections were excluded, implying zeros in

the diagonal of the symmetric matrix.

It is important to point out that the partial correlation analysis

could not be used in our case because the sample size was not large

enough (the number of structures in the AAL parcellation is higher

Table 1. Demographic and Neuropsychological Data.

Parameter AD Group (n = 69) MCI Group (n = 62) NC Group (n = 68) p-value

Subject age+ 75.8367.35 76.4967.21 7665.06 0.84

No. of male subjects* 41 (60) 36 (58) 43 (63) –

Years of education+ 14.4863.05 16.1963.11 15.4763.20 0.007a

MMSE score+ 23.6862.04 27.0261.88 29.0761.14 ,0.001a,b,c

CDR score 0 0 0 68 –

CDR score 0.5 29 62 0 –

CDR score 1 40 0 0 –

Note. – MMSE = Mini-Mental, State Examination, CDR = clinical dementia rating scale.
*Data are numbers of subjects, with percentages in parentheses.
+Mean value, with standard deviation.
Baseline demographic differences between NC, MCI, and AD participants were analyzed using one-way analysis of variance (ANOVA), Fisher’s exact and Chi-square (x2)
tests. Scheffé-multiple comparison test was used to compare the differences between each pair of means.
aAD significantly different from MCI.
bAD significantly different from NC.
cMCI significantly different from NC.
doi:10.1371/journal.pone.0068860.t001
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than the number of subjects for each group) for a robust estimation

of this measure.

Similar to our preceding works [63,65], we obtained bootstrap

samples of the connectivity matrix by selecting a random subset of

the total number of subjects with replacement (from sample to

sample) to compute the Pearson’s correlation coefficient. Through

this procedure, it was possible to study the significance of changes

in network properties between experimental groups (NC, MCI

and AD) and taking into account the variability of having different

combinations of subjects in the sample. In particular, we acquired

Nboot = 300 bootstrap samples using a subset that contains always

80% of the total number of subjects in each group.

All connectivity matrices obtained from the 300 bootstraps were

thresholded to create sparse binary graphs. Rather than restricting

our analysis to a binarized graph obtained by applying a single

threshold value, we explored the properties of the graphs over a

range of thresholds to explore metrics with different sparseness

[63,66,67]. The threshold values Rk (different for each of the 300

connectivity matrices) were calculated to obtain different matrix

sparsity that we denote as ‘sparsity degree’. A sparsity degree of 0.9

means that 90% of the connectivity matrix is discarded, therefore

only the highest 10% of the connectivity values are taken into

account. Rk were computed for sparsity degrees ranging from 0.5

to 0.9, in steps of 0.02, yielding a set of 21 values. This procedure

normalizes the networks to have the same number of nodes and

edges, enabling the examination of the relative network properties

obtained for each group. The range of sparsity degree was chosen

to allow for all network properties to be properly estimated and the

number of spurious edges in each network minimized as indicated

in previous studies [68,69].

In these matrices, an element was set to 1 if the absolute value of

the glucose uptake correlation between two regions ‘i’ and ‘j’ Cij

was higher than Rk; (| Cij |. Rk) and 0 otherwise. This binarized

connectivity matrix captures the glucose metabolism covariations

patterns of the population samples under study.

Graph Analysis to Characterize CMRgl Network
A great number of natural systems can be represented by

complex networks. Graph Theory is usually considered an

attractive model for the mathematical treatment of such networks,

including those representing brain connectivity [70]. In general, a

complex network can be represented as a graph G = [N,K], the

components of this system are called nodes (N) and the relations or

connections between them are called edges (K) [71]. In our

specific case, nodes represent the anatomical structures obtained

through IBASPM automatic brain parcellation procedure, where-

as edges denote the co-variations in CMRgl between pairs of these

brain regions.

It is important to note here that this is a mathematically derived

network, whose connections do not necessarily constitute brain

functional or physiological mechanisms directly. However, these

networks are based on functional data and therefore they

indirectly reflect the underlying mechanisms, allowing us at the

same time to use them and their properties as possible biomarkers

of the differences between normal and pathological brain states.

Thus, we are dealing with what will be called a brain CMRgl

network, where each node can be assumed to exchange

information directly or indirectly with other part of the network

through the synchronized fluctuations of the glucose uptakes.

Every network can be represented by a graph with an adjacency or

connectivity matrix. The entries of this matrix represent the

relationship or interactions between pairs of nodes. Therefore, we

have considered the CMRgl covariations matrix as the CMRgl

connectivity matrix. The CMRgl network is unweighted because

all the edges are assumed to indicate relations of equivalent

strength between nodes, and undirected, simply summarizing

symmetric relations (such as correlations) between nodes.

We used graph theory to compare the glucose metabolism co-

variation networks of NC, MCI and AD groups. This mathemat-

ical treatment allows us to characterize the disease-related changes

of the global and local phenomena observed when CMRgl

perturbations in any structure occurs concurrently with glucose

uptake fluctuations in its neighborhoods and other distant brain

structures of the network. In other words, graph theory gives us the

framework to explore the CMRgl network architecture and how

efficiently the information of CMRgl fluctuations is ‘exchanged’

over the network (in terms of the graph theory). Another

important point is that these networks cannot be interpreted in

terms of temporal causality. Firstly, because CMRgl covariations

are assessed across subjects and second since we are using Pearson

correlation due to data availability, thus the direct influences

between pair of nodes cannot be observed remaining the influence

of all other regions.

In particular, we analyzed the following global network

attributes: cluster index, local and global efficiency, characteristic

path length and sigma (small world attribute). To describe the

nodal properties of the network we computed the betweeness

centrality attribute that allowed us to identify the network hubs. In

the following, these measures will be defined with the traditional

interpretation of general networks. However, their usefulness as

relevant descriptors of functional (normal or pathological) brain

states will become apparent in the next sections.

Clustering Index (C)
The clustering index Ci of a node ‘i’ is defined as the number of

existing connections between the node’s neighbors divided by all

their possible connections. It is a measure of the inherent tendency

to cluster nodes into strictly connected neighborhoods [72]. Nodes

are considered neighbors when a connection between them exists,

which is not reduced to a physical neighborhood concept. The

clustering index for the whole graph G is defined as the average

clustering around each node:

C~
1

N

X

i[G

Ci

where N represent the number of nodes. Clearly, 0, C ,1; and

C = 1 if and only if the network is fully connected, that is, each

node is connected to all other nodes.

Characteristic Path Length (L)
The characteristic path length L of the graph G is the smallest

number of connections required to connect one node to another,

averaged over all pairs of nodes. It is a measure of the typical

separation between two nodes (structures) i and j (Vi,j[N), and it is

defined as the mean of geodesic lengths dij over all pairs of nodes.

L~
1

N(N{1)

X

i,j[G
i=j

di,j

In the unweighted network context (the geodesic length dij is

defined as the number of edges along the shortest path connecting

nodes i and j [71–73].
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Small-world Attribute (Sigma)
To examine the small-world properties, the values of charac-

teristic path length (Lreal) and clustering index (Creal) were compared

with the same metrics estimated in random networks (Lrand, Crand)

with the same number of nodes, average degree (average of the

degree over all node, where the degree ki of a node ‘i’ corresponds

to the number of connections to that node), and degree

distribution (probability that a randomly selected node has k

connections) as the network of interest. We generated these

random graphs using the random rewiring procedure described by

Maslov and Sneppen (2002) [74,75]. The small-world attributes

can change with the correlation thresholds. When the threshold is

increased, the resulting graphs will become sparser because some

weaker connections will be dropped out leading to a decrease of

the average degree.

The small-worldness network parameter s, is defined as those

having small average shortest path length, like random networks

(l~
Lreal

Lrand
* 1), and high clustering index, much larger than

random networks (c~
Creal

Crand
ww1). These 2 conditions can also

be summarized into a simple quantitative measurement, small-

worldness, s~
c

l
w1.

Network efficiency. The concept of efficiency has also been

expressed in terms of information flow [76]. That is, small world

networks are very efficient in terms of global and local

communication and they are defined to have high global Eglob

and local Eloc efficiency. The global efficiency Eglob of a graph G is

expressed as:

Eglob~
1

N(N{1)

X

i,j[G
i=j

1

dij

This measure reflects how efficiently the information can be

exchanged over the network, considering a parallel system in

which each node sends information concurrently along the

network. On the other hand, the Eloc of G is defined as the

average efficiency of the local subgraphs:

Eloc~
1

N

X

i[G

Gglob(Gi)

where Gi is the subgraph of the neighbors of ‘i’. This measure

reveals how much the system is fault tolerant, showing how

efficient the communication is among the first neighbors of i when

it is removed [76]. As above, nodes are considered neighbors when

a connection between them exists, which is not reduced to a

physical neighborhood concept.

Nodal Centrality: Normalized betweenness Centrality
(NBC)

The ‘betweenness centrality’ Bi of a node i is defined as the

number of shortest paths between any two nodes that run through

node i [77]. We measured the normalized betweenness centrality

as bi = Bi/,B., where ,B. was the average betweenness of the

network. bi is a global centrality measure that captures the

influence of a node over information flow between other nodes in

the network. The hubs of the network are the regions with high

values of bi. In our particular case, betweenness centrality bi could

be used to reflect the effects of the disease on the global roles of

regions in the cortical CMRgl networks.

Methodology to Explore Nodal betweenness Centrality
(NBC) Differences between Groups. Hubs Selection

For each bootstrap sample of the CMRgl connectivity matrix

the nodal NBC was computed in every single sparsity degree.

Previously to this process, the largest component (see [78]) of all

bootstrap samples of the CMRgl covariation matrices was

computed. The minimum sparsity degree for the largest connected

components (equal to the number of AAL structures) was used as

an upper limit of sparsity degree range. This step guarantees that

all nodal NBCs come from fully connected CMRgl networks. For

every anatomical structure we assessed a NBC mean curve over

the bootstrap samples. To test differences between groups a

Kruskal Wallis (KW) nonparametric statistical test was used. We

performed a Bonferroni adjustment to compensate for multiple

comparisons. Those structures with significant corrected KW tests

at least a 99% of the sparsity degree values were finally assumed

statistically different. This procedure reduces dependences of the

nodal NBC differences on a particular sparsity degree.

We find the mean NBC over the sparsity degree range and

bootstrap samples (as in [79]), which consequently don’t depend

on the thresholding process of the CMRgl covariation matrices.

Hubs were selected as those with mean NBC superior to 1.5

(NBC.1.5) (similar to [11,16,65,80]).

Statistical Methodology to Study CMRgl Differences
between Groups

In order to study CMRgl differences between groups a linear

regression was performed at every AAL anatomical region using

age, gender, age–gender interaction, group, education and the

structure’s volume as independent variables and CMRgl as

dependent variable. As before, the structure’s volume was

introduced as a covariate in the linear regression in order to

reduce the partial volume effects present in FDG-PET images. It

was not found significant effect of the education variable on any

regional CMRgl (p.0.05) despite the differences between AD and

MCI groups reported in Table 1. Therefore this variable was not

included in the final linear regression model. The variables age,

gender, age-gender interaction and structure volume were finally

considered as confounds. The effect of the group variable was

evaluated contrasting the corrected CMRgl between pairs of

groups using the statistic t-Student test. There were explored the

hypothesis tests: NC versus AD, NC versus MCI and MCI versus

AD. Since this process is performed for every AAL structure; a

Bonferroni correction was used to adjust for multiple comparisons.

Statistical Methods to Compare CMRgl Connectivity
Matrices

In order to compare the CMRgl connectivity matrices between

AD, MCI and NC groups, the correlation coefficients were

converted into z values using Fisher’s r-to-z transformation. This

procedure guarantees values with approximately normal distribu-

tion. We used the ‘Z’ statistic to compare the transformed z values

in order to define the significance of the group differences in

CMRgl correlations [81]. The Z statistic is calculated by:

Z~(Z1{Z2)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=(N1{3)z(N2{3)

p
, where N1 and N2 are the

number of data used to calculate the correlation coefficients r1 and

r1 transformed to z1 and z2 using the well-known ‘r’ to ‘z’ Fisher

transformation: Zi~0:5 1n(1zri)=(1{ri), for i = 1,2. To adjust

for multiple comparisons, a false discovery rate (FDR) procedure

was performed at q value of 0.05 [82]. All possible combinations
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AD vs. MCI, AD vs. NC and MCI vs. NC were tested. This

procedure has been used by previous authors for studying the

topological organization of the brain networks in AD and MCI

[11,16].

Methodology for Studying Differences in the CMRgl
Covariations Across Brain Lobes

This study is carried out to investigate differences in the spatial

distribution of the largest absolute CMRgl covariations between

groups. For this purpose we used the anatomical subdivision of the

brain in lobes proposed by Tzourio-Mazoyer et al. 2002 [64]. The

first 1000 largest CMRgl covariations (24.96% out of total (4005))

were used for this study. We found the number of intra lobe

CMRgl covariations in the Limbic, Frontal, Parietal, Occipital,

Temporal lobes for each group and all bootstrap samples of the

CMRgl connectivity matrices. A nonparametric Kruskal-Wallis

statistic was used to test differences between groups corrected by

multiple comparisons.

On the other hand, the intra-lobe CMRgl covariations (intra-

lobe interconnectivity) were taken as the mean of the absolute

correlation coefficient values among intra-lobe structures. As

above it was performed for all bootstrap samples of the CMRgl

connectivity matrices. This was used to study differences in

CMRgl covariations (inter-connectivity) between NC, MCI and

AD groups for each brain lobe. Finally, the nonparametric

Kruskal Wallis statistics along with the multiple comparisons test

were used to find differences between groups.

Statistical Methods to Compare Global Network
Properties between NC, MCI and AD Groups

Network properties (NP) of the CMRgl connectivity matrices

were computed for a range of sparsity degree values and different

bootstrap samples for the AD, MCI and NC groups. Thus, we had

a set of Nboot = 300 curves each with 21 sparsity degree points for

every network properties. The area under network attributes

curves was obtained to contrast the global behavior of these

measures using a Kruskal Wallis nonparametric one-way analysis

of variance and multiple comparisons correction. The post hoc

tests: AD vs. MCI, AD vs. NC and MCI vs. NC were performed.

It is worth noting, that due to the topology of the NP curves is

monotonic with the sparsity degree; the area is a suitable

descriptor for characterizing its global performance. This descrip-

tor has been used in previous studies [79,83].

Results

Identifying Regions of Abnormal Glucose Metabolism in
AD and MCI

This study is aimed at identifying the cerebral regions with

disrupted glucose metabolism in AD and MCI pathologies. The

main results can be found in Figures 1, 2 and 3 where the

significant differences between groups: NC vs. AD, NC vs. MCI

and MCI vs. AD were shown respectively (see Table S2 for a

detailed tabulation of the CMRgl differences between groups). It is

important to remark on the fact that only regions of glucose

hypometabolism were found in AD and MCI groups as compared

with NC (p-values,0.05), and in AD as compared to MCI (p-

values,0.05).

AD group showed the higher number of regions with

hypometabolism (23 regions) (see Figure 1) which are localized

in temporal lobe bilaterally (middle and inferior temporal gyri),

limbic (parahippocampal gyrus, posterior cingulate gyrus), parietal

lobe and associative occipital structures. It is interesting to note the

lateralization of the hypometabolism areas to the left hemisphere

mostly in occipital lobe which include middle, inferior and

superior occipital gyri, as well as the cuneus and fusiform gyrus.

On the other hand, the number of abnormal CMRgl in the

MCI group was reduced to ten regions as compared to NC (see

Figure 2). A bilateral pattern of glucose hypometabolism in

structures belonging to limbic lobe (posterior cingulate and

parahippocampal gyri) and temporal lobe (inferior temporal gyrus)

characterized this group. However, a larger area of glucose

metabolism damages were observed in the right hemisphere

determined by structures such as angular, middle temporal and

fusiform gyri as well as the temporal pole.

Finally, areas of glucose hypometabolism in AD group related to

MCI were also identified. These cerebral regions (6 in total) were

depicted in Figure 3. We found bilateral CMRgl reductions in

limbic-parietal lobes regions such as angular and posterior

cingulate gyri. Further areas like the parahippocampal and

inferior temporal gyri showed a pattern of hypometabolism only

in the left hemisphere.

Evaluating Differences between AD, MCI and NC Groups
in CMRgl Connectivity Matrices

After the previous analysis to identify those areas with reduced

glucose metabolism in AD and MCI, it is important to explore the

CMRgl covariations between anatomical regions (see Figure 4).

Figure 5 depicts the patterns of CMRgl covariations statistically

different between groups (NC vs. AD, NC vs. MCI and MCI vs.

AD, p,0.05, FDR corrected) (see Table S3 and Text S1 for a

complete list of these differences). The sphere’s diameter

represents the number of times each anatomical region is involved

in group differences. The highest number of differences was found

between NC and AD groups (183 pairs of regions). NC and MCI

groups were different in 17 pairs of regions whereas the smallest

number of differences was found between MCI and AD with only

4 pairs of regions. It can be observed that frontal and occipital

regions in AD (see Figure 5, ‘NC vs. AD’ panel) are involved in a

considerable number of aberrant CMRgl covariations as com-

pared to NC. With respect to MCI group, it is important to

remark on the differences observed in the covariations between

fusiform gyrus with the frontal regions (see Figure 5, ‘NC vs. MCI’

panel). The spheres in blue represent the structures with glucose

hypometabolism which are implicated in CMRgl covariation

differences (see Table S6 for full information). It is worth noting

that only one structure with abnormal glucose metabolism is

involved in NC vs. MCI differences. In MCI vs. AD was not found

any coincident structure.

Large co-variations in local glucose metabolism between

homologous regions were present in AD, MCI and NC groups

(see Figure 4 and 5). This result is in accordance with previous

studies in healthy and pathological subjects [11,16,29,30,63,65].

Differences in the CMRgl connectivity matrices between MCI

and AD groups involved structures that included the olfactory

cortex, the pallidum nucleus and the superior and inferior frontal

gyri. Additionally, NC and MCI groups showed significant

differences in structures such as the temporal pole, middle

temporal gyrus, postcentral and precentral gyri, superior, inferior

and middle frontal gyrus. However, significant changes between

NC and AD groups were found in the superior, middle and

inferior frontal gyrus, superior parietal gyrus, precentral and

postcentral gyrus, paracentral lobule, middle temporal gyrus,

angular and fusiform gyri.
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Exploring the Spatial Distribution of the Strongest CMRgl
Covariations. Differences in Intra-lobe CMRgl
Covariations between AD, MCI and NC Groups

We performed an exhaustive study to characterize the spatial

distribution differences of the strongest CMRgl covariations

among groups. Differences in intra-lobe CMRgl covariations were

also explored (for methodological details see in Materials and

Methods section, subsection: ‘Methodology for studying differences in the

CMRgl covariations across brain lobes’).

Firstly, we identified a set of structures with distinctive

differences between groups in the number of largest CMRgl

covariations (denoted here as ‘Core’, see Figure 6, area shaded in

pink and black arrows). ‘Core’ comprises regions belonging to the

central area, medial surface of frontal lobe and limbic areas in

both hemispheres, these were: precentral gyrus (PreCG.R,

PreCG.L), supplementary motor area (SMA.R, SMA.L), median

cingulate and paracingulate gyri (DCG.R, DCG.L), postcentral

gyrus (PoCG.R, PoCG.L), and paracentral lobule (PCL.R,

PCL.L). It can be observed significant abnormal behavior

(p,10220) of the CMRgl covariations among Core structures in

AD and MCI respect to NC. It is interesting to mention that MCI

shows an intermediate position between NC and AD. A further

remarkable result is the aberrant CMRgl covariations between

‘Core’ and limbic, frontal lobes present in AD group (p,10220).

Once more, it is noteworthy that MCI has a middle position.

Previous to this analysis we separated from limbic and frontal lobes

the structures belonging to ‘Core’.

Figure 7 depicts the group differences in the distribution of the

1000 strongest CMRgl covariations over brain lobes (see panel A,

p,10220). It is also shown the intra-lobe CMRgl covariations

differences in Frontal, Parietal, Limbic, Occipital and Temporal

lobes (panel C). AD and MCI groups showed aberrant behaviors

in the temporal, parietal and limbic lobes, in which MCI takes a

middle position. This result is consistent with the spatial

distribution of abnormal glucose metabolism found in both groups

(see Figures 1 and 2). Though, in the frontal and occipital lobes an

opposite pattern is found with an increasing number of strongest

CMRgl covariations for AD and MCI as compared to NC

(p,10220). Note that structures belonging to these lobes were

involved in an important number of differences between CMRgl

connectivity matrices of AD and MCI groups as compared with

NC.

Figure 1. Differences in glucose metabolism between NC and AD groups. It is shown an extended area of hypometabolism in AD patients
that include regions described previously in the literature such as those belonging to the limbic, temporal, parietal and occipital lobes.D.
doi:10.1371/journal.pone.0068860.g001
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The significant differences in intra-lobe CMRgl covariations are

depicted in Panel C. We found AD showing higher intra-lobe

CMRgl covariations than NC in frontal, parietal and occipital

lobes. MCI group occupies the intermediate position as above. In

contrast, AD depicted limbic and temporal lobes with significant

loss of the intra-lobe CMRgl covariations respect to NC. The MCI

group has varying patterns with no significant alterations in the

temporal lobe relative to NC, whereas in the limbic lobe were

found no differences respect to AD. Precisely the limbic and

temporal lobes showed the highest glucose metabolism deficits in

AD and MCI groups. In general, these results might suggest that

in MCI and AD pathologies could be coexisting temporarily

compensatory mechanisms and disease related-processes.

We also studied the CMRgl covariations among brain lobes in

all groups. The CMRgl covariations between occipital and other

lobes were the highest for AD and MCI (p,10220) (see Figure S3

for methodological aspects and results), that could justify the

presence of higher number of hubs in these groups respect to NC.

The MCI group occupied, as before, the intermediate position.

Finally, the CMRgl covariations among regions with hypome-

tabolism in AD were studied across different groups (see Figure 1

and Table S2 for the list of structures). This analysis provides us

the information about the strength of the functional association

among structures with possible shared vulnerability from normal

to AD. The AD showed the highest CMRgl covariations among

these structures, whereas the NC the lowest value. The MCI

perform in-between NC and AD. All post hoc tests were significant

(p,0.05) (NC vs. AD, NC vs. MCI; MCI vs. AD) (see Figure S1

for details).

Global Network Properties in AD, MCI and NC Groups
Recently, the presence of small-world topology in anatomical

networks of normal elderly subjects, MCI and AD patients has

been found [11,16]. These studies demonstrated a less optimal

behavior in morphological networks related to covariations of

volume and cortical thickness in AD and MCI, showing an

increment in clustering index and shortest path length. In our case,

the global properties (clustering index, characteristic path length,

local efficiency, global efficiency and small world attribute) of the

CMRgl connectivity matrix were calculated over a range of

sparsity values in order to study differences in network organiza-

tion features between NC, MCI and AD groups.

Figure 8 illustrates the area under the global network attributes

curves in AD, MCI and NC groups. The Kruskal-Wallis

Figure 2. Differences in glucose metabolism between NC and MCI groups. It is depicted areas of glucose hypometabolism in MCI group
respect to NC.
doi:10.1371/journal.pone.0068860.g002
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nonparametric revealed significantly differences between groups

(in all cases p,10231) for characteristic path length, clustering

index, local efficiency, global efficiency and sigma attributes.

The post hoc comparisons revealed significantly higher charac-

teristic path length, clustering index and local efficiency values in

AD networks than in MCI and NC (in all cases: Multiple

Comparisons p-value (2-tailed),10220). In contrast, the AD group

showed lower global efficiency than MCI and NC (Multiple

Comparisons p-value (2-tailed) ,10220) whereas MCI network

properties has a middle position between AD and NC except for

the local efficiency (AD vs. MCI and AD vs. NC: p-value (2-tailed)

,10220; MCI vs. NC: p-value (2-tailed) = 0.92). With respect to

sigma attribute, NC depicted higher values than MCI and AD (see

Figure S2 for details). The post hoc tests: NC vs. AD and NC vs.

MCI where statistically significant (p-value (2-tailed) ,10220).

However, AD vs. MCI showed no significant differences (p-value

(2-tailed) = 0.58)). These results suggest that AD and MCI in

different degree could be associated with disruptive system

integrity in large scale brain networks expressed by the loss of

balance between network segregation and integration processes.

[11,16][10,12–15,17].

Similar to Yao et al. 2010 study we found that the MCI network

behaves between AD and NC networks in all attributes (p-value (2-

tailed),10220) except for local efficiency and sigma where no

significant differences were observed in NC vs. MCI and MCI vs.

AD respectively. Our findings provided additional support for the

hypothesis that cortical networks have a further loss in efficiency

during the progression from normal aging to AD [11,16].

Studying Differences in Normalized betweenness
Centrality (NBC) between Groups

The normalized betweenness centrality could be interpreted as

the influence of a specific structure over the ‘information flow’

between other regions in the CMRgl network. Differences

observed in this network attribute could provide evidences about

the local alterations related to AD and MCI pathologies on global

roles of the anatomical structures in the CMRgl network

functioning.

Figure 9 shows the mean NBC for all regions in each group. We

found in NC high NBC values in regions such as the insula, parts

of the occipital lobe, middle temporal and superior frontal gyri.

Figure 3. Differences in glucose metabolism between MCI and AD groups. It is shown glucose hypometabolism regions in AD group as
compared to MCI.
doi:10.1371/journal.pone.0068860.g003
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Though, the highest NBC values in AD group were located in the

frontal and occipital lobes, whereas in MCI group these regions

were found in the middle temporal gyrus and occipital areas.

Additionally, we studied the NBC differences between groups

depicted in Figure 10 and tabulated in Table S4 (see Materials and

Methods section for methodological aspects). It was observed a

decreased NBC in AD respect to NC group in the right

supplementary motor area, superior parietal gyrus, left para-

hippocampal gyrus, left hippocampus, insula and amygdala (see

Figure 10, panel ‘NC.AD’). In contrast, in AD other regions

showed an increased NBC such as left superior and inferior

parietal gyrus, right and left anterior cingulate gyri, right cuneus,

inferior temporal gyrus and middle occipital gyrus.

Respect to NC the MCI group depicted NBC reduction in the

following structures: right and left paracentral lobe, left superior

frontal gyrus, right and left precuneus, left amygdala, left superior

temporal gyrus, right superior parietal gyrus and right supple-

mentary motor area (see Figure 10, panel ‘NC.MCI’). An

increased NBC in MCI respect to NC was detected in the right

and left anterior cingulate gyri, left middle temporal gyrus, left and

right inferior occipital gyri and right inferior temporal gyrus

among others.

Finally, MCI and AD groups showed the least number of NBC

differences (see Figure 10, panel ‘MCI.AD’). This result

corresponds with the CMRgl connectivity matrices differences

between these two groups. AD group depicted significant NBC

reductions in regions related to memory process such as: left

parahippocampal gyrus, left hippocampus, left and right middle

temporal gyri, Heschl or transverse temporal gyrus. Likewise there

were found differences in the right and left insula, right medial

orbital part of the superior frontal gyrus, left paracentral lobe

among others. It is noteworthy the fact that the differences

between these groups were located mainly in the left hemisphere

which agrees with the glucose metabolism asymmetry pattern

previously found (see Figure 3). In contrast, regions in AD with

increased NBC were found in the left middle occipital gyrus, left

and right supramarginal gyrus, left superior frontal gyrus, left and

right orbital part of the superior frontal gyrus and left and right

olfactory cortex. It is important to point out that these anatomical

structures were located principally in the frontal and occipital

lobes where significant increases in CMRgl covariations have been

previously reported in our results (see Figure 7, panel C).

Exploring Regions with Concurrent NBC Changes and
Disrupted Glucose Metabolism

It is consistent to assume that local alterations in glucose

metabolism (hypometabolism) detected through FDG-PET imag-

ing in AD and MCI could be one of the pathophysiological

mechanisms to explain aberrant behaviors of the anatomical

structures from its global roles in the CMRgl network functioning.

To this end, we explored the anatomical regions that concurrently

showed NBC alterations and glucose hypometabolism in AD and

MCI groups. The results for AD are shown in the Figure 11.

These structures were: right temporal pole part of the middle

temporal gyrus (TPOmid.R), right inferior temporal gyrus

(ITG.R), left hippocampus (HIP.L), left parahippocampal gyrus

(PHG.L), left inferior occipital gyrus (IOG.L), left inferior parietal

(IPL.L) and left pallidum (PAL.L). However, in the MCI group

only a couple of structures were found: right temporal pole part of

the middle temporal gyrus (TPOmid.R) and right inferior

temporal gyrus (ITG.R).

Identification of Hubs in the CMRgl Networks of AD, MCI
and NC Groups

To identify the network hubs, we select those cortical regions

with NBC values above 1.5 (see Materials and Methods). This

means that hubs have at least 1.5 times the network’s mean NBC.

Figure 4. CMRgl connectivity matrices for AD, MCI and NC groups. The color bar indicates the value of the correlation coefficient coming
from the glucose metabolism covariations among the 90 anatomical structures. ‘R’ and ‘L’ represent right and left hemisphere respectively. The
CMRgl covariation matrices were organized first with structures belonging to the right hemisphere (‘R’ label). The ‘R-R’ and ‘L-L’ quadrants represent
the intra-CMRgl covariations belonging to the right and left hemispheres respectively. The ‘R-L’ and ‘L-R’ quadrants depict the inter-hemispheric
interactions, where CMRgl covariations between homologous structures can be observed.
doi:10.1371/journal.pone.0068860.g004

Abnormal CMRgl Networks in AD and MCI

PLOS ONE | www.plosone.org 11 July 2013 | Volume 8 | Issue 7 | e68860



We found 19 hubs in NC and MCI groups, representing 21% of

the total number of anatomical structures. These were the lowest

number in AD group with 13, which represents the 14% of the

total number of regions. The anatomical localizations of these

regions were different across groups (see Figure 12 and Table S5).

Specifically, AD’s hubs were predominantly located in both

hemispheres in the lateral and medial surface of the occipital

regions (8 out of 13). MCI’s hubs were observed at the lateral and

medial surface of the occipital, limbic lobe, lateral surface of the

temporal and parietal lobes. In NC group we found that lateral

and medial surfaces of the occipital, frontal, temporal and parietal

lobes, had the largest number of hubs. It is important to note that

the highest number of hubs identified in all groups was

predominately located in the association cortex which receives

inputs from multiple other cortical regions as described by

Mesulam (2000) [84].

Identifying Hub Regions in NC with Abnormal Glucose
Metabolism in AD and MCI Pathologies

A further important aspect explored in our study was whether

the extended hypometabolism areas observed in AD and MCI

affected hub regions considered crucial to an ‘efficient communi-

cation’ in the complex CMRgl networks. For this purpose, we

found those areas with hypometabolism in AD and MCI that were

identified as hubs in NC (see Figure 13).

The structures found in AD were: right inferior parietal (IPL.R),

right precuneus (PCUN.R), right temporal pole part of the middle

temporal gyrus (TPOmid.R), left cuneus (CUN.L), left superior

occipital gyrus (SOG.L), left middle occipital gyrus (MOG.L), left

precuneus (PCUN.L) and left middle temporal gyrus (MTG.L). In

MCI only the middle temporal gyrus (TPOmid.R) structure met

this condition.

Discussion

In this paper, we have studied the topological organization of

the glucose metabolism covariations between cerebral regions

through the resting-state FDG-PET neuroimaging technique. The

used methodology is based on applying graph theory analysis to

the CMRgl networks obtained after the correlations between

glucose uptakes in every pair of 90 cerebral regions are explored.

Similarly to previous works, we considered that these covariation

patterns reveal information about the organization of the

functional brain networks, particularly the CMRgl networks

[29,31,33,51,85]. To our knowledge, this is the first time that

graph theory is used to explore the CMRgl networks in Mild

Cognitive Impairment (MCI) and Alzheimer disease (AD) patients

Figure 5. Differences between CMRgl connectivity matrices: NC vs. AD, NC vs. MCI and MCI vs. AD. The spheres (in red and blue) depict
the anatomical regions involved in the connections differences. The sphere’s diameter represents the number of times each node is involved in the
group differences. Lines illustrate the connections and its color and thickness the Z- statistics. The larger the CMRgl covariation differences the higher
the Z statistics. Spheres in blue symbolize the anatomical regions with hypometabolism in AD and MCI groups as compared with NC.
doi:10.1371/journal.pone.0068860.g005
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as well as in elder normal subjects. Our main findings could be

summarized as follows: 1) AD and MCI showed a pattern of

abnormal glucose metabolism in regions previously reported in the

literature; 2) MCI and AD related changes in CMRgl covariations

were observed as compared with normal subjects; 3) The CMRgl

network attributes (global and local) showed differences in AD and

MCI patients as compared to NC suggesting disease-related

alterations in the large scale networks; 4) the MCI’s network

showed intermediate topological attributes supporting the view of

MCI as a transitional stage between normal aging and Alzheimer

disease. 5) Hub regions of the CMRgl networks in AD, MCI and

Figure 6. CMRgl networks for NC, MCI and AD groups. The 500 strongest CMRgl covariations are represented. The line color indicates the
absolute CMRgl covariation strength. Arrows in black along with the area shaded in pink indicate a set of regions ‘Core’ comprising the following
structures: PreCG.R, SMA.R, DCG.R, PoCG.R, PCL.R, PreCG.L, SMA.L, DCG.L, PoCG.L and PCL.L. The ‘Core’ set shows a loss of CMRgl covariations from NC
to AD where MCI has an intermediate position (see the bar graph at the center: ‘Core-Core’ panel). This phenomenon is also observed between Core
and limbic lobe (‘Core –Limbic’ panel) as well as between Core and frontal lobe (‘Core-Frontal’ panel). The sphere’s diameter denotes the CMRgl
covariation of each node with the rest of the network. The error bars in different panels represent twice the standard error. The bar height denotes
the CMRgl covariation.
doi:10.1371/journal.pone.0068860.g006
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Figure 7. Intra-lobe CMRgl covariations statistics, distribution of the largest CMRgl covariations. A) Differences between groups by
lobes in the number of absolute correlation coefficients (bar height) among the 1000 largest CMRgl covariations. In each brain lobe, there were found
differences between groups (p-value,0.05). B) Distribution of nodes by lobes in different colors (as defined in Tzourio-Mazoyer et al. 2002). Red:
Frontal Lobe; green: Temporal Lobe; cyan: Occipital Lobe; magenta: Limbic Lobe; blue: Parietal Lobe. C) Differences between groups in terms of intra-
lobe CMRgl covariations obtained as the mean of the absolute value of the correlation coefficients among all intra-lobe structures. The star in the
‘Temporal lobe’ panel means that there was not difference in intra-lobe CMRgl covariations between NC and MCI (p.0.05). Likewise in the limbic
lobe the star denotes that there was not difference between MCI and AD in terms of intra-lobe CMRgl covariations. The error bars in different panels
represent twice the standard error.
doi:10.1371/journal.pone.0068860.g007
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NC were different in number and spatial distribution. In the next

subsections we will discuss these issues in more detail.

Abnormal Glucose Metabolism in AD and MCI
The 18F-FDG-PET imaging at rest allows characterizing

quantitatively the basal local metabolism of the synaptic terminals

in astrocyte-neuron functional unit [86,87]. For a specific region a

decline in the glucose uptake means either a reduction in number

of synapses or reduced synaptic metabolic activity. It has been

demonstrated in previous investigations that FDG-PET findings

precede neurodegeneration by showing synaptic dysfunction

before cellular loss; therefore this technique can detect early

neuro-pathophysiological processes in AD and MCI outperform-

ing, in this sense, the structural MRI.

In our study, we found that both MCI and AD are associated

with significant CMRgl reductions in brain regions preferentially

affected by the disease. The AD patients displayed more extended

areas of hypometabolism than MCI as numerous studies have

previously shown [23,88,89]. The AD group showed a reduced

glucose metabolism as compared with NC in the so-called

association cortex that include temporo-parietal, posterior cingu-

late and occipital associative regions (see Figures 1, 2 and 3, for full

list see Table S2) [89–94]. These glucose hypometabolism patterns

comprise areas involved in memory processing and structurally

and functionally related to the default mode network (DMN).

DMN is a network that has been consistently found to be impaired

during resting state in MCI and AD [95–97]. In addition, the

medial and lateral visual areas and fusiform gyrus are involved in

face recognition and spatial navigation, and impaired visuo-spatial

information processing is thought to develop early in AD [98–

100].

There were not found regions with significant damaged glucose

metabolism in frontal associative cortices, which correspond (as

reported in previous papers) to a later phenomenon in the course

of AD. Although, some frontal regions showed marginal significant

hypometabolism in AD and MCI prior to applying Bonferroni

correction. This result warns that early frontal glucose metabolism

declines could be arising in our data sample.

In summary, our results depicted once more the excellent

reproducibility of the FDG-PET technique to detect glucose

hypometabolism patterns related to AD and MCI diseases. For

that reason, the pattern of temporo-parietal hypometabolism is

now considered a reliable hallmark of AD [87].

Figure 8. Area under the curves of global properties of the CMRgl covariation networks. Bar height represents the mean of each network
properties for AD, MCI and NC groups. Error bars represent standard deviations. AD networks show higher characteristic path length, clustering index
and local efficiency values than MCI and NC (p,0.05). The AD patients show lower global efficiency than MCI and NC (p,0.05). In general, MCI
network properties have an intermediate position between AD and NC except for the local efficiency.
doi:10.1371/journal.pone.0068860.g008
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During next sections we attempt to discuss how the disrupted

CMRgl network organization in AD and MCI could be

modulated by the abnormal glucose metabolism patterns observed

in these brain pathologies.

Altered CMRgl Co-variation Patterns in MCI and AD
Patients

Recently, it has been demonstrated that in some cases the local

physiological states (characterized by univariate variables, in our

case regional glucose metabolism) modify the capacity of one

region to interact with other brain structures (characterized by

more complex variables: bivariates and multivariates)

[67,101,102].

Therefore, it could be thought that disruptions of local function

and/or anatomical integrity in one area could modulate the

underlying physiological processes operating in other cerebral

structures with which it interrelates. In addition, local abnormal

processes in many cases could influence aberrant functional

associations among different regions [5,67,101]. Some of our

results support this idea. Firstly, we found that: the larger the areas

with abnormal glucose metabolism the higher the number of

CMRgl covariations differences. For example, the AD showed the

Figure 9. Mean normalized betweenness centrality (NBC) for AD, MCI and NC groups. For each anatomical structure a mean curve of the
NBC (over 300 bootstraps) along the sparsity degrees was assessed. The mean of the NBC curve over the number of sparsity degrees yields the mean
NBC depicted in this figure. It can be observed in AD group prominent NBC values in occipital regions. The node’s NBC were mapped onto the
cortical surfaces using the BrainNet Viewer package (http://www.nitrc.org/projects/bnv).
doi:10.1371/journal.pone.0068860.g009
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largest number of areas with abnormal glucose metabolism (23 out

of 90), followed by MCI (10 out of 90) and the differences between

MCI and AD was reduced to 6 structures. Concurrently, the AD

and NC were different in 183 CMRgl covariations (see Figure 5

and Text S1); the MCI group as compared with NC showed 17

differences and finally the MCI and AD were only different in four

occasions. Secondly, the largest number of areas with hypome-

tabolism in AD was found in the left hemisphere where the

number of aberrant CMRgl covariations was the largest. Third,

structures with disrupted glucose metabolism were involved in

37.16% (68 out of 183) of the aberrant CMRgl covariations in AD

respect to NC. Fourth, the 9.84% (18 out of 183) of the abnormal

CMRgl covariations related to AD disease were among structures

with significant glucose hypometabolism.

Similar to previous studies, we found significant positive CMRgl

covariations between different anatomical regions [29–31]. It have

been suggested that this phenomenon is explained by different

ways: 1) a real functional association between anatomical

structures; 2) the common influence exerted by one structure over

a set of regions modulating theirs metabolic fluctuations, or 3) the

compromise of a set of regions in a common pathological process

or shared vulnerability [29,68,103]. Consequently, a decreasing of

Figure 10. Statistical differences in nodal normalized betweenness centrality (NBC) between groups. First row: NC versus AD, second
row: NC versus MCI, third row: MCI versus AD. The sign of the statistical test was represented in red and blue spheres for positive and negative effects
respectively. Red spheres at the first row symbolize regions where NC was statistically higher than AD in the NBC, the opposite for blue spheres. The
sphere diameter denotes the size of the difference effect. The NBC differences were mapped onto the cortical surfaces using the BrainNet Viewer
package (http://www.nitrc.org/projects/bnv).
doi:10.1371/journal.pone.0068860.g010
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positive CMRgl covariations could imply a significant reduction in

the functional association [31].

We observed significant increments in positive CMRgl covari-

ations in AD and MCI in the frontal lobe (see Figure 5, 6 and

Figure 7 Panel C: Frontal Lobe). This phenomenon could be

explained at least by two possible mechanisms either operating at

the same time or not. Firstly, these regions can have shared

metabolic failures [104]. It may not be our main factor in view of

the fact that was not found any frontal region with significant

abnormal glucose metabolism in our data sample (see Figure 1,

Figure 2 and Table S2). Even so it should not be entirely discarded

since some abnormal neurodegenerative processes can be arising

yet not detected by the FDG-PET technique. The hypometabo-

lism in frontal regions is classically considered to be a late

phenomenon in the course of AD. However, based on our results,

the second and more reliable possible mechanism to explain the

increased CMRgl interconnections in the frontal lobe could be

related to compensatory effects or cognitive resource allocation

processes [105–107]. These compensatory mechanisms could be

considered very important since they permit the AD and MCI

patients to have supplementary cognitive resources to approach a

normal level [16]. These findings are similar to those of recent

studies using resting-state fMRI which show AD patients with

increasing intra-frontal and frontal-prefrontal functional connec-

tivity [13,15,108,109]. Hence, a typical AD pattern emerges in

which frontal regions depict relatively higher mean levels of

CMRgl synchronization.

On the other hand we also found increased CMRgl covariations

among structures of the occipital lobe in AD and MCI (see Figure 7

Panel C: Occipital lobe). In our opinion and contrarily to frontal

lobe the shared metabolic failure among structures is the most

reliable mechanism operating in this case. The main fact pointing

to this (see Figure 1) is that almost half of the regions belonging to

occipital lobe (associative occipital cortex) presented glucose

metabolism injuries as part of the AD neurodegenerative

processes. We hypothesized that these areas with glucose

hypometabolism could additionally trigger compensatory process-

es acting simultaneously with shared metabolic failures. This could

also justify the disproportioned increasing of CMRgl covariations

in this lobe. It is worth noting that AD, MCI and NC showed only

positive CMRgl covariations among occipital structures. There-

fore, it could be thought that the extension of the occipital glucose

metabolism damages may modulate the strength of the aberrant

CMRgl covariations in AD. The increased CMRgl covariations in

MCI as compared with NC could be explained by compensatory

mechanisms either acting simultaneously or not with early glucose

Figure 11. Regions with glucose hypometabolism in AD related to changes in betweenness centrality. Plot of regions found with
glucose hypometabolism in AD as compared to NC presenting simultaneously changes in betweenness centrality. The center of the figure shows the
spatial localization of these structures. It is plotted the residual of CMRgl covariations (bar height) of the linear regression for each group. Nodes were
mapped onto the cortical surfaces using the BrainNet Viewer package (http://www.nitrc.org/projects/bnv).
doi:10.1371/journal.pone.0068860.g011
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hypometabolism processes not yet detectable by the FDG-PET

technique (there were not found any occipital region with

hypometabolism in MCI, see Figure 2: NC vs. MCI). Taking into

account that MCI is considered a transitional stage between NC

and AD, these results would suggest the possibility of detecting

early increased CMRgl covariations before the evidence of glucose

metabolism damages (regional hypometabolism). It is important to

point out that the increased CMRgl covariation in frontal and

occipital lobes could be candidate markers for an early detection

and characterization of the MCI and AD pathologies. In addition

this highlights the importance of using the intra-lobe CMRgl

covariations variable to study these diseases.

Another important aspect to discuss is the presence of a set of

structures ‘Core’ with intra-CMRgl covariations deficits in AD

and MCI (see Figure 6). Core’s structures belong to different brain

lobes (frontal, central and limbic bilaterally). It is noteworthy to

mention that none of these regions showed abnormal glucose

metabolism, which is a further example (as above) showing that

local changes in physiological variables (univariate variables) can

be insufficient for detecting disease related changes [67]. In

addition, this highlights the idea that complex multivariate

measures (i.e. co-variations) in many cases are more sensitive in

characterizing brain pathologies as it has been found studying

other neurological diseases like Schizophrenia [67,101,102]. We

observed the CMRgl covariations ‘Core’-frontal lobe and

Figure 12. Hubs distribution in AD, MCI and NC groups. First row: AD hubs, second row: MCI hubs, third row: NC hubs. In red are represented
the common hub regions. These were: SOG.L, MOG.L, SOG.R, MOG.R and MTG.L. The sphere diameter denotes the nodal betweenness centrality
(NBC), in this case NBC.1.5. Nodes were mapped using the BrainNet Viewer package (http://www.nitrc.org/projects/bnv).
doi:10.1371/journal.pone.0068860.g012
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‘Core’-limbic lobe were also damaged in AD (see Figure 6), in

which once more MCI has an intermediate position. It is

important to remark on the fact that all structures belonging

‘Core’ except one were involved in disrupted CMRgl covariations

with other external regions. We hypothesize this phenomenon

could be one of the factors influencing the low CMRgl

covariations between Core’s structures. It is worth noting that

limbic lobe showed a high number of structures with hypometab-

olism, and the frontal lobe presents incipient abnormal glucose

metabolism processes. Aditionally, the composition of Core with

structures belonging to different brain lobes brings to light the

damaged CMRgl covariations among lobes present in AD and

MCI (see Figure S3). Finally, we recommend that covariations

among Core’s structures should be investigated with other

physiological and morphological variables (i.e. volume, cortical

thickness, surface area, blood oxygenation, cerebral blood flow) to

explore the specificity and sensibility of this set to characterize AD

and MCI. Furthermore, a deeper study to find other clusters of

regions, to aid the early detection of AD related-neurodegener-

ative processes should be carried out in future investigations.

It is important to remark on the presence of negative CMRgl

covariations between fusiform gyrus and frontal regions in AD

Figure 13. Hub regions in NC with hypometabolism in AD and MCI groups. Plot of hub regions in NC found with glucose hypometabolism
in AD and MCI. The center of the figure shows the anatomical localization of these structures. The spheres in red denote the structures in AD with
hypometabolism. The sphere in green represents regions found with hypometabolism in both AD and MCI groups. The sphere diameter denotes the
nodal betweenness centrality value (NBC.1.5).
doi:10.1371/journal.pone.0068860.g013
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patients, contrary to NC that showed positive interactions between

these brain areas. It is known that both cerebral regions are

functionally and anatomically connected via the visual ventral

stream[110–112]. The exact physiological or physiopathological

mechanism underlying negative covariations is less evident, but it

does correspond to a decreased metabolism in one region when

another is metabolically more active [29,103].We found precisely

the fusiform gyrus presenting glucose hypometabolism that could

be the source of the aberrant coupling with frontal areas. This

result was observed partially in an earlier work (Horwitz et al.

1987) [31], where the authors detected an inversion from positive

in NC to negative CMRgl covariations between frontal and

occipito-temporal regions in AD.

Interestingly, when MCI and NC groups were compared, once

more the negative CMRgl covariations arose between fusiform

gyrus and orbifrontal structures, similar to those detected between

AD and NC. It is curious that this phenomenon can be observed

as early as subjects are still diagnosed as MCI. This result agrees

with those of recent works studying functional changes in MCI

through resting-state fMRI. It have been found that compared to

healthy controls, MCI subjects exhibited a decrease functional

activity in regions of the Default Mode Network (DMN) including

left fusiform gyrus as well as an increased activity in other regions

such as prefrontal cortex [113]. Summarizing, our findings

revealed abnormal CMRgl covariations in AD and MCI that

could reflect early stages of disorganization of the functional

activity preceding the neuronal death for years. The CMRgl

covariation patterns represent the high sensitivity of FDG-PET to

explore pathophysiological processes at very early stages of

neurodegenerative diseases such as Alzheimer and their possible

application for predicting cognitive decline and response to

disease-modifying therapy. Next section is aimed at discussing

the changes of the CMRgl network attributes in AD and MCI

where the disruption of underlying processes related to CMRgl

covariations play a crucial role.

CMRgl Network Attributes in AD and MCI
In our analysis the MCI and AD groups showed alterations in

the CMRgl network’s attributes, such as ‘cluster index’ and

‘characteristic path length’ that indicate failures of equilibrium

between network segregation and integration processes. These

results are in compliance with previous works that use different

neurophysiological and morphological variables to study brain

networks [10–16]. They suggested that AD and MCI patients have

disruptive neuronal integrity in large-scale structural and func-

tional brain systems underlying high-level cognition. In addition,

the abnormal segregated and integrative connectivity patterns

support the notion of AD as a disconnection syndrome [9].

The topological properties of the CMRgl networks differ

between AD and NC groups. The ‘characteristic path length’ in

AD was statistically higher than the NC group. This alteration

have been reported consistently in previous studies using other

neuroimaging modalities [11,12,14,16]. Our results suggest that

this increment could be linked to the compensatory effects and the

compromise of a set of regions in a common pathological process

or shared vulnerability (occipital and frontal regions). These

abnormal processes could influence the redistribution of principal

CMRgl covariations (the highest correlation values) to these

regions. Consequently, the CMRgl network in AD and MCI suffer

a new reorganization where long distance connections play a less

important role (for the network integration) inducing a longer

characteristic path length. We found some hubs of the NC group

not present in AD with disrupted glucose metabolism related to

neurodegenerative processes (see Figure 13). Some of them were

localized in parietal and temporal regions that link other cortical

areas through long-range cortico-cortical connections, indispens-

able in the sensory integration [17]. The damaged connectivity in

these areas could cause increments in the average characteristic

path length.

The ‘clustering index’ attribute depicted the same behavior with

higher values for AD and MCI patients as compared with NC.

This is a measure of how similar CMRgl covariations are among

brain structures neighborhoods (not reduced to a physical

neighborhood concept). According to the small-world theoretical

model (based on graph theory), this increase could be generated by

the establishment of new densely connected local clusters which

can generate an uncontrolled ‘flow of information’ through the

entire network. This measure is related to the local efficiency of the

‘information flow’ of the networks and its abnormal performance

could be the characteristic combination of disease-related changes

(aberrant circuits) and compensatory mechanisms. The increased

CMRgl covariation in frontal (compensatory mechanisms) and

occipital (shared vulnerability effect) lobes in AD and MCI could

explain the increasing clustering index in these pathologies. In line

with this idea, we found that AD showed the largest number of

areas with abnormal glucose metabolism (23 out of 90 represent-

ing the 25.5% out of total), followed by MCI (with 10 out of 90

that represents the 11.1% out of total). This set of regions with

hypometabolism generates extended circuits with high CMRgl

covariations that could increase the clustering index. This result

may also explain why MCI occupies an intermediate position

between NC and AD in terms of clustering index attribute.

It is noteworthy to point out, as previous authors have reported

[11,16], that the CMRgl networks in all groups showed small

world architectures (see Figure S2). We found that the small world

attribute (sigma) decreased in AD and MCI respect to NC. This

network property is an indicator of the optimal balance between

local specialization and global integration. Owing to the charac-

teristic path length and clustering index attributes are higher in

both pathological groups it could be thought that AD and MCI

present an insult of the normal balance to a more regular network.

This result is accordance with previous ones that use cortical

thickness and volume as morphological variable [11,16].

The increasing in ‘local efficiency’ was accompanied by a

‘global efficiency’ decline in AD and MCI. In terms of the graph

theory these changes affect the network performance pointing to a

higher ‘wiring cost’ for parallel ‘information transfer’ between

anatomical regions. The weakening of the global efficiency is

explained by larger characteristic path length present in AD and

MCI. It is important to comment that the decline of the number of

hub’s regions in AD as well as a non-uniformity distribution of

them over the brain (see Figure 12) influence negatively the

efficient communication over the CMRgl network that reduce the

integration capacity and so the global efficiency. Moreover, we

observed that almost all network attributes in MCI subjects

exhibited an intermediate position between normal controls and

AD. This fact provides evidences about MCI condition that

clinicians believe often represents a transition phase to Alzheimer

disease [113,114].

In summary, the abnormalities found in the CMRgl network

properties and the so-called cost-efficiency balance may be associated

to the Alzheimer’s disease neurophatological processes such as the

synaptic loss, reduced dendritic extent and local cell death.

Hub Regions in AD and MCI Glucose Metabolism
Networks

Hubs determine the pivotal regions that are crucial to an

efficient communication in the complex networks [115]. Recently,
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several studies have suggested that brain regions that belong to the

default mode network and areas with dense structural connectivity

are most susceptible to the AD disease [5,116]. The high baseline

activity of hub regions may make them especially vulnerable to

neurodegenerative changes (‘metabolism hypothesis’ of AD

pathogenesis) [61,116,117]. In general, our results agreed the

above studies in some points.

We found that most of hub regions in all groups were localized

within the association cortex. The NC group present the highest

number of these pivotal regions whereas in AD were found the

lowest amount, almost half of the former. Some of these hubs in

NC belong to the Default-mode Network (DMN) such as

structures of the ventral medial prefrontal cortex (vMPFC)

(supplementary motor cortex, left and right frontal superior

cortex), inferior parietal lobe (IPL) (right inferior parietal gyrus)

and medial temporal lobe structures [61,117,118]. The AD and

MCI pathological groups present only one hub in the DMN

located in the ventral and dorsal medial prefrontal cortex.

When we compared the spatial distribution of hubs between

NC, MCI and AD groups, some aspects called our attention. First,

the NC hubs were homogenously distributed over the occipital,

limbic, parietal and frontal lobes. In the temporal lobe and nuclei

only one hub was identified. On the contrary, a high number of

hubs in AD were concentrated in occipital regions (8 out of 13

both brain hemispheres). Partially, it can be explained by the

increased number of regions with glucose hypometabolism in this

lobe that increments the CMRgl covariations by shared vulner-

ability processes. This mechanism changes the roles of the

individual structures in the CMRgl network functioning. In

addition it was observed that the CMRgl covariations over

different brain lobes were unbalanced in AD and MCI (see

Figure 7). In particular, the CMRgl covariations in occipital lobe is

almost twice the values found in other brain lobes that indicates

the presence of the strongest ‘connections’ in these regions. This

fact could explain the reallocation of hubs to occipital lobe.

Another aspect that could shed light on this phenomenon is that

CMRgl covariations between occipital and other brain lobes were

the highest for AD and MCI (see Figure S3), therefore it is

reasonable to expect a high ‘traffic’ through this lobe that justify

the presence of higher number of hubs respect to NC. As in other

occasions MCI took an intermediate position between AD and

NC.

Our findings are in line with previous papers that found

precuneus, cuneus, thalamus, putamen, regions of the superior

parietal cortex, and superior frontal gyrus as hub regions crucial

for the well-functioning of brain networks [119,120]. However, we

observed in our study that all groups presented a weakening in the

so-called ‘structure core’ that comprises a set of posterior medial

and parietal cortical regions, establishing a densely interconnected

and topologically central core (they constitute connector hubs that

link all major structural modules) [119]. In the specific case of the

NC group, this fact could be explained by normal aging effects

that prevent some brain areas such as posterior cingulate cortex,

isthmus of the cingulate, and hippocampus to be identified as

hubs. These regions are well-known hubs of anatomical networks

in young adult subjects [119].

It is noteworthy to mention that was not found a full

coincidence between hubs regions found in our study and the

ones reported in earlier studies [61]. We ascribed these

dissimilarities to the existing differences among studies in terms

of in neuroimaging modalities, technical procedures, sample

characteristics and hub’s definition.

The smaller number of hubs localized in parietal, temporal and

limbic regions in MCI and AD agrees with alterations in the

‘default-mode’ network (DMN) classified as memory related

neuronal network and described through fMRI neuroimaging

technique [121,122]. It has been identified that MCI and AD

subjects show early changes in cerebral glucose metabolism and

blood flow in frontal, medial temporal, and posterior cingulate/

precuneus areas of the brain [26,95,96,123], suggesting that the

DMN may be compromised. It is striking the fact that was not

found any hub in limbic lobe in AD, which could be explained by

pathological mechanisms (explained above) that reallocate hubs to

the occipital lobe (see Figure S1 and Table S2).

Some hubs in NC presented glucose metabolism failures in AD

and MCI. This fact evidences that AD targets some vital regions

that could disturb the normal CMRgl networks functioning

(Figure 13). It is worth noting that excepting the middle and

superior occipital gyri (MOG and SOG) the NBC values of hubs

in NC were systematically higher than in AD. Based on this

finding we could hypothesize that the local glucose metabolism

disruption is one of the mechanisms that change the role of the

regions in the CMRgl network. In line with this idea we further

found that glucose hypometabolism areas coincide with either

increasing or decreasing of the NBC attribute (see Figure 11).

Therefore the NBC changes related to glucose metabolism failures

is a complex and multifactorial phenomenon that deserves a

detailed study. Additionally, it should be noted that despite the

NBC is a local attribute, this nodal property uses the global

information of whole network. This makes the interpretation of the

NBC-hypometabolism coupling even more difficult.

On the other hand, we found that NC subjects have more

frontal hubs than AD and MCI groups. Given that frontal cortex

structures undergo the largest age-related volumetric changes

[124] this is an interesting finding in a group of elderly normal

subjects. Nevertheless, a recent study of the topological patterns of

the structural brain networks in younger and older cohorts showed

no evidence of reduced ‘betweeness centrality’ in the prefrontal

cortex between groups [80].The frontal cortex is one of the more

flexible structures in the brain, and compensatory processes in the

aged brain may largely reside in it [80,125]. Moreover, this core of

frontal hubs are in line with the ‘compensatory scaffolding’

hypothesis which posits that additional circuits are recruited by the

aging brain to shore up the declining circuits whose functioning

has become inefficient [125]. Creating scaffolds is suggested to be

an active process throughout life, but in old age this may be

accelerated as a compensatory mechanism.

In summary, the distribution of hubs of the CMRgl networks

observed in all groups could be associated to the disease

progression and aging related processes.

Methodological Issues and Future Work
Several methodological issues need to be addressed in the

future. First of all, it would be interesting to include NC, MCI and

AD subjects from different databases to study the reproducibility

of our findings and explore demographic effects. Second, partial

correlation analysis should be used instead of the classical Pearson

correlation adopted here. The partial correlation analysis could

not be used in this study because the sample size was not large

enough for a robust estimation of this measure (i.e. the number of

structures in the AAL was higher than the number of subjects for

each group). Third, we included only CMRgl networks analysis

using FDG-PET. It would be very important in a future work to

explore how brain network alterations in aging and AD are

associated with alterations of anatomical/functional/metabolic

variables, by combining structural MRI, fMRI, DWI and PET

neuroimaging techniques. Fourth, it should be performed a study

to disentangle the contributions of the negative and positive
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correlation values to the CMRgl networks. It is noteworthy to

explore whether the negative correlations can lower the test-retest

reliability of the network attributes. This issue has been previously

reported in the literature for fMRI studies [126,127]. Finally, here

the MCI and AD related brain networks abnormalities were

detected through a cross-sectional data; whereby results could be

influenced by potential cohort effects. Future studies would be

necessary to study the longitudinal network dynamics.

Conclusions
In the present paper we have shown that combining graph

theory and PET-FDG data allows studying the organizational

properties of the glucose metabolism networks in the Alzheimer

Disease, Mild Cognitive Impairment and in brain normal states.

The possible relation between patterns of axonal (anatomical) and

CMRgl covariations is a topic that should be addressed in future

works. Our results highlight the importance of examining different

physiological variables like glucose metabolism to understand

normal/aberrant networks attributes in healthy and pathological

brains. We consider our paper contributions shed light on the

functional and anatomical connectomics of the Alzheimer and

Mild Cognitive Impairment to reveal biological mechanisms

underlying such diseases. This study is an attempt at addressing

the complex association between glucose metabolism, CMRgl

covariations and brain network attributes in AD and MCI based

on graph theory.
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