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Abstract
Tensor-based morphometry (TBM) is an analysis technique where anatomical information is
characterized by means of the spatial transformations mapping a customized template with the
observed images. Therefore, accurate inter-subject non-rigid registration is an essential
prerequisite for both template estimation and image warping. Subsequent statistical analysis on the
spatial transformations is performed to highlight voxel-wise differences. Most of previous TBM
studies did not explore the influence of the registration parameters, such as the parameters
defining the deformation and the regularization models. In this work performance evaluation of
TBM using stationary velocity field (SVF) diffeomorphic registration was performed in a subset
of subjects from Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. A wide range of
values of the registration parameters that define the transformation smoothness and the balance
between image matching and regularization were explored in the evaluation. The proposed
methodology provided brain atrophy maps with very detailed anatomical resolution and with a
high significance level compared with results recently published on the same data set using a non-
linear elastic registration method.
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Introduction
Alzheimer’s disease (AD) is the most common form of age-related dementia and one of the
most serious health problems in the industrialized world. It manifests with progressive
cognitive decline initially shown as memory loss and then spreads to affect all other
cognitive faculties and the patients’ ability to conduct an independent lifestyle. Mild
cognitive impairment (MCI) is a relatively recent concept introduced to recognize the
intermediate cognitive state where patients are neither cognitively intact nor demented
(Petersen et al., 2001; Petersen, 2004; Winblad et al., 2004). Some MCI patients harbor an
alternative pathological diagnosis such as dementia with Lewy bodies, vascular dementia,
hippocampal sclerosis, frontotemporal dementia and even some MCI cases can also be
attributed to non-degenerative pathology.
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In spite of recent advances in understanding the genetics, neuropathology and
neuropsychology of AD, we are still lacking sensitive and specific biological markers useful
in the preclinical stages. AD-associated brain changes can be clinically evaluated in-vivo
with the help of neuroimaging, using either structural technique such as magnetic resonance
imaging (MRI) and diffusion tensor imaging or functional approaches such as positron
emission tomography (Mosconi, 2005; Nordberg, 2008), functional MRI (Dickerson and
Sperling, 2008), arterial spin labeling (Du et al., 2006) and spectroscopy (Kantarci et al.,
2002; Modrego et al., 2005). Reliable biomarkers of the underlying pathology that can also
predict disease progression in MCI are needed and several candidate brain measures have
been examined in a wealth of cross-sectional and longitudinal neuroimaging studies.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005a,b) is a
large multi-site longitudinal structural MRI and fluorodeoxyglucose positron emission
tomography (FDG-PET) study of 800 adults, ages 55 to 90, including 200 elderly controls,
400 subjects with mild cognitive impairment, and 200 patients with AD. The ADNI was
launched in 2003 by the National Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, the Food and Drug Administration, private pharmaceutical
companies and non-profit organizations, as a $60 million, 5-year public–private partnership.
The primary goal of ADNI has been to test whether serial MRI, PET, other biological
markers, and clinical and neuropsychological assessment can be combined to measure the
progression of MCI and early AD. Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as lessen the time and cost of clinical trials. Several
brain morphometry studies on ADNI data have been already published (Fan et al., 2008a;
Hua et al., 2008a,b, 2009; Morra et al., 2008; Leow et al., 2009; Misra et al., 2009; Qiu et
al., 2009; Schuff et al., 2009).

Nowadays several techniques for analysis of brain anatomy are available. The oldest
approach is the region of interest (ROI) technique which measures the volume of specific
brain structures. It relies on delineation of the regions of interest. Volumetry is a powerful
and intuitive technique that has yielded a wealth of findings, but has some drawbacks. ROI
analysis requires an accurate a priori hypothesis, so analyses often tend to be limited to one
or two structures of interest. This limitation is important when complex and dynamic
atrophy patterns are sought, which is the case of AD. Hippocampus and entorhinal cortex
are the regions more frequently analyzed in this pathology (Laakso et al., 1995; Krasuski et
al., 1998; Jack et al., 1999; Du et al., 2001; Pennanen et al., 2004). In addition, when using
manual delineation, the ROI method is operator-dependent, susceptible to bias and time
consuming (Barnes et al., 2009).

More specific and subtle shape information of particular regions or structures, such as the
hippocampus, has been analyzed by means of statistical shape analysis. Different shape
features have been used, such as landmark coordinates (Csernansky et al., 2000, 2004),
thickness or radial atrophy maps (Thompson et al., 2007; Querbes et al., 2009; Qiu et al.,
2009), and medial representations (Styner et al., 2003). However, these methods share some
limitations with the ROI analysis because an a priori hypothesis about the target structure is
required together with the task of accurate delineation.

A different paradigm is to perform voxel-wise statistical analysis of anatomical information
for the whole brain volume. One of the techniques belonging to this paradigm is tensor-
based morphometry (TBM), which identifies regional structural differences in the brain,
across groups or over time, from the gradients of the deformation fields that align images to
a common anatomical template (Frackowiak, 2004). The anatomical information is encoded
in the spatial transformation. Therefore, accurate inter-subject non-rigid registration is an
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essential tool. Many different registration approaches have been proposed, all having several
tuning parameters, including parameters defining the deformation model, the regularization
model, the optimization technique and the interpolation approach. With the new advent of
recent and powerful non-rigid registration algorithms based on the large deformation
paradigm (Leow et al., 2007; Lepore et al., 2008; Brun et al., 2009), TBM is being
increasingly used. Subsequent statistical analysis is performed on the spatial transformations
to highlight statistical differences between groups (Chiang et al., 2007a,b), or to classify
individuals into diagnostic labels (Fan et al., 2008a,b; Duchesne et al., 2008). One of the
simplest and most common TBM features is the determinant of the Jacobian matrix which
can be interpreted as a local atrophy/expansion factor (Leow et al., 2006; Lepore et al.,
2007; Chiang et al., 2007a; Lee et al., 2007). More complete descriptors can be also used,
such as the complete Jacobian matrix J, or rotation-invariant features, such as the strain
tensor  (Lepore et al., 2006, 2008; Ridgway et al., 2008).

One of the main limitations of the TBM is the non-uniform distribution of the variance of
the warpings, which is typically larger at cortical folds than in subcortical regions. This
variance may be due to anatomical variability and possible misregistration errors.
Accordingly, subtle anatomical differences between groups may be unnoticed especially in
these regions.

Even though many different non-rigid registration methods could be considered as
potentially suitable for TBM studies, the methods belonging to the large deformation
paradigm have the advantage of offering a large flexibility required to characterize the
anatomical variability in cross-sectional studies of elderly subjects and dementia patients.
Some of these methods are fluid registration (Christensen et al., 1996; D’Agostino et al.,
2003), the large deformation diffeomorphic metric mapping (LDDMM) (Csernansky et al.,
2000; Beg et al., 2005; Wang et al., 2007), diffeomorphic demons (Vercauteren et al., 2007)
and stationary velocity field (SVF) diffeomorphic methods (Ashburner, 2007; Hernandez et
al., 2007, 2009; Vercauteren et al., 2008). The warping in all previous methods is a
diffeomorphism, which is an invertible and differentiable mapping obtained by integrating a
smooth velocity vector field.

SVF diffeomorphic registration has been recently proposed as a simplified version of the
LDDMM algorithm, by constraining the parameterization to a stationary velocity field. With
this simplified characterization, the forward and backward integration of the velocity field
are identified with the group exponential and can be computed using fast methods (Arsigny
et al., 2006; Bossa et al., 2008) with smaller memory requirements than in the LDDMM
method. To our knowledge, two diffeomorphic registration algorithms with SVF
parameterization were proposed at about the same time (Hernandez et al., 2007; Ashburner,
2007). Both can be fitted in the same variational framework, with some differences in the
optimization technique. At the same time an extension of the demons registration method to
diffeomorphic transformations was proposed in Vercauteren et al. (2007) where a Lie group
optimization technique was used. The regularization in Vercauteren et al. (2007, 2009) was
externally imposed by means of Gaussian smoothing.

The aim of this paper is twofold. Firstly, to illustrate that SVF diffeomorphic registration
may be a good choice for TBM studies because it allows large deformations and offers a
good accuracy/complexity trade-off. In particular, the SVF diffeomorphic registration
method is used on the same data set analyzed in a recent TBM study using non-linear elastic
registration (Hua et al., 2008a). Secondly, to quantify and illustrate the effect of using
different values of the registration parameters in a TBM study. In addition to SVF
diffeomorphic registration, diffeomorphic demons 2 was also explored.
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Materials and methods
Subjects

In this study we selected the same subset of 120 subjects from ADNI database as in Hua et
al. (2008a) in order to make an easier comparison. To summarize, MRI baseline scans,
divided into 3 groups: 40 healthy elderly individuals (denoted as Nor), 40 individuals with
amnestic MCI, and 40 individuals with probable AD. Each group of 40 subjects was well
matched in terms of gender and age. Likewise (Hua et al., 2008a), an independent second
group of normal subjects (denoted as Nor2), age- and gender-matched to the first group of
controls, was selected to test whether analysis techniques correctly detect no differences
when comparing the two independent groups of normal subjects.

All subjects underwent clinical/cognitive assessment at the time of scan acquisition. As part
of each subject’s cognitive evaluation, the Mini-Mental State Examination (MMSE) was
performed to provide a global measure of mental status based on evaluation of five cognitive
domains. The Clinical Dementia Rating (CDR) was also assessed as a measure of dementia
severity. The elderly normal subjects had MMSE scores between 28 and 30 (inclusive), a
global CDR of 0, and no symptoms of depression, MCI, or other forms of dementia. The
MCI subjects had MMSE scores in the range of 24 to 28, a global CDR of 0.5, and mild
memory complaints, with memory impairment assessed via education-adjusted scores on the
Wechsler Memory Scale – Logical Memory II. All AD patients met NINCDS/ADRDA
criteria for probable AD with an MMSE score between 20 and 23. As such, these subjects
would be considered as having mild to moderate, but not severe, AD. Table 1 shows a
summary of demographic and clinical data. More details about criteria for patient selection
and exclusion can be found in Hua et al. (2008a) and in the ADNI protocol (Mueller et al.,
2005a,b).

MRI acquisition, image correction and pre-processing
High-resolution structural brain MRI scans were acquired at multiple ADNI sites with 1.5T
MRI scanners using the standard ADNI MRI protocol. For each subject, two T1-weighted
MRI scans were collected using a sagittal 3D magnetization-prepared rapid acquisition with
gradient echo (MP-RAGE) sequence with voxel size of 0.94×0.94×1.2 mm3. The images
were calibrated with phantom-based geometric corrections to ensure consistency among
scans acquired at different sites. Additional image corrections included geometric distortion
correction, bias field correction and geometrical scaling. See Hua et al. (2008a) for more
details. The pre-processed images are available to the scientific community and were
downloaded from the ADNI website.

Brain images were intensity-normalized by means of histogram matching with a linear
mapping that aligned the 95-th percentile of the intensity histogram to an intensity value of
95. To adjust for global differences in brain positioning and scale across individuals, all
scans were linearly registered to the stereotaxic space defined by the International
Consortium for Brain Mapping (ICBM-53) (Mazziotta et al., 2001) with an affine
transformation (12 degrees of freedom). Aligned images were resampled in an isotropic
space of 220 voxels along each axis (x, y, and z) with a final voxel size of 1 mm3.

Stationary velocity field (SVF) diffeomorphic registration
The registration method can be formulated as a variational problem, where the cost function
to be minimized contains an image matching term E1 between a template image T and a

2Diffeomorphic demons is available online at http://www.insight-journal.org/browse/publication/154.
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target image I and a regularization term E2 in order to guarantee the smoothness of the
transformation,

(1)

where the weight σ (regularization parameter) balances the relative importance between
image matching and regularization, and ϕ is the template warping parameterized as

(2)

being v a stationary velocity vector field and the group exponential mapping is defined as
exp(tv) ≡ φt. In this work we selected the Sum of Squared Differences (SSD) as matching
criteria E1 and the regularization term as E2(v) = ∫ (Lv)2dx being L a linear invertible
differential operator. The L operator was chosen as in Beg et al. (2005), L = Id − αΔ, where
Δ is the Laplacian operator and the parameter α penalizes up to second-order derivatives of
the velocity field. All in all, the cost function is given by

(3)

The optimization was performed with a non-linear conjugate-gradient strategy (Nocedal and
Wright, 1999; Hager and Zhang, 2006), i.e. the search direction is a linear combination of
the negative gradient direction and the search direction from the previous iteration. The
gradient of Eq. (3) was computed as

(4)

being H = L†L, L†, the adjoint operator of L and Dφ the Jacobian matrix. Note that H is a
smoothing kernel with a tuning parameter α. The amount of spatial correlation increases
with larger values of the smoothing parameter α.

Additional implementation details are the following ones: a multi-scale pyramidal approach
with 4 levels was used for computational savings and avoiding local minima; the
exponential mapping was implemented as a forward Euler integration with 50 steps because
this standard evolution method offered a good trade-off between accuracy and
computational time (Bossa et al., 2008); the Laplacian operator was a centered-stencil; the
filter H and its inverse were applied in the Fourier domain inducing periodic boundary
conditions.

Unbiased average template
An average template is one of the key components of TBM studies. It provides a coordinate
system where all image samples are registered. In order to make automatic registration
easier and more robust, the template must represent common intensity and geometric
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features from the group of images. A common solution found in the literature is the
estimation of an unbiased average template image by minimizing the deformations (Joshi et
al., 2004; Hua et al., 2008a). When the registration method is not accurate enough to match
anatomical structures, the unbiased template becomes smooth. This lack of sharp anatomical
details in the template may reduce the sensitivity of a TBM study to detect subtle brain
volume changes (Studholme et al., 2004).

In this work the unbiased template T was estimated from images of the Nor group, likewise
in Hua et al. (2008a) because we assume that the disease process is one of structural removal
and the morphometry analyses would be limited to those structures remaining in the disease
group. An initial affine average atlas was estimated by means of voxel-wise averaging of all
intensity- and spatial-normalized Nor group images. Next, an iterative process was used to
estimate the template, including three stages for each iteration: non-linear registration of the

affine-aligned images  to the current estimated template; computing the bi-invariant
mean φ̄ = exp(v̄) (Arsigny, 2006) of all warpings φi = exp(vi), and finally image intensities
are averaged after subtracting the mean warping T = 1/NΣiIi(φi ◦ exp(−v̄)). Convergence is
obtained after a few (typically less than 5) iterations.

As the particular values of the registration parameters have a strong impact in the final
registration result, we estimated the control group atlas using a set of values of the
parameters {α, σ} defined in Eq. (3). The average template better representing the
anatomical details of the Nor group was selected for all subsequent analysis using visual
criteria.

Brain atrophy statistical maps
To quantify the spatial distribution of brain atrophy3 in MCI and AD groups compared to
the Nor group, the template was non-linearly registered to all individual brains (N = 120).
The Jacobian map shows the spatial distribution of the Jacobian matrix determinant of the
mapping and reflects the local brain volume change relative to the template. These Jacobian
maps share a common anatomical coordinate system. Hypothesis testing was performed at
each voxel to assess mean difference between patient groups. Voxel-wise two sample
Student’s t-test with unequal variance on the log of Jacobian determinants was used. The log
transformation helps to make the distribution of Jacobian determinants closer to a Gaussian
distribution, which is the main assumption for the statistical test. This spatial distribution is
denoted here as brain atrophy statistical map.

Regression maps between brain atrophy and clinical measurements
Any quantitative measure or surrogate marker estimated from MRI, such as local brain
atrophy, has greater value if it can be shown to correlate with established measures of
cognitive or clinical decline, or with future outcome measures. At each voxel, linear
regressions were assessed between the log Jacobian determinant from all subjects (N = 120)
and some clinical variables. The spatial distribution of the relations between local brain
atrophy and clinical variables may provide valuable information to interpret the clinical
effect of brain atrophy.

Informative regression parameters or features potentially useful for statistical maps are
regression strength, usually quantified by the correlation coefficient r, regression
significance, typically measured as a p-value, and the regression coefficients. All these

3As cross-sectional data is used in this work, brain atrophy/expansion refers to the volume change factor compared to the normal
group, and not the usual concept of volume change along time.
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measures were explored by means of statistical maps using parametric techniques. Voxel-
wise regression F-test was used to assess significance of the linear model.

Student’s t-statistic supra-threshold volume (STV) plots
While in probability theory and statistics, the definition of cumulative distribution function
(CDF) involves integration of a probability density function, in some recent neuroimaging
studies (Leow et al., 2007; Lepore et al., 2008; Hua et al., 2008a) CDF has been used to
quantify the number of voxels from a statistical map that achieve a significance level p. In
these works, CDF plots were used to compare the statistical power of detecting significant
effects using different experimental conditions or even different methods in TBM studies.

A small variant is proposed here: instead of p-values, the Student’s t-statistic is used. The
first advantage of using t-statistic is that sign information (either atrophy or expansion) is
preserved. The second one comes from the fact that while p-values can be estimated using
several methods, either parametric or non-parametric, providing different results, Student’s
t-statistic is a much simpler measurement. Therefore, supra-threshold volume (STV) plots
illustrate the number of voxels in a statistical map having a Student’s t-statistic larger than a
given t-threshold.

Correction for multiple comparisons
In order to correct for multiple comparisons false positive rate must be controlled. There are
several false positive measures in the multiple testing problem. The standard measure is the
familywise error rate (FWE) which quantifies the probability of observing at least one false
positive (Hochberg and Tamhane, 1987; Nichols and Hayasaka, 2003). False discovery rate
(FDR), defined as the expected fraction of false positives under the null hypothesis, was
proposed later as a less conservative measure than FWE (Benjamini and Yosef, 1995). In
this work both FWE- and FDR-based methods were used.

An omnibus test in order to control FDR was used as in previous neuroimaging studies
(Chiang et al., 2007b; Hua et al., 2008a; Lepore et al., 2008; Leow et al., 2009). The null
distribution was built using random permutations of the diagnostic labels. The number of
voxels with larger significance than a p-threshold was computed in the real experiment and
in the random assignments. The overall p-value for the significance of the map was obtained
as the proportion of events with larger number of voxels for the randomized maps than for
the original labeling.

A different alternative is to control FWE. Strong control of the FWE requires that false
positives are controlled for each voxel in the statistical map where the null hypothesis holds,
allowing localization of the particular significant voxels. This localization is essential to
neuroimaging. FWE is usually analyzed by means of the distribution of the maximum
statistic (Nichols and Hayasaka, 2003). In this work random permutations were used to
empirically estimate the distribution of the maximum statistic. The 100(1 − p)-th percentile
of this distribution defines a threshold tp for the statistical map that controls FWE at a level
p.

Region of interest statistical analysis
In order to summarize the statistical map information from the voxel level to the ROI level,
a scalar descriptor of the ROI is often computed. Many authors use the average Jacobian
determinant which is a feature with a very intuitive interpretation: relative volume change of
the ROI. The subsequent statistical analysis can be performed with univariate hypothesis
testing. The results from this analysis could be directly compared with a rich list of manual
volumetry studies performed on AD/MCI neuroimaging studies (Apostolova and Thompson,
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2008). The main difference between both approaches is the consideration of either automatic
or manual methods. In this work we used the average Jacobian determinant as ROI feature
and statistical group analysis was performed by means of Student’s t-test.

Several subcortical regions of interest (ROIs) were automatically delineated at the template:
hippocampus, amygdala, caudate nucleus, thalamus, putamen, pallidum and nucleus
accumbens. These subcortical nuclei were segmented using the tool FIRST (Patenaude,
2007) from FSL package (Smith et al., 2004). Brain extraction tool, also from FSL package
was also used in order to define a whole brain mask. All segmentations were visually
checked. Only the brain mask was manually edited.

Results
Unbiased template

A wide range of different unbiased templates from the control group images were obtained
using different values of the registration parameters {α, σ} in Eq. (3) that define the amount
of smoothness and the balance between intensity matching and regularization respectively.
Fig. 1 illustrates a sagittal view of the Nor group template estimated using the following
values of the registration parameters α = [0.5, 1, 2, 5, 10] and σ = [0.2, 0.5, 1, 2, 5].

Large values of the regularization parameter, i.e., σ = 5, produce an important blur in the
templates for all values of the smoothing parameter α. On the other hand, unrealistic
structures can be seen in most of the templates using α≤2 (see corpus callosum–lateral
ventricle boundary). A possible reason can be that small values of the smoothing parameter
α yield many local minima in the energy function to be minimized by the registration
algorithm.

The values of the registration parameters in the interval {α = [5, 10], σ = [1, 2]} provide a
good trade-off between regularization and smoothing. We visually checked that these
templates preserve most of the anatomical details of the normal brain anatomy. For the rest
of the study, the template was chosen as the one obtained with the values {α = 5, σ = 1}.

Student’s t-statistic STV plots
In order to compute non-rigid registration from the template to all brain images, the range of
values of the registration parameters {α, σ} were slightly adjusted according to the results
shown in Fig. 1. The value of σ = 5 was disregarded because the corresponding template did
not show enough anatomical detail due to poor image matching; additionally a larger value
of the smoothness parameter was considered. The new set of values of the registration
parameters were α = [0.5, 1, 2, 5, 10, 20] and σ = [0.2, 0.5, 1, 2].

The STV curves of the Student’s t-statistic in Fig. 2 illustrate the sensitivity to detect
significant brain volume changes between AD–Nor and MCI–Nor groups when using
different values of the registration parameters {α, σ}. The STV curves corresponding to the
null distribution were also computed comparing the two independent normal groups (Nor–
Nor2). As only large values of the t-statistic are of interest, either positive for atrophy or
negative for expansion, the horizontal axis shows values |t|≥3.

An important asymmetry between atrophy and expansion can be observed in Fig. 2. For
large enough values of the smoothing parameter α, the number of voxels with significant
atrophy is larger than for expansion with the same significance level.

Most of the STV curves for AD–Nor group comparison show an increasing sensitivity to
detect brain volume changes when increasing the value of the smoothing parameter α. The

Bossa et al. Page 8

Neuroimage. Author manuscript; available in PMC 2011 March 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



values of the registration parameters yielding voxels with larger t-statistic are {α = [5, 10], σ
= 2}.

For each curve, a random permutation test with 10,000 permutations was performed to
estimate the tp-threshold that controls FWE with significance level p. The values of tp are
illustrated in Fig. 2 for p = [0.05, 0.01, 0.005]. All STV curves of the AD–Nor group
comparison showed FWE-corrected significant voxels at level p = 0.05.

The optimal pattern for a STV curve would be the one that maximizes the number of voxels
with higher significance, i.e. larger values of |t|. As the regularization is an extra penalty
term to ensure smoothness of the mapping, a reasonable criterion could be to select the
lowest value of α among the values that achieve a similar pattern of the STV curve.
Accordingly, the values of the registration parameters {α = [5, 10], σ = 2} would be a good
choice.

Brain atrophy statistical maps
In order to illustrate the effect of using different values of the registration parameters in the
spatial distribution of the brain atrophy, three sets of values were selected to represent
different conditions: low-level smoothing with small regularization {α = 0.5, σ = 0.5}, large
smoothing with large regularization {α = 20, σ = 2} and a point with intermediate smoothing
{α = 5, σ = 2}. These working conditions are a representative sample of the different
performance of STV curves illustrated in Fig. 2. Student’s t-statistic maps are shown in Fig.
3.

Assessment of statistical significance corrected for multiple comparisons is required in order
to compare and to give an interpretation to Student’s t-maps. For each value of the
registration parameters {α, σ}, 10,000 random permutations were used to correct for
multiple comparisons with FWE- and FDR-based methods. Fig. 4 illustrates the corrected p-
values for the three set of values of the registration parameters shown in Fig. 3. As statistical
maps are typically shown with either t- or uncorrected p-value maps, two panels were used
to illustrate the dependence of the corrected p-values on both measures. This information is
redundant due to the known mapping between t-statistic and uncorrected p-values, but it
may be helpful for comparison purposes. Note that while a t-threshold is used to control
FWE, uncorrected p-value thresholds are used to estimate the overall significance.

Using different values of the registration parameters {α, σ} provide atrophy maps with
different amount of spatial correlation, and therefore the severity of the correction for
multiple comparison will change. However, the values of the t-threshold tp controlling for
FWE at level p for all values of {α, σ} differ in less than 0.5 units (see Figs. 2 and 4). This
difference is difficult to appreciate in the Student’s t-statistic maps in Fig. 3.

Due to the fact that several values of the registration parameters were explored, an additional
correction for multiple comparisons can be performed. For strong control of FWE, the
distribution of the maximum statistic under the null hypothesis must be estimated.
Accordingly, the maximum is computed not only across the voxels but also across the whole
set of parameters {α, σ}. The mapping between t-threshold and this corrected p-value which
takes into account the whole set of comparisons is also shown in the left panel of Fig. 4.

Brain atrophy statistical maps are strongly influenced by the values of the registration
parameters {α, σ} used during the estimation of the warping between each subject and the
template. In general, larger regions with significant differences between groups are obtained
for larger values of the smoothing parameter α. However, too large values of α may produce
smoothed statistical maps. For example, the statistical maps of the intermediate point {α = 5,
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σ = 2} in Fig. 3 show regions with sharp boundaries in agreement with anatomical structures
affected by dementia, while the corresponding maps when using {α = 20, σ = 2} are blurred.
See for example the boundaries of the parahippocampal gyrus in the AD–Nor comparison.
Other structures with significant atrophy, such as the frontal part of the insula, are better
represented when using {α = 5, σ = 2} than {α = 20, σ = 2}. When comparing AD–Nor
versus MCI–Nor patient groups, AD group showed larger areas with stronger significance
affected by brain atrophy.

Fig. 5 shows in more detail the AD–Nor brain atrophy map for the intermediate point, i.e.,
the values of the registration parameters are {α = 5, σ = 2}. The following brain structures
showed atrophy with a strong significance: left (see slice 1) and right (slices 3–4) superior
temporal sulcus; bilateral posterior part of the cingulate gyrus (precuneus region) at slices 1–
5; bilateral temporo-occipital sulcus at slices 1–2, with larger significance at the left side;
bilateral hippocampus at slices 2–6, mainly affecting subiculum and CA1 regions; bilateral
entorhinal cortex and parahippocampal gyrus at slices 4–7; bilateral amygdala at slice 7;
temporal pole, more pronounced at right side (slice 9); anterior part of the right insula at
slice 11 and axial slice, with a lower significance at the left insula (slice 10).

Regression analysis maps
Voxel-wise linear regression analysis was performed with the following clinical variables:
MMSEbaseline, MMSE12month and age. The interest here is not to discuss deeply the clinical
interpretation of the relationship between brain atrophy and clinical measurements, but to
illustrate the performance of the regression maps obtained with SVF diffeomorphic
registration. Fig. 6 shows the spatial distribution of some regression features, such as the
coefficient of determination r2, regression significance (uncorrected p-value) and regression
coefficient. These statistical maps were obtained with registration parameters {α = 5, σ = 2}.
It can be seen that Jacobian determinants at the hippocampus and amygdala showed a
positive (right panel in Fig. 6) and significant (left panel in Fig. 6) relation with
MMSEbaseline, because smaller values of the Jacobian determinants were related to lower
MMSE scores. Note that the p-value regression map with MMSEbaseline is similar to the
AD–Nor atrophy statistical map in Fig. 3. This result was expected because the clinical
variable MMSEbaseline is closely related to the diagnostic label that defines patient groups. It
can be noted that the atrophy-age regression maps have a completely different pattern: the
most significant correlation was found in the lateral ventricles, which was positive, i.e. an
increase in age was linearly related to expansion of the ventricles. In contrast, the regions
showing a stronger linear relation between brain atrophy and cognitive status, either
MMSEbaseline or MMSE12month, were located at structures known to be affected by dementia,
such as hippocampus and amygdala.

Region of interest analysis
In order to assess statistical differences in the volume of subcortical regions across patient
groups, univariate hypothesis testing was performed on the ROI-average Jacobian
determinant of the mappings. Among the analyzed structures, only amygdalae and
hippocampi presented significant volume differences, both in AD–Nor and MCI–Nor group
comparisons. Fig. 7 shows the values of the Student’s t-statistic for the whole set of values
of the registration parameters {α, σ}. It can be noted that the magnitude of the t-statistic in
the ROI is smaller than the voxel-wise brain statistical maps due to the spatial averaging
performed in the ROI analysis, especially at those structures with a heterogeneous atrophy.
In our case, while the atrophy distribution at the amygdala was roughly homogeneous, an
important heterogeneity was found in the hippocampus. Again, a good candidate of the
registration parameter values is {α = 5, σ = 2} because it yields large differences between
patient groups.
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Discussion
Two main contributions can be highlighted from this study. First, stationary velocity field
(SVF) diffeomorphic registration seems to be an appropriate method for TBM studies on
Alzheimer’s disease patients for the following reasons: it allows large deformations while
preserving smoothness of the mapping, the computational requirements are not very high
(typical computation time between 1 h and 2 h in a 64-bit 2.33 GHz processor for an image
volume of 220×220×220) and more importantly because it provides brain atrophy maps with
excellent spatial resolution. The second contribution is a thorough description of the effects
of using different values of non-rigid registration parameters at several stages of a TBM
study: template estimation, brain atrophy statistical maps and ROI analysis.

Selection of registration parameters
Even though the idea of exploring the values of the registration parameters is very old and
recognized by many authors, the piece of information presented here is relevant because it
provides criteria to select reasonable values. In this work we only explored two parameters:
the coefficient α that specifies smoothness properties of the regularizer (in particular it
penalizes up to second-order derivatives of the velocity field), and the relative weight 1/σ2

between image matching and regularization (see Eq. (3)). We illustrated the effect of
varying these tuning parameters on the two most important stages of a TBM study: the
template estimation and the statistical analysis of the warpings. In our experiments the
parameter selection was performed in two stages. First, a reasonable template was visually
selected after exploring tuning parameters. Secondly, statistical analysis for different values
of the registration parameters was performed using a fixed template. We found that the
effect of registration parameters in the performance of statistical analysis is much stronger
than in the template estimation. Look for example at the differences in STV curves for
parameter values {α = 5, σ = 2} and {α = 5, σ = 0.5} (Fig. 2) and ROI analysis (Fig. 7)
compared to the small differences between the corresponding templates (Fig. 1).

Interestingly, the parameter values, {α = [5, 10], σ = 2}, obtained roughly the best
performance under most criteria: its corresponding template showed sharp details of the
brain anatomy and does not contain artificial structures (see Fig. 1); the STV curves for
these values of the registration parameters showed the largest number of voxels with highest
magnitude of t-statistic (see Fig. 2) and a very low rate of volume change detections when
comparing the two independent normal groups (see Fig. 2); the brain atrophy statistical
maps when comparing AD–Nor and MCI–Nor groups with {α = 5, σ = 2} showed
significant regions with anatomically-defined boundaries and located at structures known to
be affected by dementia (see Figs. 3–5); the ROI analysis, which can be interpreted as a
volumetry analysis where delineation of the region is automatically performed with an atlas-
based segmentation approach, showed that the same set of parameter values is a good choice
for maximizing the statistical significance of volume difference of the hippocampus and
amygdala between patient groups (see Fig. 7).

Regarding the selection of the template, future studies will consider quantitative measures
for performance evaluation. For example, a common performance measure of the template is
the variance (Allassonniere et al., 2007), i.e. distance between observed images and the
template.

STV curves
Previous studies have used CDF plots of the uncorrected p-value in linear scale in order to
assess statistical power for group analysis in TBM studies (Chiang et al., 2007a; Leow et al.,
2007; Hua et al., 2008a; Leow et al., 2009). Log-scale representation has been used to focus
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on the most significant p-values (Ridgway et al., 2008). Taking into account that at
distribution’s tail there is an almost linear relationship between t-statistic and log(p), the
Student’s t-statistic STV plot is roughly equivalent to a CDF plot in log scale, but with the
additional advantage that the atrophy/expansion information is preserved.

In most of the STV curves the sensitivity to detect volume changes in the AD–Nor group
comparison increases with the smoothing and regularization parameters, α and σ
respectively (see Fig. 2). However, in the curve with the largest values of regularization and
smoothing parameters there is an important reduction of the number of voxels with largest t-
statistic. This results shows that too much spatial correlation in the warpings degrades the
sensitivity.

Regarding to the sign information in the STV curves, it can be noted from Fig. 2 that brain
atrophy regions are larger and present higher significance than expansion regions for large
enough values of the smoothing parameter α. This asymmetry is more pronounced in the
AD–Nor group comparison but also visible when comparing MCI–Nor groups. This result is
in agreement with the fact that the main reported sign of AD observed on MRI images is
brain tissue atrophy of particular structures, starting at the temporal lobes.

Brain atrophy statistical maps
Comparing to previous whole brain morphometry studies, including voxel-based
morphometry and TBM (Apostolova and Thompson, 2008, and references therein), the
statistical maps illustrated in this work showed a much higher spatial resolution. In
particular, when comparing AD–Nor groups, the following regions showed significant
atrophy bilaterally: superior temporal sulcus, posterior part of the cingulate gyrus (precuneus
region), temporo-occipital sulcus, hippocampus mainly affecting subiculum and CA1
regions, entorhinal cortex and parahippocampal gyrus, amygdala, the temporal pole, and the
anterior part of the insula. When comparing MCI and normal groups, the regions with
significant brain atrophy were smaller than in the AD case, but most of them presented again
sharp anatomical boundaries of structures known to be affected by the dementia (Braak and
Braak, 1995).

In our opinion, a good criterion for selecting the values of the registration parameters is the
anatomical resolution of the brain atrophy maps. While the anatomical knowledge of
pathology-induced changes in some brain disorders is relatively small, AD pathology is
well-known to affect several specific structures (Braak and Braak, 1995). STV (and CDF)
curves are compact descriptions of a brain atrophy map where the anatomical information is
lost. Therefore they are not suitable for using such a priori information, unless the STV
curve is computed within a pathology-related region.

Regression analysis
Regression analysis allowed to find linear relations between brain atrophy and clinical
measurements. For example, brain tissue atrophy of elderly normal subjects, i.e. due to
normal aging, is a global process affecting many different structures of the brain. In this case
the atrophy is typically manifested as a lateral ventricle expansion because it is a
compensatory effect while the tissue atrophy has a much disperse spatial distribution.
Accordingly, the regions with the largest significance in the atrophy-age regression map
were at the lateral ventricles. In contrast, AD manifests as brain tissue atrophy at specific
structures in a known time-course, starting at the medial temporal lobe. Consequently,
regression maps with a clinical variable of cognitive status showed that there was a
significant linear relation between brain atrophy of hippocampus and amygdala with current
cognitive status, i.e., MMSEbaseline and also even with future cognitive status, MMSE12month.
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This latter behavior is in agreement with previous hypothesis considering that brain atrophy
could be used as an early marker of cognitive decline (Davatzikos et al., 2008).

Registration methods for TBM studies
Non-rigid registration is one of the key techniques in a TBM study and aims at defining
anatomical correspondences between different brains. The strategies used to ensure the
smoothness of the mapping by most of the registration methods belonging to the small
deformation paradigm are based on either a parametric characterization of the mapping
(Good et al., 2001; Studholme et al., 2004) or regularization of the displacement field
(Thirion, 1998; Modersitzki, 2004; Hua et al., 2008a). In both cases the spatial frequency of
the mapping is smoothed or band-limited, introducing a lower bound of the spatial
resolution in a TBM study. In contrast, the regularization of the registration methods
belonging to the large deformation paradigm is usually achieved by smoothing the velocity
field instead of using an explicit smoothing of the mapping. As a consequence, there is no
explicit bound of the spatial resolution of the mapping apart from the spatial sampling of the
images.

In order to illustrate the effect of the values of the registration parameters in other
registration methods we performed the same analysis using diffeomorphic demons
(Vercauteren et al., 2007, 2009. We selected this method because it is available online,4 it
allows large deformations while preserving topology, and at the same time it is based on a
quite different strategy for regularization compared to SVF. Two smoothing kernels need to
be defined in diffeomorphic demons: kdiff and kfluid, which are governed by the scale
parameters s and g, respectively. The following set of the parameter values was used, s =
[0.5, 1, 2, 4] and g = [0.5, 1, 2, 4, 6, 8], where a wide range of performances is observed
with an ‘optimal’ STV curve inside the interval.

Fig. 8 illustrates the STV curves corresponding to brain atrophy for both registration
methods, diffeomorphic demons and SVF diffeomorphic registration, when comparing AD
and Nor groups. It is clearly shown that the number of voxels and the significance level
strongly depend on the values of the registration parameters for both methods. Likewise in
the SVF registration method, extreme values (either too small or large) of the diffeomorphic
demons registration parameters produced STV curves far from the ‘optimal’ pattern. Even
though SVF diffeomorphic registration obtained a larger sensitivity than diffeomorphic
demons for detecting statistical differences between Nor and AD groups, one should be
cautious before extrapolating this behavior to other performance measures and application
domains, such as atlas-based segmentation, and even on a different set of images.

A few examples of the brain atrophy statistical maps obtained with diffeomorphic demons
are shown in Fig. 9; they can be directly compared with the results obtained with SVF
diffeomorphic registration (see Fig. 3). The brain atrophy statistical map with parameter
values {s = 2, g = 6} lacks anatomical details probably due to a high level of smoothing. In
contrast, the parameter values {s = 1, g = 2} yielded a map with higher spatial resolution but
with a much lower significance level (note the different scale of the color map). The
intermediate point {s = 2, g = 2} shows a compromise between resolution and significance.

Recent TBM studies on ADNI data
In two previous cross-sectional TBM studies on ADNI data (Hua et al., 2008a,b) with
population size N = 120 and 676 subjects respectively as well as in a longitudinal study with
100 subjects (Leow et al., 2009), the brain atrophy statistical maps had a poor spatial

4http://www.insight-journal.org/browse/publication/154.
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resolution compared with their template. Brain atrophy was found at regions without
anatomically-driven boundaries providing larger volumes of brain atrophy at white matter
tissue than at gray matter. Moreover, the tissue (gray and white matter) close to CSF showed
Jacobian determinants larger than one. In our opinion this observed tissue expansion is
mainly artificial due to the limited spatial resolution of the non-rigid registration method as
pointed out in Hua et al. (2008a,b) and Leow et al. (2009). In contrast, in this work SVF
diffeomorphic registration yielded brain atrophy statistical maps with significant regions in
gray matter tissue delimited by sharp anatomical boundaries in the same data set as in Hua et
al. (2008a). For example, entorhinal cortex and parahippocampal gyrus showed a very
significant atrophy in Figs. 3–5. These thin cortical regions are especially relevant because
they are affected at the early stages of the disease (Braak and Braak, 1995).

In this work a small subset of baseline images, N = 120, from ADNI database was used for
two main reasons: to be able to make a fair and more direct comparison with a recent TBM
study based on a nonlinear elastic registration method (Hua et al., 2008a) as well as to allow
a feasible computation time when exploring several values of the registration parameters.
Ongoing work in our group is focused on a TBM study with the complete data set from
ADNI database with values of registration parameters learnt from this work. We hypothesize
that with a larger data set the brain atrophy maps obtained with SVF diffeomorphic
registration will show an improved anatomical resolution of the structures affected by
atrophy.
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Fig. 1.
Illustration of sagittal views of the unbiased template of the Nor group with different values
of the registration parameters {α, σ}.
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Fig. 2.
STV plot of the Student’s t-statistic in the brain mask for different values of the registration
parameters {α, σ}. For each curve, there are marks showing the tp-threshold controlling
FWE at level p = [0.05, 0.01, 0.005] (horizontal axis) as well as the number of voxels in the
statistical map where t>tp-threshold (vertical axis).
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Fig. 3.
One coronal and sagittal view of brain atrophy statistical maps of AD–Nor and MCI–Nor
groups with different values of {α, σ}. Color-bar values denote Student’s t-statistic. Red/
blue color denotes atrophy/expansion respectively. Note that different color map scales are
used in AD–Nor and MCI–Nor comparisons. Vertical lines define slice locations.
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Fig. 4.
Illustration of corrected p-value (either FWE p or overall p) versus Student’s t-statistic (left)
and uncorrected p-value (right) for several values of the registration parameters {α, σ}. FWE
p-values when controlling multiple comparisons taking into account the complete set of
parameters are also shown in the left panel (FWE all param).
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Fig. 5.
AD–Nor brain atrophy statistical map with registration parameter values {α = 5, σ = 2}. The
white lines in the axial slice specify slice locations of the coronal views. Color-bar values
denote Student’s t-statistic (and significance quantified as −log10 p). Red/blue color denotes
atrophy/expansion respectively.
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Fig. 6.
A sagittal view of the statistical maps of regression between log Jacobian values and the
following variables: MMSEbaseline (top), MMSE12month (middle) and age (bottom). Red/blue
color denotes positive/negative values.
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Fig. 7.
Student’s t-statistic on volume difference between patient groups using different values of
the registration parameters {α, σ}. The ROIs are left/right amygdala and hippocampus.
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Fig. 8.
STV curves of the Student’s t-statistic in the brain mask for different values of the
registration parameters for diffeomorphic demons (left) and SVF diffeomorphic (right)
registration methods. Only brain atrophy for the Nor–AD group comparison is shown. The
star marks illustrate the tp-threshold controlling FWE0.05 for a few selected values of the
parameters corresponding to the brain atrophy statistical maps shown in Figs. 3 and 9.
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Fig. 9.
One coronal and sagittal view of brain atrophy statistical maps of AD–Nor with different
values of {s, g} in diffeomorphic demons. Color-bar values denote Student’s t-statistic. Red/
blue color denotes atrophy/expansion respectively. Note that a different color map scale is
used in the left column.
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