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Recently, several high dimensional classification methods have been proposed to automatically discriminate
between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and elderly controls
(CN) based on T1-weighted MRI. However, these methods were assessed on different populations, making it
difficult to compare their performance. In this paper, we evaluated the performance of ten approaches (five
voxel-based methods, three methods based on cortical thickness and two methods based on the
hippocampus) using 509 subjects from the ADNI database. Three classification experiments were performed:
CN vs AD, CN vsMCIc (MCI who had converted to AD within 18 months, MCI converters —MCIc) and MCIc vs
MCInc (MCI who had not converted to AD within 18 months, MCI non-converters — MCInc). Data from 81
CN, 67 MCInc, 39 MCIc and 69 AD were used for training and hyperparameters optimization. The remaining
independent samples of 81 CN, 67 MCInc, 37 MCIc and 68 AD were used to obtain an unbiased estimate of
the performance of the methods. For AD vs CN, whole-brain methods (voxel-based or cortical thickness-
based) achieved high accuracies (up to 81% sensitivity and 95% specificity). For the detection of prodromal
AD (CN vs MCIc), the sensitivity was substantially lower. For the prediction of conversion, no classifier
obtained significantly better results than chance. We also compared the results obtained using the DARTEL
registration to that using SPM5 unified segmentation. DARTEL significantly improved six out of 20
classification experiments and led to lower results in only two cases. Overall, the use of feature selection did
not improve the performance but substantially increased the computation times.
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Introduction

Alzheimer's disease (AD) is the most frequent neurodegenerative
dementia and a growing health problem. Definite diagnosis can only
be made postmortem, and requires histopathological confirmation of
amyloid plaques and neurofibrillary tangles. Early and accurate
diagnosis of Alzheimer's Disease (AD) is not only challenging, but is
crucial in the perspective of future treatments. Clinical diagnostic
criteria are currently based on the clinical examination and neuro-
psychological assessment, with the identification of dementia and
then of the Alzheimer's phenotype (Blennow et al., 2006). Patients
suffering from AD at a prodromal stage are, mostly, clinically classified
as amnestic mild cognitive impairment (MCI) (Petersen et al., 1999;
Dubois and Albert, 2004), but not all patients with amnestic MCI will
develop AD. Recently, more precise research criteria were proposed
for the early diagnostic of AD at the prodromal stage of the disease
(Dubois et al., 2007). These criteria are based on a clinical core of early
episodic memory impairment and the presence of at least one
additional supportive feature including abnormal MRI and PET
neuroimaging or abnormal cerebrospinal fluid amyloid and tau
biomarkers (Dubois et al., 2007). Neuroimaging therefore adds a
positive predictive value to the diagnosis and includes measurements
eimer's disease from structural MRI: A comparison
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using structural MRI to assess medial temporal lobe atrophy and
positron emission tomography using fluorodeoxyglucose (FDG) or
amyloid markers (Fox and Schott, 2004; Jagust, 2006).

Many group studies based on volumetric measurements of regions
of interest (ROI) (Convit et al., 1997, 2000; Jack et al., 1997,1998;
Juottonen et al., 1998; Laakso et al., 1998, 2000; Busatto et al., 2003;
Xu et al., 2000; Good et al., 2002; Chételat and Baron, 2003; Rusinek
et al., 2004; Tapiola et al., 2008), voxel-based morphometry (Good
et al., 2002; Busatto et al., 2003; Karas et al., 2003, 2004; Chételat et al.,
2005; Whitwell et al., 2007, 2008) or group comparison of cortical
thickness (Thompson et al., 2001, 2003, 2004; Lerch et al., 2005, 2008;
Bakkour et al., 2009, Dickerson et al., 2009; Hua et al., 2009; McDonald
et al., 2009) have shown that brain atrophy in AD and prodromal AD is
spatially distributed over many brain regions including the entorhinal
cortex, the hippocampus, lateral and inferior temporal structures,
anterior and posterior cingulate. However these analyses measure
group differences and thus are of limited value for individual diagnosis.

Advances in statistical learning with the development of new
machine learning algorithms capable of dealing with high dimen-
sional data, such as the support vector machine (SVM) (Vapnik, 1995;
Shawe-Taylor and Cristianini, 2000; Schölkopf and Smola, 2001),
enable the development of new diagnostic tools based on T1-
weighted MRI. Recently, several approaches have been proposed to
automatically classify patients with AD and/or MCI from anatomical
MRI (Fan et al., 2005, 2007, 2008a,b; Colliot et al., 2008; Davatzikos
et al., 2008a,b; Klöppel et al., 2008; Vemuri et al., 2008; Chupin et al.,
2009a,b; Desikan et al., 2009; Gerardin et al., 2009; Hinrichs et al.,
2009; Magnin et al., 2009; Misra et al., 2009; Querbes et al., 2009).
These approaches could have the potential to assist in the early
diagnosis of AD. These approaches can roughly be grouped into three
different categories, depending on the type of features extracted from
the MRI (voxel-based, vertex-based or ROI-based). In the first
category, the features are defined at the level of the MRI voxel.
Specifically, the features are the probability of the different tissue
classes (grey matter, white matter and cerebrospinal fluid) in a given
voxel (Lao et al., 2004; Fan et al., 2007, 2008a,b; Davatzikos et al.,
2008a,b; Klöppel et al., 2008; Vemuri et al., 2008; Hinrichs et al., 2009;
Magnin et al., 2009; Misra et al., 2009). Klöppel et al. (2008) directly
classified these features with an SVM. All other methods first reduce
the dimensionality of the feature space relying on different types of
features extraction, agglomeration and/or selection methods. Vemuri
et al. (2008) used smoothing, voxel-downsampling, and then a
feature selection step. Another solution is to group voxels into
anatomical regions through the registration of a labeled atlas (Lao
et al., 2004; Ye et al., 2008; Magnin et al., 2009). However, this
anatomical parcellationmaynot be adapted to thepathology. Inorder to
overcome this limitation, Fan et al. (2007) have proposed an adaptive
parcellation approach inwhich the image space is divided into themost
discriminative regions. This method has been used in several studies
(Davatzikos et al., 2008a,b; Fan et al., 2008a,b; Misra et al., 2009). In the
second category, the features are defined at the vertex-level on the
cortical surface (Desikan et al., 2009; Querbes et al., 2009). Themethods
of the third category include only the hippocampus. Their approach is
based on the analysis of the volume and/or shape of the hippocampus
(Colliot et al., 2008, Chupin et al., 2009a,b; Gerardin et al., 2009).

These approaches achieve high accuracy (over 84%). However, they
were evaluated on different study populations, making it difficult to
compare their respective discriminative power. Indeed, many factors
such as degree of impairment, age, gender, genotype, educational level
andMR image quality perceptibly affect the evaluation of the prediction
accuracy. This variability between evaluations is increased for statistical
reasonswhen thenumber of subjects is small. Therefore ameta-analysis
would be of limited value to compare the prediction accuracies of
different methods.

The goal of this paper was to compare different methods for the
classification of patients with AD based on anatomical MRI, using the
Please cite this article as: Cuingnet, R., et al., Automatic classification of p
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same study population. To that purpose, we used the Alzheimer's
Disease Neuroimaging Initiative (ADNI) database. Ten methods were
evaluated. We tested five voxel-based approaches: a direct approach
(Klöppel et al., 2008), an approach based on a volume of interest
(Klöppel et al., 2008), an atlas-based approach (Magnin et al, 2009)
and the approaches proposed by Vemuri et al. (2008) and Fan et al.
(2008a,b) respectively. In order to assess the influence of the
registration step and the features used on the classification accuracies,
these latter methods were tested with two different registration
steps: SPM5 (Ashburner and Friston, 2005) and DARTEL (Ashburner,
2007) and also with either only the grey matter (GM) probability
maps or all the tissues probability maps including also white matter
(WM) and cerebrospinal fluid (CSF). Three cortical approaches were
evaluated as well: a direct one similar to (Klöppel et al., 2008), an atlas
based one and an approach using only the regions found in (Desikan
et al., 2009). Two methods respectively based on the volume (Colliot
et al., 2008, Chupin et al., 2009a,b) and the shape (Gerardin et al.,
2009) of the hippocampus were also tested.

Materials

Data

Data used in the preparation of this article were obtained from the
Alzheimer's disease Neuroimaging Initiative (ADNI) database (http://
www.loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the
National Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug Administra-
tion (FDA), private pharmaceutical companies and non-profit orga-
nizations, as a $60 million, 5-year public–private partnership. The
primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer's disease (AD). Determination
of sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as lessen the time and cost of
clinical trials.

MRI acquisition

The MR scans are T1-weighted MR images. MRI acquisition had
been done according to the ADNI acquisition protocol in (Jack et al.,
2008). For each subject, we used the MRI scan from the baseline visit
when available and from the screening visit otherwise. We only used
images acquired at 1.5 T. To enhance standardization across sites and
platforms of images acquired in the ADNI study, pre-processed images
that have undergone some post-acquisition correction of certain
image artifacts are available (Jack et al., 2008). We used those
corrected in image geometry for gradient nonlinearity and corrected
for intensity non-uniformity due to non-uniform receiver coil sensitiv-
ity. The image geometry correction was the 3D gradwarp correction
(Hajnal et al., 2001; Jovicich et al. 2006). The B1 non-uniformity
correction is detailed inNarayana et al. (1988). These twopreprocessing
steps can be performed directly on the MRI console and thus seem
feasible in clinical routine. All subjects were scanned twice at each visit.
As explained in Jack et al.(2008), MR scans were graded qualitatively by
the ADNI investigators of the ADNI MRI quality control center at the
Mayo Clinic for artifacts and general image quality. Each scan was
graded on several separate criteria: blurring/ghosting, flow artifact,
intensity and homogeneity, signal-to-noise ratio (SNR), susceptibility
artifacts, and gray-white/cerebrospinal fluid contrast. For each subject,
weused theMRI scanwhichwasconsidered as the “best”quality scanby
the ADNI investigators. In the description of the ADNI methods (http://
www.loni.ucla.edu/ADNI/Data/ADNI_Data.shtml), the “best” quality
atients with Alzheimer's disease from structural MRI: A comparison
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image is the onewhichwas used for the complete pre-processing steps.
We thus used the imageswhich had been selected for the complete pre-
processing pipeline. No other exclusion criteria based on image quality
were applied. The identification numbers of the images used in this
study are reported in Tables S2 to S9.

Participants

The criteria used for the inclusion of participants were those defined
in the ADNI protocol (described in details at http://www.adni-info.org/
Scientists/AboutADNI.aspx#). Enrolled subjects were between 55 and
90 (inclusive) years of age, had a study partner able to provide an
independent evaluation of functioning, and spoke either English or
Spanish. All subjects were willing and able to undergo all test
procedures including neuroimaging and agreed to longitudinal follow
up. Specificpsychoactivemedicationswere excluded.General inclusion/
exclusion criteria were as follows: control subjects (CN) had MMSE
scores between 24 and 30 (inclusive), a CDR (Clinical Dementia Rating)
(Morris, 1993) of zero. They were non-depressed, non MCI, and non-
demented. MCI subjects had MMSE scores between 24 and 30
(inclusive), a memory complaint, had objective memory loss measured
by education adjusted scores on Wechsler Memory Scale Logical
Memory II (Wechsler, 1987), a CDR of 0.5, absence of significant levels
of impairment in other cognitive domains, essentially preserved
activities of daily living, and an absence of dementia. AD patients had
MMSE scores between 20 and 26 (inclusive), CDR of 0.5 or 1.0, and met
NINCDS/ADRDA criteria for probable AD (McKhann et al., 1984).

We selected all the subjects for whom preprocessed images were
available. The identification numbers of the subjects used in this study
are reported in Tables S2 to S9. As a result, 509 subjects were selected:
162 cognitively normal elderly controls (CN) (76 males, 86 females,
age±SD=76.3±5.4 years, range=60–90 years, and mini-mental
score (MMS)=29.2±1.0, range=25–30), 137 patients with AD (67
males, 70 females, age±SD=76.0±7.3 years, range=55–91 years,
and MMS=23.2±2.0, range=18–27), 76 patients with MCI who had
converted to ADwithin 18 months (MCIc) (43males, 33 females, age±
SD=74.8±7.4 years, range=55–88 years, and MMS=26.5±1.9,
range=23–30) and 134 patients with MCI who had not converted to
ADwithin 18 months (MCInc) (84males, 50 females, age±SD=74.5±
7.2 years, range=58–88 years, andMMS=27.2±1.7, range=24–30).
We did not consider MCI patients who had been followed less than
18 months and had not converted within this time frame. The 509
images came from 41 different centers.

To assess differences in demographic and clinical characteristics
between groups, we used Student's t-test for age and MMS and
Pearson's chi-square test for gender. Significance level was set at 0.05.
No significant differences were found except for the MMS between
controls and patients (AD or MCIc, pb0.0001).

In order to obtain unbiased estimates of the performances, the set
of participants was then randomly split up into two groups of the
same size: a training set and a testing set. The algorithms were trained
Table 1
Demographic characteristics of the studied population (from the ADNI database). Values ar

Group Diagnostic Number Age

Whole set CN 162 76.3±5.4 [60–9
AD 137 76.0±7.3 [55–9
MCIc 76 74.8±7.4 [55–8
MCInc 134 74.5±7.2 [58–8

Training set CN 81 76.1±5.6 [60–8
AD 69 75.8±7.5 [55–8
MCIc 39 74.7±7.8 [55–8
MCInc 67 74.3±7.3 [58–8

Testing set CN 81 76.5±5.2 [63–9
AD 68 76.2±7.2 [57–9
MCIc 37 74.9±7.0 [57–8
MCInc 67 74.7±7.3 [58–8
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on a training set and the measures of the diagnostic sensitivity and
specificity were carried out with an independent test set. The division
process preserved the age and sex distribution.

Demographic characteristics of the studied population selected
from the ADNI database are presented in Table 1.

Methods

Classification experiments

Three classification experiments were performed to compare the
different approaches. The first one is the classification between CN
subjects and patients with probable AD and is referred to as “CN vs
AD” in the following. The second one is the classification between CN
subjects and MCI converters and is referred to as “CN vs MCIc”. It
corresponds to the detection of patients with prodromal AD as
defined by Dubois and Albert (2004). Indeed, MCI patients who will
convert to AD are, at baseline, patients with incipient AD but non-
demented, i.e. patients with prodromal AD. The third one is the
classificationMCInc versusMCIc and is referred to as “MCInc vsMCIc”.
It corresponds to the prediction of conversion in MCI patients.

Classification methods

The different approaches we compared can be grouped into three
categories with respect to the features used for the classification. In the
first category, the features are defined at the level of the MRI voxel.
Specifically, the features are theprobability of the different tissue classes
(GM,WMand CSF) in a given voxel. In the second category, the features
are defined at the vertex-level on the cortical surface. Specifically, the
features are the cortical thickness at each vertex of the cortex. The
methods of the third category include only the hippocampus.

These methods are summarized in Table 2 and briefly presented in
the following paragraphs.

First category: voxel-based segmented tissue probability maps

The features of the methods of the first category were computed as
follows. All T1-weighted MR images were spatially normalized and
segmented intoGM,WMandCSF using the SPM5(Statistical Parametric
Mapping, London, UK) unified segmentation routine (Ashburner and
Friston, 2005)with the default parameters. Thesemaps constitute afirst
set of tissue probability maps and will be referred to respectively as
SPM5_GM, SPM5_WM and SPM5_CSF.

To evaluate the impact of the registration step on the classification
accuracy, the GM andWM probability maps in native space segmented
by the SPM5 unified segmentation routine were also normalized to
the population template generated from all the images, using the
DARTEL diffeomorphic registration algorithm (Ashburner, 2007) with
the default parameters. The obtained transformations were applied to
the GM, WM and CSF tissue maps. These maps compose a second set of
e indicated as mean±standard-deviation [range].

Gender MMS # Centers

0] 76 M/86 F 29.2±1.0 [25–30] 40
1] 67 M/70 F 23.2±2.0 [18–27] 39
8] 43 M/33 F 26.5±1.9 [23–30] 30
8] 84 M/50 F 27.2±1.7 [24–30] 36
9] 38 M/43 F 29.2±1.0 [25–30] 35
9] 34 M/35 F 23.3±1.9 [18–26] 32
8] 22 M/17 F 26.0±1.8 [23–30] 21
7] 42 M/25 F 27.1±1.8 [24–30] 30
0] 38 M/43 F 29.2±0.9 [26–30] 35
1] 33 M/35 F 23.2±2.1 [20–27] 33
7] 21 M/16 F 26.9±1.8 [24–30] 24
8] 42 M/25 F 27.3±1.7 [24–30] 31

atients with Alzheimer's disease from structural MRI: A comparison
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Table 2
Summary of the approaches tested in this study.

Features Segmentation registration Tissues probability maps Classifier Method # Method's name

Voxel–segmented tissue probability maps Direct DARTEL GM
GM+WM+CSF

Linear SVM
Linear SVM

1.1.1 a
1.1.1 b

Voxel-Direct-D-gm
Voxel-Direct-D-all

SPM5 GM
GM+WM+CSF

Linear SVM
Linear SVM

1.1.2 a
1.1.2 b

Voxel-Direct-S-gm
Voxel-Direct-S-all

Direct VOI DARTEL GM
GM+WM+CSF

Linear SVM 1.2.1 a
1.2.1 b

Voxel-Direct_VOI-D-gm
Voxel-Direct_VOI-D-all

SPM5 GM
GM+WM+CSF

Linear SVM
Linear SVM

1.2.2 a
1.2.2 b

Voxel-Direct_VOI-S-gm
Voxel-Direct_VOI-S-all

STAND-score DARTEL GM
GM+WM+CSF

Linear SVM 1.3.1 a
1.3.1 b

Voxel-STAND-D-gm
Voxel-STAND-D-all

SPM5 GM+WM+CSF Linear SVM
Linear SVM

1.3.2 a
1.3.2 b

Voxel-STAND-S-gm
Voxel-STAND-S-all

SPM5 custom template GM
GM+WM+CSF

Linear SVM
Linear SVM

1.3.3 a
1.3.3 b

Voxel-STAND-Sc-gm
Voxel-STAND-Sc-all

Atlas DARTEL GM
GM+WM+CSF

Linear SVM
Linear SVM

1.4.1 a
1.4.1 b

Voxel-Atlas-D-gm
Voxel-Atlas-D-all

SPM5 GM
GM+WM+CSF

Linear SVM
Linear SVM

1.4.2 a
1.4.2 b

Voxel-Atlas-S-gm
Voxel-Atlas-S-all

COMPARE DARTEL GM
GM+WM+CSF

Linear SVM
Linear SVM

1.5.1 a
1.5.1 b

Voxel-COMPARE-D-gm
Voxel-COMPARE-D-all

SPM5 GM
GM+WM+CSF

Gaussian SVM
Gaussian SVM

1.5.2 a
1.5.2 b

Voxel-COMPARE-S-gm
Voxel-COMPARE-S-all

Cortical thickness Direct Freesurfer – Linear SVM 2.1 Thickness-Direct
Atlas Freesurfer – Linear SVM 2.2 Thickness-Atlas
ROI Freesurfer – Logistic Reg. 2.3 Thickness-ROI

Hippocampus Volume Freesurfer – Parzen 3.1.1 Hippo-Volume-F
Volume SACHA – Parzen 3.1.2 Hippo-Volume-S
Shape SACHA – Linear SVM 3.2 Hippo-Shape
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tissue probability maps and will be referred to respectively as
DARTEL_GM, DARTEL_WM and DARTEL_CSF. Some papers used only
GM maps while others included all three tissues. In our experiments,
we systematically evaluated the added value of WM and CSF maps by
comparing the classification obtained with only GM to that obtained
with all three classes. All maps were then modulated to ensure that
the overall tissue amount remains constant. No spatial smoothing was
performed, unless when otherwise specified.

The differentmethods of this category differ by theway the features
are extracted and/or selected from the voxel probability maps. This is
detailed in the following paragraphs.

Direct
The simplest approach consists in considering the voxels of the tissue

probability maps directly as features in the classification. This type of
approach is referred to as “Voxel-Direct” in the following. Such an
approach was proposed by Klöppel et al. (2008) with two different
versions: one is based on whole brain datasets and the other includes
only data from a volume of interest (VOI) located in the anterior medial
temporal lobe, including part of the hippocampus. This volume of
interest was defined as two rectangular cuboids centered on x=-17,
y=-8, z=-18 and x=16, y=-9, z=-18 in the MNI space. Their
dimensions were 12 mm, 16 mm and 12 mm in the x, y and z directions
respectively. The latter methodwill be referred to as “Voxel-Direct_VOI”.
In their paper, they used only DARTEL_GM maps. Here, we will test all
approacheswith the following sets of probabilitymaps: SPM5_GMonly,
SPM5_GM and SPM5_WM and SPM5_CSF, DARTEL_GM only, DAR-
TEL_GM, and DARTEL_WM and DARTEL_CSF.

STAND-score
Vemuri et al. (2008) proposed an approach called the STAND score,

in which the dimensionality is reduced by a sequence of feature
aggregation and selection steps. First, the tissue probability maps
were smoothed and down-sampled by averaging. Then, voxels that
contained less than 10% tissue density values and CSF in half or more
of the images were not considered for further analysis. A feature
selection step was then carried out. First, a linear SVM was applied
Please cite this article as: Cuingnet, R., et al., Automatic classification of p
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for each tissue class, which attributes a weight to each feature. Only
features of which weights are consistent with increased neurodegen-
eration in the pathological group were kept. Then a second feature
selection step was performed on the remaining features. To ensure
spatial consistency, neighboring voxels of the voxels selected so far
were also selected. The features from the different tissue classes were
concatenated and then used in the classification. This approach is
referred to as “Voxel-STAND” in the following. In their paper, the features
used for this approach were the GM, WM and CSF tissue probability
maps segmented and registered with the SPM5 unified segmentation
routine using a customized tissue probability maps. Thuswe also tested
the classification with customized tissue probability maps.

Atlas based
Another approach consists in grouping the voxels into anatomical

regions using a labeled atlas. This type of approach is used in Lao et al.
(2004); Magnin et al. (2009). Each tissue probability map in the
stereotaxic space was parceled into 116 regions of interest (ROI) using
the AAL (Automatic Anatomical Labeling) atlas (Tzourio-Mazoyer et al.,
2002). In each ROI, we computed the mean tissue probability and used
these values as features in the classification. Such an approach will
be referred to as “Voxel-Atlas”. Note that the AAL is a predefined
anatomical atlas, which has not been specifically designed for studying
patients with AD; its areas thus do not necessarily represent path-
ologically homogeneous regions.

COMPARE
Instead of using a predefined atlas, Fan et al. (2007, 2008a,b)

proposed a parcellation that is adapted to the pathology. The thorough
explanation of the method is in Fan et al. (2007). Very briefly, the
concept of COMPARE is to create homogeneously discriminative
regions. In these regions, the voxel values are aggregated to form the
features of the classification. Feature selection steps are then performed
to identify themost discriminative regions. In the following, we refer to
this approach as “Voxel-COMPARE”. We used the COMPARE software
freely available on request for download online (https://www.rad.
upenn.edu/sbia/software/index.html).
atients with Alzheimer's disease from structural MRI: A comparison
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Second category: cortical thickness

In this second category, the features are the cortical thickness
values at each vertex of the cortical surface. Cortical thickness
represents a direct index of atrophy and thus is a potentially powerful
candidate to assist in the diagnosis of AD (Thompson et al., 2001,
2003, 2004; Lerch et al., 2005, 2008; Bakkour et al., 2009; Dickerson
et al., 2009; Hua et al., 2009; McDonald et al., 2009). Cortical thickness
measures were performed with the FreeSurfer image analysis suite
(Massachusetts General Hospital, Boston, MA), which is documented
and freely available for download online (http://surfer.nmr.mgh.
harvard.edu/). The technical details of this procedure are described in
Sled et al. (1998), Dale et al.(1999), Fischl et al. (1999a,b) and Fischl
and Dale (2000). All the cortical thickness maps were registered onto
the default FreeSurfer common template. Four subjects were not
successfully processed by the FreeSurfer pipeline. Those subjects are
marked by an asterisk in Tables S2 to S9. They could thus not be
classified with the SVM and were excluded from the training set. For
the testing set, the subjects were considered as 50% misclassified.

Direct
As in Klöppel et al. (2008) for voxel-based maps, the simplest way

consists in considering cortical thickness values at every vertex directly
as features in the classification with no other preprocessing step. This
approach is referred to as “Thickness-Direct” in the following.

Atlas based
As in the voxel-based case, we also tested an approach where

vertices are grouped into anatomical regions using an atlas. Such
approach is used in (Querbes et al., 2009; Desikan et al., 2009). The
cortical parcellation was carried out with the cortical atlas of (Desikan
et al., 2006). The atlas is composed of 68 gyral based ROIs. In each ROI,
we computed the mean cortical thickness and used these values as
features in the classification. This approach is referred to as
“Thickness-Atlas” in the following.

ROI
Desikan et al. (2009) parcellated the brain into neocortical and

non-neocortical ROIs by wrapping an anatomical atlas (Desikan et al.,
2006). They studied the discriminative power for CN vs MCIc of the
mean thickness (neocortical regions) and the volume (both neocor-
tical and non-neocortical regions). For their analysis, the mean
thickness and the volumes of the right and the left hemispheres, for
each ROI, were added together. The volumes were corrected using
estimate of the total intracranial volume.

Their study was carried out on a cohort of 97 participants selected
from the Open Access Series of Imaging Studies (OASIS) database
(Marcus et al., 2007). They found out that, with a logistic regression
analysis, the best set of discriminator was: the entorhinal cortex
thickness, the supramarginal gyrus thickness and the hippocampal
volume. They used these features with a logistic regression to classify
CN andMCIc and to classify CN and AD. Therefore, in this approach, we
used only these three features for the classification. This approach is
referred to as “Thickness-ROI” in the following.

Third category: hippocampus

Finally, we tested the discriminative power of methods which
consider only the hippocampus and not the whole brain or the whole
cortex as in the two first categories. The hippocampus is affected at
the earliest stages of the disease and has thus been used as amarker of
early AD in a vast number of studies.

Here, the segmentation of the hippocampus was performed using
SACHA, a fully automatic method we previously developed (Chupin
et al., 2007, 2009a). This approach has been shown to be competitive
with manual tracing for the discrimination of patients with AD and
Please cite this article as: Cuingnet, R., et al., Automatic classification of p
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MCI (Colliot et al., 2008; Chupin et al., 2009b). This approach segments
both the hippocampus and the amygdala simultaneously based on
competitive region-growing between these two structures. It includes
prior knowledge on the location of the hippocampus and the amygdala
derived from a probabilistic atlas and on the relative positions of these
structures with respect to anatomical landmarks which are automat-
ically identified.

We also evaluated the hippocampal volume obtained with the
FreeSurfer image analysis suite.

Volume
We first tested the classification accuracy obtained when the only

feature is the hippocampal volume. For each subject, we computed
the volume of the hippocampi. Volumes were normalized by the total
intracranial volume (TIV) computed by summing SPM5 segmentation
maps of grey matter, white matter, and cerebrospinal fluid (CSF),
inside a bounding box defined in standard space to obtain a systematic
inferior limit. For more robustness with respect to segmentation errors,
left and right volumes were averaged. The thorough explanation of the
method is in (Chupin et al., 2007, 2009a,b). This approach is referred to
as “Hippo-Volume-S” in the following.

We also evaluated this approach with the hippocampal volume
obtained with the FreeSurfer image analysis suite and corrected with
the total intracranial volume also obtained with obtained with
FreeSurfer. This approach will be referred to as “Hippo-Volume-F”.

Shape
We then tested an approach in which the features describe the

hippocampal shape (Gerardin et al., 2009). Each hippocampus was
described by a series of spherical harmonics (SPHARM) to model the
shape of the segmented hippocampi. The classification features were
based on the SPHARM coefficients. Specifically, each subject was
represented by two sets (one for each hippocampus) of three-
dimensional SPHARM coefficients. The SPHARM coefficients were
computed using the SPHARM-PDM (Spherical Harmonics-Point Distri-
bution Model) software developed by the University of North Carolina
and theNational Alliance forMedical Imaging Computing (http://www.
namic.org/Wiki/index.php/Algorithm:UNC:Shape_Analysis). In the
original paper by our group describing this method (Gerardin et al.,
2009), we used a feature selection step because the subjects groups
were much smaller (less than 30 subjects in each group). When the
number of subjects is small, the classifier can be more sensitive to
uninformative features. In thepresent study, thenumber of subjectswas
larger and thus a feature selection step is less necessary and increases
the risk of overfitting.We thus chose to avoid this selection step.Wealso
tested the procedurewith the selection step but it did not lead to further
improvement in this study. Moreover, the degree of the SPHARM
decomposition was set at four. Four subjects were not successfully
processed by the SPHARM pipeline. Those subjects are marked by a
dagger in Tables S2 to S9. They could thus not be classifiedwith the SVM
and were excluded from the training set. For the testing set, those
subjects were considered as 50%misclassified. This approach is referred
to as “Hippo-Shape” in the following.

Classification using SVM

Classifiers
A support vector machine is a supervised learning method. In

brief: given a training set of size K: (xk, yk)k=1...K, where xk in Rd are
observations, and yk in {-1,1} are corresponding labels, SVMs search for
the optimal margin hyperplane (OMH) separating groups, i.e. the
hyperplane for which the margin between groups is maximal. More
details on SVM can be found in (Vapnik, 1995; Shawe-Taylor and
Cristianini, 2000, 2004; Schölkopf and Smola, 2001).We used a linear
C-SVM for all the approaches except COMPARE (Fan et al., 2007) for
atients with Alzheimer's disease from structural MRI: A comparison
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which a non-linear C-SVM with a Gaussian kernel was used. The SVM
implementation relied on the LIBSVM Library (Chang and Lin, 2001).

The dimension of the features of the approach Hippo-Volume is only
one. Therefore a much simpler classifier can be used with no
hyperparameter: each participant is assigned to the closest group.
Specifically, if S1 and S2 are two groups of participants with respective
centers of mass defined as m1 and m2, a new individual with hippo-
campus volume x is assigned to the closest group according to its
Euclidean distance to the center of mass. This is a Parzen window
classifier with the linear kernel and assuming a prevalence of 50%
(Shawe-Taylor and Cristianini, 2004).

As in (Desikan et al., 2009) a logistic regression is used instead of a
SVM, the classification step of Thickness-ROI was also based on a
logistic regression.
Table 3
Contingency table for theMcNemar test. a: number of subjects correctly classified by both
classifiers; b: number of subjects correctly classified by classifier 1 but misclassified by
classifier 2; c: number of subjects misclassified by classifier 1 but correctly classified by
classifier 2; and d: number of subjects misclassified by both classifiers.

Classifier 2: correctly
classified

Classifier 2:
misclassified

Classifier 1: correctly classified a b
Classifier 1: misclassified c d
Evaluation
In order to obtain unbiased estimates of the performances, the set

of participants was randomly split into two groups of the same size: a
training set and a testing set. The division process preserves the age
and sex distribution. The training set was used to determine the
optimal values of the hyperparameters of each method and to train
the classifier. The testing set was then only used to evaluate the
classification performances. The training and testing sets were
identical for all methods, except for those four cases for which the
cortical thickness pipeline failed and those other four for which the
SPHARM pipeline failed. For the SPHARM and the cortical thickness
methods, the subjects for whom the corresponding pipeline failed
could not be classified with the SVM and were therefore excluded
from the training set. As for the testing set, since those subjects were
neither misclassified nor correctly classified, they were considered as
50% misclassified. This approach was chosen because a failure of the
pipeline is a weakness of the methods.

On the training set, cross-validation (CV) was used to estimate the
optimal values of hyperparameters. In general, there is only one
hyperparameter which is the cost parameter C of the linear C-SVM. In
Voxel-STAND, there is a second parameter which is the threshold t of
feature selection. In Voxel-COMPARE, a second parameter is the size σ
of the Gaussian kernel and the third parameter is the number n of
selected features. In Hippo-Volume, there is no hyperparameter. The
optimal parameter values were determined using a grid-search and
leave-one-out cross validation (LOOCV) on the training set. The grid
search was performed over the ranges C=10−5, 10−4.5, ..., 102.5, 103,
t=0.06, 0.08, ..., 0.98, σ=100, 200, ..., 1000 and n=1, 2, ..., 150
(except for Voxel-COMPARE were C=100, 101,101.5, 102, 102.5).

For each approach, the optimized set of hyperparameters was then
used to train the classifier using the training group; the performance
of the resulting classifier was then evaluated on the testing set. In this
way, we achieved unbiased estimates of the performances of each
method.

For each method, we computed the number of true positives TP
(i.e. the number of diseased individuals which were correctly
identified by the classifier), the number of true negatives TN (i.e.
the number of healthy individuals which were correctly identified by
the classifier), the number of false positives FP (i.e. the number of
healthy individuals which were not correctly identified by the
classifier), the number of false negatives FN (i.e. the number of
diseased individuals which were not correctly identified by the
classifier). We then computed the sensitivity defined as TP/(TP+FN),
the specificity defined as TN/(TN+FP), the positive predictive value
defined as PPV=TP/(TP+FP), the negative predictive value defined
as NPV=TN/(TN+FN). Finally it should be noted that the number of
subjects in each group is not the same. The classification accuracy
does not enable to compare the performances between the different
classification experiments. Thus we considered both the specificity
and the sensitivity instead.
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To assess whether each method performs significantly better than
a random classifier, we used McNemar's chi square tests. Significance
level was set at 0.05. We also used McNemar's chi square tests to
assess differences between DARTEL and SPM5 registrations and
between classification results obtained using only GM and using all
three maps. The McNemar test investigates the difference between
proportions in paired observations. We used it to assess the difference
between proportions of correctly classified subjects, i.e. accuracy. The
corresponding contingency table is presented in Table 3.

Results

Classification results

The results of the classification experiments are summarized in
Tables 4, 5 and 6 respectively for CN vs AD, CN vs MCIc and CN vs
MCInc. The classification results of CN vs AD and CN vs MCIc are also
represented in Fig. 1. In each table, the different methods are referred
to either by their abbreviation or by their number defined in Table 2.

CN vs AD
The classification results for CN vs AD are summarized in Table 4

and in Fig. 1. All methods performed significantly better than chance
(pb0.05). The four Voxel methods (Voxel-Direct, Voxel-STAND, Voxel-
Atlas, Voxel-COMPARE) classified AD from CN with very high
specificity (over 89%) and high sensitivity: 75% for Voxel-STAND and
over 81% for the other three methods. Methods based on the cortical
thickness led to similar results with at least 90% specificity and 69%,
74% and 79% respectively for Thickness-ROI, Thickness-Direct and
Thickness-Atlas. The hippocampus-based strategies were as sensitive
but less specific: between 63% for Hippo-Volume and 84% for Hippo-
Shape.

CN vs MCIc
Classification results for CN vsMCIc are summarized in Table 5 and

in Fig. 1. Most methods were substantially less sensitive than for AD vs
CN classification. All methods except Voxel-COMPARE and the Hippo
methods obtained significantly better results than a random classifier
(pb0.05). There was no substantial difference between the results
obtained with Voxel-Direct, Voxel-Atlas and Voxel-STAND. All those
methods reached a high specificity (over 85%) but a sensitivity
ranging between 51% (Voxel-COMPARE) and 73% (Voxel-STAND). The
methods based on cortical thickness behave as well as the previous
ones. Hippo-Volumewas slightly less specific but as sensitive as for the
AD vs CN classification.

MCInc vs MCIc
The classification results for MCInc vs MCIc are summarized in

Table 5. Only four methods managed to predict conversion slightly
more accurately than a random classifier but none of them got
significantly better results (pN0.05). Thickness-Direct reached 32%
sensitivity and 91% specificity. Voxel-STAND reached 57% sensitivity
and 78% specificity, Voxel-COMPARE reached 62% sensitivity and 67%
specificity. Hippo-Volume distinguished MCIc from MCInc with 62%
sensitivity and 69% specificity.
atients with Alzheimer's disease from structural MRI: A comparison
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Table 4
Classification results CN vs AD.

CN vs AD

Method # Method's name SEN SPE PPV NPV McNemar test

1.1.1 a
1.1.1 b

Voxel-Direct-D-gm
Voxel-Direct-D-all

81%
68%

95%
98%

93%
96%

86%
78%

pb0.0001
pb0.0001

1.1.2 a
1.1.2 b

Voxel-Direct-S-gm
Voxel-Direct-S-all

72%
65%

89%
88%

84%
81%

79%
75%

pb0.0001
pb0.0001

1.2.1 a
1.2.1 b

Voxel-Direct_VOI-D-gm
Voxel-Direct_VOI-D-all

71%
65%

95%
95%

92%
92%

79%
76%

pb0.0001
pb0.0001

1.2.2 a
1.2.2 b

Voxel-Direct_VOI-S-gm
Voxel-Direct_VOI-S-all

65%
59%

91%
81%

86%
73%

76%
70%

pb0.0001
p=0.0012

1.3.1 a
1.3.1 b

Voxel-STAND-D-gm
Voxel-STAND-D-all

69%
71%

90%
91%

85%
87%

78%
79%

pb0.0001
pb0.0001

1.3.2 a
1.3.2 b

Voxel-STAND-S-gm
Voxel-STAND-S-all

75%
75%

91%
86%

88%
82%

81%
80%

pb0.0001
pb0.0001

1.3.3 a
1.3.3 b

Voxel-STAND-Sc-gm
Voxel-STAND-Sc-all

72%
71%

91%
91%

88%
87%

80%
79%

pb0.0001
pb0.0001

1.4.1 a
1.4.1 b

Voxel-Atlas-D-gm
Voxel-Atlas-D-all

78%
81%

93%
90%

90%
87%

83%
85%

pb0.0001
pb0.0001

1.4.2 a
1.4.2 b

Voxel-Atlas-S-gm
Voxel-Atlas-S-all

75%
74%

93%
93%

89%
89%

82%
81%

pb0.0001
pb0.0001

1.5.1 a
1.5.1 b

Voxel-COMPARE-D-gm
Voxel-COMPARE-D-all

82%
69%

89%
81%

86%
76%

86%
76%

pb0.0001
pb0.0001

1.5.2 a
1.5.2 b

Voxel-COMPARE-S-gm
Voxel-COMPARE-S-all

66%
72%

86%
91%

80%
88%

75%
80%

pb0.0001
pb0.0001

2.1 Thickness-Direct 74% 90% 86% 80% pb0.0001
2.2 Thickness-Atlas 79% 90% 87% 84% pb0.0001
2.3 Thickness-ROI 69% 94% 90% 78% pb0.0001
3.1.1 Hippo-Volume-F 63% 80% 73% 72% p=0.0007
3.1.2 Hippo-Volume-S 71% 77% 72% 76% p=0.0006
3.2 Hippo-Shape 69% 84% 78% 76% pb0.0001

SEN: sensitivity; SPE: specificity; PPV: positive predictive value; and NPV: negative
predictive value.

Table 6
Classification results MCInc vs MCIc.

MCInc vs MCIc

Method # Method's name SEN SPE PPV NPV McNemar test

1.1.1 a
1.1.1 b

Voxel-Direct-D-gm
Voxel-Direct-D-all

0%
0%

100%
100%

–

–

64%
64%

p=1.0
p=1.0

1.1.2 a
1.1.2 b

Voxel-Direct-S-gm
Voxel-Direct-S-all

0%
0%

100%
100%

–

–

64%
64%

p=1.0
p=1.0

1.2.1 a
1.2.1 b

Voxel-Direct_VOI-D-gm
Voxel-Direct_VOI-D-all

43%
0%

70%
100%

44%
–

69%
64%

p=0.62
p=1.0

1.2.2 a
1.2.2 b

Voxel-Direct_VOI-S-gm
Voxel-Direct_VOI-S-all

0%
0%

100%
100%

–

–

64%
64%

p=1.0
p=1.0

1.3.1 a
1.3.1 b

Voxel-STAND-D-gm
Voxel-STAND-D-all

57%
0%

78%
100%

58%
–

76%
64%

p=0.40
p=1.0

1.3.2 a
1.3.2 b

Voxel-STAND-S-gm
Voxel-STAND-S-all

22%
51%

91%
79%

57%
58%

68%
75%

p=0.79
p=0.49

1.3.3 a
1.3.3 b

Voxel-STAND-Sc-gm
Voxel-STAND-Sc-all

35%
41%

70%
72%

39%
44%

66%
69%

p=0.30
p=0.61

1.4.1 a
1.4.1 b

Voxel-Atlas-D-gm
Voxel-Atlas-D-all

0%
0%

100%
100% –

64%
64%

p=1.0
p=1.0

1.4.2 a
1.4.2 b

Voxel-Atlas-S-gm
Voxel-Atlas-S-all

0%
0%

100%
100% –

64%
64%

p=1.0
p=1.0

1.5.1 a
1.5.1 b

Voxel-COMPARE-D-gm
Voxel-COMPARE-D-all

62%
54%

67%
78%

51%
57%

76%
75%

p=1.0
p=0.50

1.5.2 a
1.5.2 b

Voxel-COMPARE-S-gm
Voxel-COMPARE-S-all

32%
51%

82%
72%

50%
50%

69%
73%

p=0.84
p=0.87

2.1 Thickness-Direct 32% 91% 67% 71% p=0.24
2.2 Thickness-Atlas 27% 85% 50% 68% p=0.82
2.3 Thickness-ROI 24% 82% 43% 66% p=0.66
3.1.1 Hippo-Volume-F 70% 61% 50% 79% p=0.89
3.1.2 Hippo-Volume-S 62% 69% 52% 77% p=0.88
3.2 Hippo-Shape 0% 100% - 64% p=1.0

SEN: sensitivity; SPE: specificity; PPV: positive predictive value; and NPV: negative
predictive value.
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Influence of the preprocessing

To evaluate the impact of the registration step, we tested both
the registration using SPM5 unified segmentation and the registration
Table 5
Classification results CN vs MCIc.

CN vs MCIc

Method # Method's name SEN SPE PPV NPV McNemar test

1.1.1 a
1.1.1 b

Voxel-Direct-D-gm
Voxel-Direct-D-all

57%
49%

96%
91%

88%
72%

83%
80%

p=0.00052
p=0.046

1.1.2 a
1.1.2 b

Voxel-Direct-S-gm
Voxel-Direct-S-all

32%
41%

96%
94%

80%
75%

76%
78%

p=0.039
p=0.044

1.2.1 a
1.2.1 b

Voxel-Direct_VOI-D-gm
Voxel-Direct_VOI-D-all

54%
41%

95%
96%

83%
83%

82%
78%

p=0.0022
p=0.0095

1.2.2 a
1.2.2 b

Voxel-Direct_VOI-S-gm
Voxel-Direct_VOI-S-all

32%
22%

88%
99%

55%
89%

74%
73%

p=0.83
p=0.046

1.3.1 a
1.3.1 b

Voxel-STAND-D-gm
Voxel-STAND-D-all

73%
65%

85%
93%

69%
80%

87%
85%

p=0.025
p=0.0019

1.3.2 a
1.3.2 b

Voxel-STAND-S-gm
Voxel-STAND-S-all

59%
49%

86%
93%

67%
75%

82%
80%

p=0.082
p=0.025

1.3.3 a
1.3.3 b

Voxel-STAND-Sc-gm
Voxel-STAND-Sc-all

62%
57%

85%
90%

66%
72%

83%
82%

p=0.091
p=0.026

1.4.1 a
1.4.1 b

Voxel-Atlas-D-gm
Voxel-Atlas-D-all

65%
54%

80%
91%

60%
74%

83%
81%

p=0.27
p=0.021

1.4.2 a
1.4.2 b

Voxel-Atlas-S-gm
Voxel-Atlas-S-all

68%
59%

95%
94%

86%
81%

87%
84%

p=0.00020
p=0.0021

1.5.1 a
1.5.1 b

Voxel-COMPARE-D-gm
Voxel-COMPARE-D-all

49%
51%

81%
85%

55%
61%

78%
79%

p=0.73
p=0.28

1.5.2 a
1.5.2 b

Voxel-COMPARE-S-gm
Voxel-COMPARE-S-all

49%
59%

78%
78%

50%
55%

77%
81%

p=0.87
p=0.64

2.1 Thickness-Direct 54% 96% 87% 82% p=0.00084
2.2 Thickness-Atlas 57% 93% 78% 82% p=0.0071
2.3 Thickness-ROI 65% 94% 83% 85% p=0.00083
3.1.1 Hippo-Volume-F 73% 74% 56% 86% p=0.47
3.1.2 Hippo-Volume-S 70% 73% 54% 84% p=0.67
3.2 Hippo-Shape 57% 88% 68% 82% p=0.072

SEN: sensitivity; SPE: specificity; PPV: positive predictive value; and NPV: negative
predictive value.
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DARTEL as described in the previous section. The influence of the
registration step on the classification results is illustrated on Figs. 2
and 3. The performances obtained for the MCInc vs MCIc experiment
were too low to be used to evaluate the impact of the registration step.
Therefore we did not take them into account for this comparison. The
use of the diffeomorphic registration algorithm DARTEL significantly
improved the results of six out of 20 classification experiments
(pb0.05). On the other hand, it led to significantly worse results in
two cases. According to the results in Tables 4, 5, and 6, the use of
customized tissue probability maps for the registration with SPM5
unified segmentation did not improve the results of Voxel-STAND.

We also compared the classification obtained with only the GMmaps
to those with GM, WM and CSF maps. Results are presented on Figs. 2
and3. The use of all threemaps led to significantlyworse results (pb0.05)
for twoout of 20 classificationexperiments (Voxel-Direct_VOI-S andVoxel-
COMPARE-D). It never led to significantly better results.
Complementariness of the methods

The different approaches tested tackle the classification problem
with various angles and could thus be complementary. In order to
quantify their similarity, we used the Jaccard similarity coefficient
(Jaccard, 1901; Shattuck et al., 2001). In this case, the Jaccard index of
two methods is the number of subjects correctly classified by both
methods divided by the number of subjects correctly classified by at
least one of the twomethods. Results are presented on Figs. S1 and S2.
All methods are in at least substantial agreement (Jaccard over 0.6)
and most of them are in strong agreement. The most different results
were obtained with the methods relying on the hippocampus.

We tested the combination of three approaches, one of each
strategy: Voxel-Direct-D-gm, Thickness-Atlas and Hippo-Volume-S. A
convenient approach to combine different SVM-based methods is to
consider that the resulting classifier is a SVM which kernel is a linear
atients with Alzheimer's disease from structural MRI: A comparison
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Fig. 1. Classification results for the different methods.
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convex combination of the kernels of each method. The problem of
learning both the coefficients of the best convex linear combination of
kernels and the optimal margin hyperplane (OMH) is known as the
multiple kernel learning (MKL) problem (Lanckriet et al., 2004; Bach
et al., 2004; Sonnenburg et al., 2006).We used the SimpleMKL toolbox
(Rakotomamonjy et al., 2008). All four possible combinations have
been tested. The kernels are normalized with the trace of the Gram
matrix of the training set. Note that for Hippo-Volume-S, the Parzen
window classifier is replaced by a linear SVM.

None of these four combinations improved the accuracy in the CN
vs AD experiment. Only the combination of Hippo-Volume-S and
Thickness-Atlas improved only slightly the accuracy for the CN vsMCIc
and the MCInc vs MCIc experiments. It distinguished MCIc from CN
with 76% sensitivity and 85% specificity. The optimal coefficients of
the linear combination were 0.057 and 0.943 for the kernels of Hippo-
Volume-S and Thickness-Atlas, respectively. This combination classi-
fied MCIc and MCInc with 43% sensitivity and 83% specificity. The
Please cite this article as: Cuingnet, R., et al., Automatic classification of p
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optimal coefficients of the linear combination were 0.030 and 0.970
respectively.

Influence of age and gender on classification results

We investigated whether the age of the subjects influences the
classification results.We thus computed the average age of true positives,
false positives, true negatives and false negatives. Overall, we found that
the false positives were often older than the true negatives, meaning that
theoldest controlsweremoreoftenmisclassified. Specifically, thiswas the
case for 25 methods over 28 for CN vs AD and 24/28 for CN vs MCIc.
Conversely, false negatives were often younger than the true positives,
meaning that the youngest patients were more often misclassified.
Specifically, thiswas the case for 26methods over 28 for CN vsADand 28/
28 for CN vsMCIc. The number of misclassified subjects was too small to
test for statistical significance of these differences. However, the fact that
this differencewaspresent for the vastmajority ofmethod suggests that it
atients with Alzheimer's disease from structural MRI: A comparison
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Fig. 2. Impact of the preprocessing on the accuracy for CN vs AD. The sum of the sensitivity and specificity is considered. The front tip of an arrow indicates the results obtained with
DARTEL whereas the back tip indicates the results obtained with SPM5 unified segmentation. The color of the arrow indicates the features used. Grey arrows correspond to the use of
GM probability maps only whereas white arrows correspond to the use of GM,WM and CSF probability maps. The p-values obtained with theMcNemar's chi square test assessed the
difference between the results obtained with DARTEL and SPM5.
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may not be due to chance. We also investigated the influence of gender
but did not find any difference.

Computation time

The computations were carried out with a processor running at
3.6 GHz with 2 GB of RAM. Table 7 presents, for each method, the
order of magnitude of the computation time (i.e. minutes, hours, days,
and weeks). For each method, we report the computation time of its
three main phases: the feature computation step (segmentation and
registration), the building of the classifier (including the grid search
for the optimization of the hyperparameters and the learning of the
classifier), and the classification of a new subject.

The order of magnitude of the computation time for the tissue
segmentation and the registration step per subject is respectively about
tenminutes and an hourwith SPM5 and DARTEL. The cortical thickness
computation and the registration of a single subjectwith FreeSurfer take
roughly a day. The segmentation of the hippocampi of a subject lasts
a few minutes and the shape analysis process with the SPHARM
decomposition about one hour. The tuning of parameters and learning
phase took froma fewminutes to severalweeks for theVoxel-STAND and
Voxel-COMPARE methods. Once the hyperparameters are set and the
learning is done, it takes at most minutes to classify a new subject.

Optimal margin hyperplanes

The classification function obtainedwith a linear SVM is the sign of
the inner product of the features with w, a vector orthogonal to the
Please cite this article as: Cuingnet, R., et al., Automatic classification of p
of ten methods using the ADNI database, NeuroImage (2010), doi:10.1
optimal margin hyperplane (OMH) (Vapnik, 1995; Shawe-Taylor and
Cristianini, 2000, 2004; Schölkopf and Smola, 2001). Therefore if the
ith component wi of the vector w is small, the ith feature will have a
small influence on the classification. Conversely, if wi is large, the ith
feature will play an important role in the classifier. When the input
features are the voxels of the image, each component of w also
corresponds to a voxel. One can thus represent the values of w in the
image space. Similarly, for the Thickness methods, the values of w can
be represented on the cortical surface. The values of the optimal
margin hyperplanes for the different methods are presented on Figs.
from 4 to 7. This allows a qualitative comparison of the features used
in the classifier. Our aim was not to perform a statistical analysis of
differences between groups— for example using permutation tests on
the coefficients (Mourao-Miranda et al., 2005).

Figs. 4 and 5 show theOMH forCNvsADandCN vsMCIc respectively
for the Voxelmethods. Overall, the spatial patterns corresponding to CN
vs AD and CN vs MCIc are similar. For Voxel-Direct-D-gm, the main
regions were the medial temporal lobe (hippocampus, amygdala and
the parahippocampal gyrus), the inferior and middle temporal gyri, the
posterior cingulate gyrus and the posterior middle frontal gyrus. To a
lesser extent, the OMH also included the inferior parietal lobule, the
supramarginal gyrus, fusiform gyrus, the middle cingulate gyrus and in
the thalamus. When all three tissue maps were used, the CSF maps
mirrored the GM map (the enlargement of the ventricle mirroring GM
reduction). This was also the case for part of theWMmap, in particular
in the hippocampal region. When using SPM5 unified segmentation
instead of DARTEL, voxels were much more scattered and not grouped
into anatomical regions except in themedial temporal lobe. For the AAL
atients with Alzheimer's disease from structural MRI: A comparison
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Fig. 3. Impact of the preprocessing on the accuracy for CN vsMCIc. The sum of the sensitivity and specificity is considered. The front tip of an arrow indicates the results obtained with
DARTEL whereas the back tip indicates the results obtained with SPM5 unified segmentation. The color of the arrow indicates the features used. Grey arrows correspond to the used
of GM probability maps only whereas white arrows correspond to the use of GM, WM and CSF probability maps. The p-values obtained with the McNemar's chi square test assessed
the difference between the results obtained with DARTEL and SPM5.
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atlas, regions included the hippocampus, the amygdala, the parahippo-
campal gyrus, the cingulum, the middle and inferior temporal gyri and
the superior and inferior frontal gyri. The regions were very similar
for the surface Atlas as shown on Fig. 6. Regions corresponding to
Thickness-Direct (Fig. 7)weremore restricted: the entorhinal cortex, the
parahippocampal gyrus and to a lesser extent the lateral temporal lobe,
the inferior parietal lobule and some prefrontal areas.

Optimal parameters of the classifiers

For each approach, the optimal values of the hyperparameters are
summarized in Table S1. One should note that the Hippo-Volume
method has no hyperparameter.

Discussion

In this paper, we compared different methods for the classification
of patients with AD and MCI based on anatomical T1-weighted MRI.
To evaluate and compare the performances of each method, three
classification experiments were performed: CN vs AD, CN vsMCIc and
CN vs MCInc. The set of participants was randomly split up into two
groups of the same size: a training set and a testing set. For each
approach, the optimal parameter values had been determined using a
grid-search and LOOCV on the training set. Those values were then
used to train the classifier using the training group; the performance
of the resulting classifier was then evaluated on the testing set. In this
way, we obtained unbiased estimates of the performances of each
method.
Please cite this article as: Cuingnet, R., et al., Automatic classification of p
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Classification methods discriminate AD from normal aging

All the classificationmethods that we tested in this paper achieved
accuracies significantly better than chance for the discrimination
of patients with AD from normal aging. All methods except Voxel-
COMPARE and Hippo methods performed significantly better than
chance for the discrimination of patients with prodromal AD (MCIc)
from normal aging. For AD vs CN, most methods achieved high sen-
sitivity and specificity. However, at the prodromal stage, their sen-
sitivity was substantially lower.

The classification results we obtained for AD vs CN with Atlas and
COMPARE methods are lower than those reported in the respective
papers: 94% accuracy for the COMPARE method in (Fan et al., 2008a)
and 92% sensitivity and 97% specificity for the Atlas in Magnin et al.
(2009). These differences can be explained by several factors. First, in
the original papers, the hyperparameters were optimized on the
testing set. This may lead to overfitting the testing set and thus to
overestimate the sensitivity and specificity. On the contrary, in our
evaluation, the learning step as well as the optimization of the
hyperparameters had been carried out on a training set and the
evaluation of the performance on a completely separated testing set.
Thus our evaluation was unbiased. Another explanation may stem
from differences between studied populations (sample size, stage of
the disease). In particular, the ADNI population includes a large
number of subjects with vascular lesions, which was not the case in
Magnin et al. (2009). Finally, the image preprocessing step may also
have an impact on the classification results. Davatzikos et al. (2008b)
and Fan et al. (2008b) used the RAVENS maps (Goldszal et al., 1998),
atients with Alzheimer's disease from structural MRI: A comparison
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Table 7
Order of magnitude of the computation time (i.e. minutes, hours, days, and weeks) for
each method for its three main phases: feature computation step (segmentation and
registration), building of the classifier (including the grid search for the optimization of
the hyperparameters and the learning of the classifier), and classification of a new
subject. The computations have been carried out with a processor running at 3.6 GHz
with 2 GB of RAM.

Method
#

Method's name Segmentation
registration

Grid search
learning

Testing

1.1.1 a
1.1.1 b

Voxel-Direct-D-gm
Voxel-Direct-D-all

Hour(s) per subject
Hour(s) per subject

Minute(s)
Minute(s)

Minute(s)
Minute(s)

1.1.2 a
1.1.2 b

Voxel-Direct-S-gm
Voxel-Direct-S-all

10 min per subject
10 min per subject

Minute(s)
Minute(s)

Minute(s)
Minute(s)

1.2.1 a
1.2.1 b

Voxel-Direct_VOI-D-gm
Voxel-Direct_VOI-D-all

Hour(s) per subject
Hour(s) per subject

Minute(s)
Minute(s)

Minute(s)
Minute(s)

1.2.2 a
1.2.2 b

Voxel-Direct_VOI-S-gm
Voxel-Direct_VOI-S-all

10 min per subject
10 min per subject

Minute(s)
Minute(s)

Minute(s)
Minute(s)

1.3.1 a
1.3.1 b

Voxel-STAND-D-gm
Voxel-STAND-D-all

Hour(s) per subject
Hour(s) per subject

Day(s)
Week(s)

Hour(s)
Hour(s)

1.3.2 a
1.3.2 b

Voxel-STAND-S-gm
Voxel-STAND-S-all

10 min per subject
10 min per subject

Day(s)
Week(s)

Hour(s)
Hour(s)

1.3.3 a
1.3.3 b

Voxel-STAND-Sc-gm
Voxel-STAND-Sc-all

20 min per subject
20 min per subject

Day(s)
Week(s)

Hour(s)
Hour(s)

1.4.1 a
1.4.1 b

Voxel-Atlas-D-gm
Voxel-Atlas-D-all

Hour(s) per subject
Hour(s) per subject

Minute(s)
Minute(s)

Minute(s)
Minute(s)

1.4.2 a
1.4.2 b

Voxel-Atlas-S-gm
Voxel-Atlas-S-all

10 min per subject
10 min per subject

Minute(s)
Minute(s)

Minute(s)
Minute(s)

1.5.1 a
1.5.1 b

Voxel-COMPARE-D-gm
Voxel-COMPARE-D-all

Hour(s) per subject
Hour(s) per subject

Week(s)
Week(s)

Hour(s)
Hour(s)

1.5.2 a
1.5.2 b

Voxel-COMPARE-S-gm
Voxel-COMPARE-S-all

10 min per subject
10 min per subject

Week(s)
Week(s)

Hour(s)
Hour(s)

2.1 Thickness-Direct Day(s) per subject Minute(s) Minute(s)
2.2 Thickness-Atlas Day(s) per subject Minute(s) Minute(s)
2.3 Thickness-ROI Day(s) per subject Minute(s) Seconds
3.1.1 Hippo-Volume-F Day(s) per subject Minute(s) Seconds
3.1.2 Hippo-Volume-S 10 min per subject Minute(s) Seconds
3.2 Hippo-Shape Hour(s) per subject Minute(s) Seconds

Fig. 4. Optimalmargin hyperplane in theCNvsADexperiments forVoxel-Direct-D-gm (a),Voxel
The figure displays the normalized vector orthogonal to the hyperplane superimposed on the t
space. For visualization purposes, only coefficientswi greater than 0.15 in absolute value are dis
into AD or MCIc. For regions in cool colors, it is the opposite. (For interpretation of the referen
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thus the registration and the segmentation step was different and
might lead to different classification results. However, the aim of the
present paper was to compare different classification strategies and it
was thus necessary to use the same preprocessing for all methods.
Since most of them relied on SPM, we chose to use this preprocessing
for all methods. It is possible that using other registration approaches
such as HAMMER would increase the classification performance but
this is beyond the scope of this paper.

For the Voxel-STAND and Voxel-Direct methods, our results were
similar to those reported in the original papers by Vemuri et al. (2008)
and Klöppel et al. (2008). This can probably be explained by the fact
that Vemuri et al.'s (2008) evaluation procedure is also based on
independent testing group and that Klöppel et al. (2008) did not
mention any optimization of the hyperparameters. As for the
Thickness-ROI, the results (69% sensitivity and 94% specificity) were
lower than those obtained by Desikan et al. (2009) (100% specificity
and sensitivity). A possible explanation is that in their study the
classifier was trained on a different population (patients with
CDR=0.5) selected from a different database (the OASIS database).

The results obtained with Hippo-Volumewere similar to those that
we previously reported for the ADNI database (Chupin et al., 2009b).
The sensitivities and specificities were however lower than those
found in our previous study on a different population (Colliot et al.,
2008) (84% sensitivity and specificity for CN vs AD). This can be
explained by several factors (Chupin et al., 2009b). First ADNI is a
multi-site database whereas the data in the previous study came from
a single scanner. Moreover the population included a large number
of subjects with vascular lesions. The slight difference between the
results obtained in Chupin et al. (2009b) and the present results
mostly comes from the difference in the accuracy estimation: two
separate groups instead of a LOOCV procedure. As for the Hippo-Shape
method the results were substantially lower than our results reported
in Gerardin et al. (2009) (86% for CN vs AD). This may result from the
relatively small number of subjects used in our previous study.
Besides, the estimation was carried out with a LOOCV. Moreover, this
can also be due to that fact that all subjects were considered without
-Direct-D-all (b–d),Voxel-Direct-S-gm (e),Voxel-STAND-D-gm (f) andVoxel-Atlas-D-gm (g).
issue average probability maps. The coronal slices are equivalent to y=9mm in the MNI-
played. For regions inwarm colors, tissue atrophy increases the likelihood of classification
ces to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Optimal margin hyperplane in the CN vsMCIc experiments for Voxel-Direct-D-gm (a), Voxel-Direct-D-all (b–d), Voxel-Direct-S-gm (e), Voxel-STAND-D-gm (f) and Voxel-Atlas-D-gm
(g) (please refer to Fig. 4 for a complete description of the figure). (For interpretation of the references to color in thisfigure legend, the reader is referred to theweb version of this article.)
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taking into consideration the quality control (Chupin et al., 2009b) of
the hippocampus segmentation.

To our knowledge, the classification CN vs MCIc has only been
addressed by Desikan et al. (2009). Davatzikos et al. (2008a) and Fan
et al. (2008a,b) have performed the classification CN vs MCI with no
distinction between converters and non-converters. The MCI group did
not include only prodromal AD, hence the classification experiment
cannot be compared to CN vs MCIc. Desikan et al. (2009) classified CN
and MCI who converted within two years after baseline with 91%
accuracy. This is substantially higher than the results obtained in our
Fig. 6. Optimal margin hyperplane for Thickness-Atlas. Upper rows
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paper with the same method Thickness-ROI (65% sensitivity and 94%
specificity).

Prediction of conversion in MCI patients

No method was able to predict conversion better than chance. The
three most accurate methods were: Voxel-STAND (57% sensitivity and
78% specificity), Voxel-COMPARE (62% sensitivity and 67% specificity)
and Hippo-Volume (62% sensitivity and 69% specificity). These three
methods restricted their search to a portion of the brain. In Voxel-STAND
: CN vs AD experiment. Lower rows: CN vs MCIc experiment.

atients with Alzheimer's disease from structural MRI: A comparison
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Fig. 7. Optimal margin hyperplane for Thickness-Direct. Upper rows: CN vs AD experiment. Lower rows: CN vs MCIc experiment.
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and Voxel-COMPARE, this was done using feature selection: the selected
regions are mainly in the medial temporal structures. In Hippo-Volume,
this was done by considering only the hippocampus.

Even for these three methods, the performances remained
particularly low. The main reason is certainly that MCI non converters
are a very heterogeneous group: some patients would convert shortly
after the end of the follow-up and are thus in fact prodromal AD
patients while others would remain stable for a long period of time.
We thus advocate that classification methods should be focused on
the detection of prodromal AD (i.e. MCI converters) which is a much
better defined entity.

To our knowledge, the classification MCInc vs MCIc has only been
addressed by Misra et al. (2009) and Querbes et al. (2009). Misra et al.
(2009) considered the conversion within 12 months and Querbes
et al. (2009) within 24 months. They obtained substantially higher
accuracy: respectively 81.5% and 76% accuracy. Misra et al. (2009)
used the COMPARE (Fan et al., 2007) classification methods. The
differences may result from the same reasons as explained in the
previous paragraph: the use of separate training and testing sets and
differing preprocessing steps. Querbes et al. (2009) used a feature
selection step, which may explain the slightly higher accuracy.

Whole brain or hippocampus?

For CN vs AD, methods using the whole brain (or the whole cortex)
reached substantially higher specificity (over 90%) than those based
on the hippocampus (from 63% to 84%). For the detection of
prodromal AD, hippocampal-based approaches remained competitive
with whole-brain methods. It thus seems that considering the whole
brain is advantageous mostly at the most advanced stages. Indeed, at
these more advanced stages, the atrophy is much more widespread.
Moreover, it should be noted that many subjects included in the ADNI
have vascular lesions which may be, at least partially, captured by
whole brain methods. For intermediate stages, an alternative would
be to consider a set of selected regions instead of the whole brain or
the hippocampus alone. For example, Thickness-ROI performs at least
as well as whole brain approaches for the detection of prodromal AD.
Even though they achieve lower accuracies, hippocampal-based
methods may still be of interest to the clinician because they provide
Please cite this article as: Cuingnet, R., et al., Automatic classification of p
of ten methods using the ADNI database, NeuroImage (2010), doi:10.1
a direct and easily interpretable index to the clinician (the hippo-
campal volume) while the whole-brain approaches base their clas-
sification on a complex combination of different regions.

All methods presented substantial agreement (Jaccard index over
0.6). The most different results were obtained between hippocampal
and whole brain methods. However, combining them through
multiple kernel learning did not improve the classification results.

The registration step: is a fully deformable method advantageous?

The use of DARTEL significantly improved the classification results
in six cases, while it led to lower results in only two cases. This is in
line with other studies which reported that DARTEL led to higher
overlap values (Klein et al., 2009; Yassa and Stark, 2009) and higher
sensitivity for voxel-based morphometry (Bergouignan et al., 2009).
In particular, the use of a fully deformable method was advantageous
for the medial temporal lobe as shown in (Yassa and Stark, 2009;
Bergouignan et al., 2009). Since the hippocampus is highly affected in
AD, we expected that using a method which registers the hippocam-
pus better, would result in higher classification accuracy.

Does addingWMand CSFmaps increase the performance of the classifiers?

In their original description, some of the tested methods used the
three tissue (GM,WMand CSF)maps (e.g. Vemuri et al., 2008, Fan et al.,
2007, Magnin et al., 2009) while others used only the GM maps (e.g.
Klöppel et al., 2008). In this paper, we systematically testedwhether the
compared methods performed better with the three maps or with only
the GMmaps. It should be noted that this does not aim at assessing the
diagnostic value ofWM or CSF in general but only to test if including all
tissue maps is more effective for these particular classification
approaches under study. On the whole, adding the WM and the CSF
probability maps did not improve the classification performances.
Adding WM and CSF maps increases the dimensionality of the feature
space which can make the classifier unstable and lead to overfitting
thedata. This problem iswell-known inmachine learning as the curse of
dimensionality. Besides, elder subjects are likely to haveWM structural
abnormalities caused by leucoaraiosis or other diseases. Therefore
addingWMtissuesmay add noise in the features. Even ifWMstructural
atients with Alzheimer's disease from structural MRI: A comparison
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abnormalities alter (Levy-Cooperman et al., 2008) the tissue segmen-
tation step, GM probability maps are more robust features than WM
tissues probability maps.

Adding theWM and the CSF in the featuresmay improve the results
in two instances. The first one is when the method encloses a feature
selection step. Methods including feature selection steps are more able
to keep only the added value and avoid considering the noise but,
overall, the improvement is not substantial. Adding WM and CSF may
also improve the results of methods grouping the voxels into ROIs via
wrapping a labeled atlas. It may make up for the parcellation error due
to the registration step but, again, the improvement is not substantial.

Is it worth performing feature selection?

The main objectives of the feature selection step are to keep only
informative features and to reduce the dimensionality of the feature
space. In our evaluation, two methods included a feature selection
step: Voxel-STAND and Voxel-COMPARE. Overall, these methods did
not perform substantially better than simpler ones. In particular, their
results might be more sensitive to the training set. Indeed, feature
selection can be regarded as a learning step. In such a case, the feature
selection step increases the class of all possible classification
functions, which could lead to overfitting the data. A more robust
way to decrease the dimensionality of the features way would be to
use more prior knowledge of the disease.

Besides features selection can be time consuming as it adds new
hyperparameters and thusmakes the grid search less tractable. Compared
to Voxel-Direct and Voxel-Atlas, Voxel-STAND and Voxel-COMPARE are time
consuming (up to weeks), mostly because of the number of hyperpara-
meters to be tuned.

Nevertheless, feature selection proved useful in two specific cases.
First, these methods proved less sensitive when increasing the dimen-
sionality of the feature space by adding WM and CSF maps. They also
tended to be more accurate for the MCIc vs MCInc experiment, where
only a few brain regions are informative.

Does age influence the classification accuracy?

Overall, we found that the oldest controls and the youngest
patients were more often misclassified. This may results from
different causes. Normal aging is associated with atrophy of the grey
and white matter and increase of the CSF (Good et al., 2001; Salat
et al., 2004). Moreover, aging is also associated with alterations in
tissue intensity and contrast, which can disrupt the segmentation step
and thus artificially increase themeasured atrophy (Salat et al., 2009).
Besides, elderly subjects are more likely to have structural abnormal-
ities of the white matter, which can also impede the tissue
segmentation step (Levy-Cooperman et al., 2008) and increase the
measured atrophy. In addition, elderly subjects have a propensity to
suffer from mixed dementia (Zekry et al., 2002).

Optimal margin hyperplanes

In a linear SVM, the OMH can be easily represented. The OMH
provides information about the regions of the brain which was used
by the classifier. It should be noted that this only provides qualitative
information on the hyperplanes, and that no statistical analysis of the
OMH coefficients was performed.

With Voxel-Direct-D, Voxel-Atlas and Thickness-Atlas, the regions in
which atrophy increased the likelihood of being classified as AD or
MCIc were largely consistent with the pattern of atrophy demon-
strated in previous morphometric studies. These regions included the
medial temporal lobe, the inferior and middle temporal gyri (Chételat
and Baron, 2003; Good et al., 2002; Busatto et al., 2003; Rusinek et al.,
2004; Tapiola et al., 2008), the posterior cingulate gyrus (Karas et al.,
2004; Chételat et al., 2005; Laakso et al., 1998) and the posterior
Please cite this article as: Cuingnet, R., et al., Automatic classification of p
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middle frontal gyrus (Whitwell et al., 2007), the fusiform gyrus, the
thalamus (Karas et al., 2003, 2004; Chételat et al., 2005). As for the
cortical methods, the main regions in the medial temporal, middle
and inferior lateral temporal, inferior parietal, and posterior cingu-
lated cortices and with a lesser extent parietal, frontal, and lateral
occipital cortices, which is consistent with the previous group studies
based on cortical thickness (Thompson et al., 2004; Lerch et al., 2005,
2008; McDonald et al., 2009).

In conclusion, we compared different automatic classification
methods to assist in the early diagnosis of Alzheimer's disease using
the ADNI database.Most of them classify AD and CNwith high accuracy.
However, at the prodromal stage, their sensitivity was substantially
lower. Combinations with other markers and/or more sophisticated
prior knowledge seem necessary to be able to detect prodromal AD
with high accuracy.
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