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Abstract. Computer aided diagnosis is an established field in medical
image analysis; a great deal of effort goes into the development and refine-
ment of pipelines to achieve greater performance. This improvement is
dependent on reliable comparison, which is intimately related to variance
estimation. For supervised methods, this can be confounded by statistical
issues at the comparatively small sample sizes typical of the field. Given
the importance of reliable comparison to pipeline development, this is-
sue has received relatively little attention. As a solution, we advocate
an empirical variance estimator based on validation within disjoint sub-
sets of the available data. Using Alzheimer’s disease classification in the
ADNI dataset as an examplar, we investigate the behaviour of different
variance estimators in a series of resampling experiments. We show that
the proposed estimator is unbiased, and that it exceeds the estimates of
naive approaches, which are biased down. Because the estimator avoids
independence assumptions, it is able to accommodate arbitrary valida-
tion strategies and performance metrics. As it is unbiased, it is able to
provide statistically convincing comparison and confidence intervals for
algorithm performance. Finally, we show how the estimator can be used
to compare different validation strategies, and make some recommenda-
tions about which should be used.

1 Introduction

There has been great hope for supervised methods in the characterization of
neurological disorders, where they may be able to pick out subtle or distributed
changes in images that may not be apparent to the radiologist. One area that has
received particular attention is computer aided diagnosis (CAD) in Alzheimer’s
disease (AD) and its prodrome, mild cognitive impairment. Anticipated disease
modifying interventions will need to occur at an early phase in the disease course,
where gross cognitive and neurological changes may not be apparent.
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The defining feature of supervised learning is the use of a training set of
labeled examples to build an explicit or an implicit model which is then applied to
quantify or classify previously unseen examples. In order to avoid the upward bias
of over-fitting, classification algorithms must be evaluated using separate test
sets that were not used in classifier construction. While we speak here primarily
of algorithms, our discussion is just as relevant to the comparison of whole CAD
pipelines; the methods that compare the performance of algorithms can also be
used for modality or feature choices.

Algorithm validation can be performed using simple hold out strategies or
cross validation (CV). In the former, only a single classifier is trained and eval-
uated. The real quantity of interest is always the expected performance of the
algorithm in this scenario, marginalized over all test subjects and training sets
of a particular size. CV combines multiple hold out tests to reduce the variance
of the performance estimate while remaining unbiased. The most common for
of this, K-fold CV (KCV), divides the data into K disjoint subsets of equal size.
Each of these is left out to become the test set while the remainder are used for
training. In this way, each example is used exactly once for testing, and so all
have equal weight in the final performance estimate.

One reason for the popularity of simple hold out tests is the presumed in-
dependence of performance results on each subject in the test data, allowing
for binomial model confidence intervals and table based tests [1]. Using these
tests for algorithms is fine provided the performance of their derived classifier
models is constant enough across training sets. Much of machine learning deals
with large datasets that make this assumption reasonable, but in medical image
classification, where complex classifier models are built on necessarily limited
data this seems less likely. Here, validation based on a single training set may
be incorrect in generalising inference conclusions based on classifier models to
their producing algorithms [2]. An inference test for algorithms based on simple
hold out may then have a type I error rate above the nominal value (e.g. 0.05),
which then loses its meaning.

While some of the variation due to training set will be apparent in the results
of CV, the correlations between the evaluations on different folds makes unbi-
ased variance estimation impossible with a function of the observed performances
alone [3]. As the choice of partition is another source of variation, it is possible
to provide more accurate estimates through the combination of M KCV runs
performed on the same data (MKCV), though this further violates the indepen-
dence assumptions that would be used to estimate variance. The effect of these
correlations in testing against the null hypothesis that an algorithm performs
no better than chance was demonstrated in a recent paper [4], highlighting the
need for permutation tests. These problems are already acknowledged by much
of the research community, and classification papers often omit the statistical
analysis common in group difference studies.

As there is no appropriate permutation test for the null hypothesis that two
algorithms have the same performance, comparative inference must rely on dis-
tribution assumptions and variance estimation. Though naive variance models
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assuming independence may have bias either way, the results are most harmful
when variance is underestimated in comparison studies. When the probability
of incorrectly rejecting the null hypothesis may be above the nominal level, sta-
tistical tests are undermined. Reliable or conservative estimates for the variance
are just as crucial in algorithm comparison as estimates for the expectation.

In response to this problem, we advocate an empirical solution based on
the work of [5], which involves performing validation in two disjoint subsets
of the available data. We conduct a series of resampling experiments to examine
the behaviour of different variance estimators in a typical classification context.
We are able to demonstrate the failure of naive variance estimators built on
independence assumptions, and to show that the expectation of the proposed
measure is unaffected by finite sample sizes. Given its necessary convergence,
this strongly indicates that it is an unbiased estimator for the true variance.
With this knowledge, we show how it can be used to investigate the stability of
different validation strategies, and give some advice as to which should be used.

2 Variance Estimation Using Disjoint Subset Pairs

Though there exist model based estimators that rest on much weaker assump-
tions than independence, these are not straightforward. In particular, we con-
sider the estimator developed in [6] for KCV. This has an adjustable parameter
to trade between power and error rate. While it would be possible to choose a pa-
rameter which made tests conservative beyond all reasonable doubt, this would
come with severely diminished power. We prefer empirical estimation because it
is intuitive and general. It can be used with arbitrary validation strategies and
performance metrics (e.g. MKCV and AUC), and has no parameter selection
requiring prior knowledge of a problem. Though it comes at an increased com-
putational cost, it is not an unreasonable one. The bulk of computation load
in most medical image classification studies lies in the image processing and
registration steps rather than the production and testing of classifiers.

In the absence of a model, we cannot estimate the variance of a validation
strategy’s performance estimate from a single observation. By conducting a vali-
dation strategy on two randomly sampled disjoint subsets of the same size one is
able to produce two independent observations, x(1) and x(2). It is then possible
to get an unbiased variance estimate V using the standard variance estimator for
a sample of two. To reduce variability due to choice of subsets, one can repeat
the selection R times and combine results in an average.

V =
1

R

R∑

r=1

(
1

n− 1

n∑

i=1

(x(i)
r − x̄r)

2

)
, where n = 2 (1)

Where there are N examples available, this variance estimate can then be
used in one of two comparison schemes:

1. Use V as a conservative estimate for the variance of CV performance on
the full N . This requires only the modest assumption that it becomes more
stable at greater sample sizes [5].
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2. Use V as an unbiased estimate for CV performance on 1
2N . 1

2V is then an
unbiased variance estimator for the mean of two of these estimates.

Though the main purpose of our estimator is to provide a conservative estima-
tor, there are other good reasons for its use. One of these is the accommodation
of arbitrary performance metrics. Another is the ability to account for variance
reduction due to repeated partitioning. There are also situations where anti-
correlation between performance in the folds of CV leads naive estimators to
underestimate the variance [6], when this occurs, the proposed estimator may
actually produce narrower confidence intervals than naive models. Generally, we
suspect that inference with the second method will be more powerful, though
researchers must be mindful that the reduced training set size involved may alter
algorithms comparative performance.

3 Resampling Experiments

Our aim here is to reproduce a typical CAD task in neuroimaging. We present
a commonly used algorithm, dataset, and feature set. MRI and assessment data
were obtained from the Alzheimers Disease Neuroimaging Initiative (ADNI)
database. In all experiments, we classified AD patients and healthy control (HC)
subjects using T1 weighted images acquired at baseline on a mixture of 1.5T and
3.0T scanners. All images were automatically corrected for spatial distortion and
subjected to quality control. Any subjects with suspected alternative etiologies,
including fronto-temporal dementia, were excluded. This left us with a total of
370 HC subjects, and 252 AD subjects.

In order to generate features for classification we used label propagation to
parcellate our images with an 83 region atlas1 [7,8]. Non-rigid registration was
performed using the niftyreg package2 [9]. We performed a six-class tissue seg-
mentation using the new segment module of SPM123 with the maximum cleanup
option, and used the resulting tissue compartments to segment the intra-cranial
space. Our feature set was then the sum of the grey matter compartment in each
of the cerebral regions, normalized by the intra-cranial volume.

In all experiments presented here, we used balanced CV implemented exactly
as in the commonly used LIBSVM package [10]. We used a linear support vector
machine (SVM) with the C parameter selected so that the SVM behaviour was
in the ‘hard margin’ limit, and increasing it further brought about no change in
the solutions obtained. To avoid issues relating to class balance, we restrict our
analysis to subsets with equal numbers of subjects from each class. In all our
experiments we take a number of disjoint pairs of validation experiments, and
used them to produce the following variance estimators:

– The proposed empirical variance estimate (EVE) using disjoint pairs (2. from
section 2).

1 http://www.brain-development.org
2 http://sourceforge.net/projects/niftyreg
3 http://www.fil.ion.ucl.ac.uk/spm/software/

http://www.brain-development.org
http://sourceforge.net/projects/niftyreg
http://www.fil.ion.ucl.ac.uk/spm/software/
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– A naive empirical variance estimate (NEVE) that treats the performance on
each randomly selected subset as independent. Subsets are randomly selected
from all available data, and allowed to overlap.

– A naive fold-wise model (NFW) which treats the performance in each fold
as an independent observation. We take the mean variance estimate across
all subsets used.

3.1 Drawstring Experiments

By their definition, both empirical estimators for the variance of a validation
experiment of a fixed size must converge to the true variance as the size of the
available dataset increases. If the expectation of our estimator was affected by
finite sample size, then it would not be an unbiased estimator of the true variance.
To determine whether EVE was affected by a finite dataset, and compare its
behaviour to NEVE, we performed a drawstring experiment as follows: we drew
500 “parent” subsets with a varying P subjects of each class, and within each of
these produced both empirical estimates using 500 subset pairs. These smaller
subsets had a fixed 25 subjects of each class, and on each of these we performed
10-fold CV. P was varied from 25 to 155 in increments of two.

3.2 Variance Characterization

In this experiment we sought to compare the behaviours of the empirical es-
timators to the naive model-based ones at a variety of sample sizes. We pro-
duced the three variance estimates using 10000 paired subsets for 10-fold CV. We
varied the size of the subset from 10 to 125 items of each class. In addition to
the expectation of our variance estimators, we include a variance estimate from
a naive binomial model which assumes results on each subject are independent
and binomial distributed, i.e., where the mean performance is p on n items, the

variance estimate is p(1−p)
n .

3.3 Validation Strategy Comparison

Different CV strategies will have different variances depending on the character
of the classification problem, which is not known in advance. Having an empirical
estimator allows one to compare these variances for real problems using finite
datasets. Having fewer folds decreases training set size, but allows split variability
to be reduced through repeated partitioning. The choice of the best strategy to
estimate performance may then be a trade-off between bias and variance. As a
demonstration, we used the EVE to compare 5 strategies as estimators for the
expected leave one out performance. These were 10 and 3 fold CV with either 1
or 10 repeats, and leave one out itself. To this end, we produced 2500 disjoint
subset pairs, and measured the bias, variance, and the mean squared error of
each strategy based on assumptions of normality.
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4 Results and Discussion

4.1 Drawstring Experiments

In Fig. 1, we can see that the expectation of NEVE is clearly affected by finite
sample size, while the proposed estimator stays constant. As both necessarily
converge to the true variance as parent sample size increases, this provides con-
vincing evidence that the proposed method is an unbiased estimator even at
finite sample size. While we report accuracy here as it is the most commonly
used performance metric, the same qualitative behaviour was observed for sen-
sitivity, specificity, and area under curve. The EVE value is omitted where there
are too few subjects in the parent sample for two disjoint pairs.
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Fig. 1. Expectation of empirical variance estimators with changing sample size

4.2 Characterization Experiments

On the left side of Fig. 2, we can see the expected accuracy increase with sample
size, while variance decreases. The naive empirical estimator acquires an increas-
ing negative bias as the subsets used in validation become an increasing fraction
of our full dataset. On the right, using a naive binomial variance estimate based
on the mean performance to normalize, we can see relative sizes of the variance
estimators. Both the naive binomial and fold-wise estimators are consistently be-
low the proposed estimator. This is consistent with positive correlations between
performance evaluations in our validation experiments. Here, we have demon-
strated that models based on independence can underestimate variance in real
CAD problems. We caution against their general use in hypothesis tests where
exactness is required.

4.3 Comparison of Validation Strategies

Fig. 3 shows the relative variance of the different validation strategies as com-
pared to leave one out, and their bias and mean squared error as an estimator for
its expected performance. We can see that the 3-fold validations have a negative
bias due to their smaller training sets, and that averaging over 10 partitions is
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Fig. 2. Expectation of standard deviation estimates with changing validation set size.
On the right, variance estimates are normalised by that of a naive binomial model.
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Fig. 3. Standard deviation, bias and mean squared error of validation strategies as
estimator for the expectation of a leave one out experiment. Estimates are normalised
by those of the leave one out validation itself.

able to reduce the variance. Notably, we can see that the repeated strategies
have the lowest mean squared errors, particularly at smaller sample sizes. If one
is willing to trade increased bias for decreased variance, leave one out is not the
best estimator for its own expected performance.

5 Conclusion

This paper seeks to draw attention to the problem of performance variance
estimation in CAD research. Having demonstrated that some naive estimators
currently used can have negative bias, we strongly recommend the use of alterna-
tive methods in algorithm comparison. We demonstrate an empirical estimator
as a possible solution to this problem, and show experimentally that it is un-
biased. We then use it to compare different validation strategies as estimators,
and find that a bias variance trade-off is possible using few folds with repeated
partitioning. Because of its high variance, we recommend against the use of leave
one out validation with all but exceptionally small sample sizes.
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