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Abstract
Longitudinal atlas construction is a challenging task in medical image analysis. Given a set of
longitudinal images of different subjects, the task is how to construct the unbias longitudinal atlas
sequence reflecting the anatomical changes over time. In this paper, a novel longitudinal atlas
construction framework is proposed. The main contributions of the proposed method lie in the
following aspects: (1) Subject-specific longitudinal information is captured by establishing a
robust growth model for each subject. (2) The trajectory constraints are enforced for both subject
image sequences and the atlas sequence, and only one transformation is needed for each subject to
map its image sequence to the atlas sequence while preserving the temporal correspondence. (3)
The longitudinal atlases are estimated by groupwise registration and kernel regression, thus no
explicit template is used and the atlases are constructed without introducing bias due to the
selection of the explicit template. (4) The proposed method is general, where the number of
longitudinal images of each subject and the time points at which the images are taken can be
different. The proposed method is evaluated on a longitudinal database and compared with a state-
of-the-art longitudinal atlas construction method. Experimental results show that the proposed
method achieves more consistent spatial-temporal correspondence as well as higher registration
accuracy than the compared method.

1 Introduction
Study of longitudinal changes of brain anatomical structures plays an important role in
medical image analysis. Observing the anatomical shape variations over time in different
subjects can provide important clues to study developmental trends across the life span [10].
For this purpose, images of the same subject at different time points are taken to observe
subject-specific longitudinal changes.

Longitudinal atlas construction is an active research topic in longitudinal study in the past
decade. It can be broadly classiffied into three categories: (1) Atlas construction by kernel
regression [2, 6] over the temporal domain; (2) Joint alignment of image sequences to a
selected template space [3, 7]; (3) Atlas construction by registration of cross-sectional
images of different time points [4]. Each stream of methods have their own advantages and
disadvantages. The proposed method in this paper is mostly related to the methods in [2] and
[3].

Davis et al. [2] proposed a kernel regression based framework for longitudinal atlas
construction. This method extended the Nadaraya-Watson kernel regression method by
formulating the regression problem in terms of the Fréchet mean. The longitudinal atlas at a
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particular time point is constructed by performing kernel regression on the Riemannian
manifold represented by diffeomorphisms. The importance of each image during the atlas
construction process is reflected by its weight assigned by the kernel. However, in [2], the
subject-specific longitudinal information is not considered, thus it may lead to inconsistent
temporal correspondence among images of the same subject taken at different time points.
Figure 1(a) illustrates the idea of this method.

Durrleman et al. proposed a joint spatial-temporal atlas construction framework in [3] to
build the longitudinal atlas. In this method, the shape evolution model of each subject is first
established by regression (i.e., indicated by the solid lines across the images of the same
subject in Figure 1(b)). It is not required in this method that each subject must have the same
number of scans, or images must be scanned at the same time point. After building the shape
evolution model of each individual subject, pairwise spatial-temporal registration is
performed by aligning each subject’s image sequence to the atlas sequence. The idea of this
method is depicted in Figure 1(b). However, this method requires an explicit template
sequence to perform registration instead of estimating the atlas with the groupwise
registration scheme, which may lead to bias. Moreover, this approach was evaluated on the
2D human skull profiles only and has not been tested thoroughly on building real human
brain atlas.

Therefore, we are motivated to propose a new longitudinal atlas construction method. The
proposed method integrates both the subject-specific longitudinal information as well as the
population shape variation information to estimate the atlas sequence. More precisely, the
temporal correspondence among the image sequence of each subject is represented by its
corresponding growth model, which is estimated based on the 4D image registration
algorithm. Thus, images belonging to each subject can be warped to any single time point of
the subject’s image sequence by using the growth model, while enforcing the temporal
trajectory constraints. On the other hand, the correspondence among the atlas sequence can
also be represented by the evolution model in the atlas space. Specifically, the atlas
sequence is estimated by performing groupwise registration from each subject’s image
sequence to the atlas space. Note that only a single transformation is needed for each subject
to map its image sequence to the atlas space while preserving the temporal correspondence.
Since the atlas sequence is estimated based on groupwise registration and kernel regression,
no explicit template is assumed. Figure 1(c) illustrates the idea of the proposed method. The
proposed method is evaluated on the longitudinal dataset in [8] and compared with the state-
of-the-art atlas construction method proposed by Davis et al. [2]. It is observed that the
proposed method achieves higher registration accuracy as well as better temporal
correspondence compared with Davis’s method [2].

2 Formulation and Properties of the Proposed Method
In this section, we describe the design details and advantages of the proposed longitudinal
atlas construction framework. The whole framework can be summarized by Figure 2. The
preprocessing step shown in Figure 2 includes histogram matching and rigid alignment of all
the other time point images to the first time point image of each subject.

Suppose there are C different subjects, and each subject i (i = 1, …, C) has ni longitudinal

images taken at different time points. Let  denote the jth time point image of subject i.
The number of longitudinal images and the earliest time point of each subject are not
necessarily the same. The task is to simultaneously estimate an atlas sequence which can
reflect the longitudinal changes of the population.
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Suppose there are N different time points t1, … tN where we want to construct the atlas
sequence, and let T = {t1, …, tN} and the atlas at different time point t denoted as Mt, where
t ∈ T. The whole framework to construct the longitudinal atlas can be formulated as the
energy minimization problem as expressed in Equation 1:

(1)

where  is the transformed image of  to the time point  in the atlas space defined by
Equation 2:

(2)

where  denotes the underlying growth model of subject i which can warp image  of
subject i to its first time point image  while preserving the temporal smoothness. The
growth model only needs to be estimated once. φi is the transformation which maps subject
i’s space to the atlas space, and ○ denotes the operation of compositing deformations.

In Equation 1, χ is the underlying evolution model in the atlas space. Kh(t) is the kernel
satisfying , where h is the bandwidth of the kernel and K is a function satisfying
∫ K(t)dt = 1. d(·) is the distance metric between images defined based on diffeomorphisms.
Ψ(φi, χ) is the overall regularization term defined by Equation 3.

(3)

where Reg(·) denotes the regularization function, and γφi and γχ are constants trading off the
accuracies in image matching and the smoothness of the deformation field.

The physical meaning beneath Equation 1 is: all the longitudinal images of each subject are
jointly considered as a sequence with trajectory constraints established by its growth model
Vi. Each subject i’s image sequence can be transformed to the atlas space by using a single
transformation φi, and the transformed images can be further warped to any time point t in
the atlas space by the evolution model χ. Finally the atlas sequence is estimated based on
groupwise registration and kernel regression over all subject image sequences.

There are four main advantages of the proposed framework compared to conventional atlas
construction approaches proposed in [2] and [3]. First, subject-specific longitudinal
information is considered by building a growth model for each subject, which is different
from the method proposed in [2], where subject-specific longitudinal information is not
considered and thus possibly leads to inconsistent temporal correspondence. Second, the
trajectory constraints are enforced by considering each subject’s image sequence as a group
to map to the atlas sequence, thus only one transformation φi is needed for each subject i to
map its image sequence to the atlas sequence. Third, the atlas sequence is estimated based
on groupwise registration and kernel regression over all subject image sequences, therefore
the unbias atlas sequence can be obtained, which is different from the method proposed in
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[3] where an explicit template is used. Finally, the proposed method is general, as the
number of longitudinal images of each subject and the time points at which the images are
taken can be different.

To minimize the energy function in Equation 1 with respect to Mt, φi and χ, the four step
optimization strategy is adopted: (1) Growth model Vi estimation, (2) subject-specific
transformation φi estimation, (3) atlas Mt construction by kernel regression, and (4)
evolution model χ estimation in the atlas space. The proposed method is consisted of these
four major components, as highlighted by red rectangles shown in Figure 2. Note that the
growth model in the first step only needs to be computed once, and the last three steps need
to be updated iteratively, which is also illustrated in Figure 2. In the following sections,
details of each component are given on how to optimize Equation 1.

2.1 Growth Model Estimation for Each Subject
The first step of the proposed framework is to estimate the growth model of each subject
after the preprocessing step as shown in Figure 2. The goal of this step is to recover the
geometric changes of anatomical structures over time of each subject image sequence.

The growth model of each subject can be estimated based on 4D image registration methods
(i.e., a method proposed in [9]). Therefore, after the 4D registration, temporal
correspondences are established among the entire image sequence, which are represented by
the respective deformation field from each time point image to the first time point image.
This step can be summarized by Algorithm 1 below.

After estimating the growth model for each subject i by Algorithm 1, the longitudinal
information of subject i contained in the image sequence can be propagated and aggregated
to any time point based on the growth model. Without loss of generality, in this paper the
images of each subject are all warped to its earliest time point.

The growth model provides smooth and consistent temporal correspondence among image
sequence of each subject. Another advantage of building the growth model for each subject
is that if the longitudinal data of a particular subject is taken sparsely with large time gap
(e.g., more than 3 years), the geometric changes of brain structures can be dramatic; In this
case, the growth model can bridge the gap of the dramatic changes of anatomical structures
by interpolating longitudinal images between two consecutive time points. The growth
model estimation step for each subject only needs to be calculated once, which is also
illustrated by Figure 2.

2.2 Transformation of Subject Image Sequence to the Atlas Space
After building the subject-specific growth model described in Section 2.1, the next step is to
estimate the transformation from each subject space to the atlas space (i.e. φi in Equations 1
and 2) by fixing the rest of the variables such as Mt and χ in Equation 1.

To estimate φi, the image matching term  in Equation 1 can be redefined as

 (i.e., each atlas is first warped to the earliest time point  of subject i in
the atlas space, and the warped images of subject i at the same time point  are then matched
to the warped atlases by the transformation φi). This redefinition is valid only when the
evolution model χ is a diffeomorphic transformation. Therefore, Equation 1 now becomes:
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(4)

where . Equation 4 reflects that atlases at different time points are

inversely warped to the time point  by the reversed evolution model . Each image

 of subject i is aligned to the first time point  of subject i by its growth model .
Thus φi can be estimated by groupwise registration between the warped images of subject i
at the first time point  and all the warped atlases Mt also at time point . This procedure
can be summarized by Figure 3. In Figure 3, we aim to estimate the transformation from the
subject space to the atlas space for subject i, where  denotes the earliest time point of
subject i. We only need to estimate one transformation from the subject space to the atlas
space at time  as images of the same subject can be warped to the earliest time point 
based on the growth model built in Section 2.1.

After estimating φi for each subject, we can transform images in each subject’s space to the
common atlas space to construct and update the atlas sequence, which will be described in
the next section.

2.3 Atlas Construction by Kernel Regression
After estimating the transformation φi from each subject i’s space to the atlas space, the next
step is to construct and update the atlas sequence Mt by fixing the variables φi and χ in
Equation 1.

By fixing φi and χ, the energy minimization problem in Equation 1 with respect to Mt now
becomes:

(5)

The optimal solution Mt of Equation 5 can be obtained by Equation 6:

(6)

where Λ denotes the whole possible image space, C denotes the number of subjects, ni

denotes the number of longitudinal images belonging to the subject i, and  denotes the time
point at which the jth longitudinal image of subject i is taken. Kh(·) is the kernel function,
and the Gaussian kernel is adopted in this paper. d(·) is the distance metric between images
defined based on diffeomorphisms.
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Equation 6 actually denotes a kernel regression procedure to estimate Mt. In this paper, the
greedy iterative algorithm proposed in [5] is adopted to estimate the optimal solution of
Equation 6.

2.4 Evolution Model Estimation in the Atlas Space
After constructing the atlas sequence by kernel regression in Section 2.3, the last step of the
proposed method is to estimate and update the evolution model χ in the atlas space by fixing
variables φi and Mt in Equation 1. When φi and Mt are fixed, Equation 1 becomes:

(7)

Therefore, to estimate χ, first all images of each subject i are warped to the atlas space of the

first time point of subject i by . Then, we can estimate  by registering
all these warped images of subject i with Mt, thus the overall χ can be obtained by stitching
all . Note that the kernel Kh(·) will be used to constrain the weight of these warped
images.

3 Experimental Results
The proposed method is evaluated by building longitudinal atlases from the longitudinal
dataset in [8]. Ten subjects are selected, with the ages ranging from 67 to 85 when the first
time point images were taken. Each subject has around ten longitudinal images taken at
different time points, and the period between each pair of consecutive time points is around
one year. Each image is with resolution 256 × 256 × 124. The first row in Figure 4 shows
longitudinal images scanned from the same subject from ages 67 to 74, where significant
longitudinal changes can be observed, especially at the ventricle region. Images shown in
the second row of Figure 4 are taken from different subjects to demonstrate the large
population shape variations in this dataset. The segmentation results of each image into three
different types of tissues: white matter (WM), gray matter (GM) and ventricular CSF, are
also available.

The proposed method is also compared with the state-of-the-art atlas construction algorithm
proposed by Davis et al. [2]. Both methods were implemented based on the Insight
Segmentation and Registration Toolkit (ITK) 1. In this paper, the proposed method was
evaluated both on the ability to capture the global shape variations among all the images and
the ability to preserve the temporal correspondence among the longitudinal data of the same
subject.

3.1 Experiments on Measuring Global Registration Accuracy
In this section, the proposed method is evaluated on measuring the global registration
accuracy among all the aligned images together. Figure 5 shows the same cross section of
the atlas constructed by the proposed method across different ages. It can be observed that
the expansion of the lateral ventricle is captured.

1http://www.itk.org/
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To visually compare the atlas construction performance of the proposed method and the
method proposed by Davis et al. [2], Figure 6 shows the 3D rendering of the atlas of age 74
constructed by both the proposed method and the method proposed by Davis et al. [2]. It can
be observed that the atlas constructed by using the proposed method is sharper and preserves
more anatomical details than the atlas constructed by the approach proposed by Davis et al.
[2], where the regions with significant differences are highlighted by the green circles.

In this paper, we also quantitatively evaluate the proposed method by using the tissue
overlap ratio [1]. It is defined as , where A and B denote the regions of a specific
tissue in the two images, and #(·) denotes the number of voxels inside a region. In this paper,
since there is no explicit template used for both Davis’s method [2] and the proposed
method, the segmentation result of the template image was obtained by majority voting from
all aligned images by setting the tissue type of each voxel in the template image as the
majority of tissue labels from all aligned images. The average values of P for WM, GM and
ventricular CSF across different ages using Davis’s method [2] and the proposed method are
shown in Figures 7(a) to (c). It can be observed that the proposed method consistently
achieves higher tissue overlap ratio than Davis’s method [2]. More precisely, for each type
of tissue and for each age, the tissue overlap ratio obtained by the proposed method is
normally 2% to 3% higher than that obtained by Davis’s method [2], which is a significant
improvement as the standard deviation of the tissue overlap ratios for each type of tissue at
different age is no more than 0.1%.

3.2 Experiments on Measuring Individual Temporal Smoothness
Besides evaluating the global registration accuracy among all the images of the proposed
method, we also measure the registration accuracy within each subject. We adopt the tissue
overlap ratio measure similar to Section 3.1, but now each subject is considered as a separate
group, and the overlap ratios for WM, GM and ventricular CSF are measured for each
group.

The average tissue overlap ratios of WM, GM and ventricular CSF across the 10 groups
(i.e., there are 10 subjects in total) are shown in Figures 8(a) to (c) for different ages. It can
be observed that the average subject-specific tissue overlap ratios are generally higher than
those obtained from the whole population shown in Section 3.1, as the longitudinal changes
within each subject are much smaller than the shape variations across different subjects. It is
demonstrated that the proposed method still maintains higher tissue overlap ratios than
Davis’s method, which implies the more accurate registration results by the proposed
method within each subject’s image sequence.

Moreover, to measure the temporal consistency across different ages of each subject, the
temporal consistency (TC) factor of different types of tissues is calculated. The average TC

factor is defined as: , where Ω is the voxel set of region of
interest to measure the temporal consistency, and ||Ω|| denotes the number of voxels in Ω. Li
denotes the number of tissue label changes of the corresponding voxel i across time, and Y
denotes the number of longitudinal images of the subject. The average TC values for WM,
GM and ventricular CSF of different approaches for each subject are shown in Figures 9(a)
to (c). It is observed that the proposed method consistently achieves higher TC values for
different types of tissues for each subject compared to Davis’s method, which strongly
implies the better temporal correspondence established by the proposed method. The
improvement of the temporal consistency of the proposed method is significant as the
average TC values for the proposed method are normally 2% to 3% higher than Davis’s
method, while the standard deviations of the TC values are no more than 0.1%.
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4 Conclusion
In this paper, a new framework to construct the longitudinal atlas is proposed. The proposed
method takes both the subject-specific longitudinal changes and population shape variations
information into account when estimating the longitudinal atlas. The subject-specific
longitudinal information is captured by establishing a growth model for each subject based
on the 4D image registration algorithm. Then, transformations which map each subject’s
image sequence to the atlas space are estimated by performing diffeomorphic groupwise
registration between the warped subject images and the warped atlases. Images of each
subject are transformed to the atlas space by the estimated diffeomorphic transformations
and warped to the time point of interest to build the atlas by the evolution model in the atlas
space. The atlas is then estimated based on the kernel regression procedure. The proposed
method is qualitatively and quantitatively compared with the state-of-the-art atlas building
algorithm proposed by Davis et al. [2] on the longitudinal dataset. Experimental results
show that the proposed method achieves higher registration accuracy as well as better
temporal correspondence. Future work includes testing the proposed method to measure the
longitudinal changes of deep brain structures such as hippocampus.
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Fig. 1.
(a) The method proposed by Davis et al. [2], where the atlas is built by kernel regression,
and the contribution of each image to build the atlas is determined by the kernel. However,
the subject-specific longitudinal information is not considered in this approach. (b) The
approach proposed by Durrleman et al. [3], where the shape evolution model is constructed
for each subject first, as indicated by solid lines, and then each subject’s image sequence is
registered to the atlas sequence. (c) The proposed method. In this method, for each subject,
its corresponding growth model is first estimated based on 4D image registration method to
establish the temporal correspondence within the image sequence. A single transformation
φi is then estimated to map subject i’s image sequence to the atlas space. Each image can be
warped to the atlas space of a certain time point by the composite deformation field formed
by φi and its subject’s growth model. It can be further warped to any time points in the atlas
space by the evolution model χ of the atlas. Finally the atlas at each time point is built by
performing kernel regression with respect to all the warped images.
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Fig. 2.
Flow chart of the proposed method, where rectangles highlighted with red color denote the
major components of the proposed approach.
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Fig. 3.
Illustration of how to estimate the transformation φi from the subject space to the atlas
space. First, each image of subject i is warped to the earliest time point  of subject i by the
growth model. Then, for the current atlas sequence, each atlas at different time point is first
warped to the subject i’s earliest time point  in the atlas space by applying the reversed

evolution model . The transformation mapping from the subject space to the atlas
space φi can be estimated by performing group wise diffeomorphic registration from the
warped images of subject i to the warped atlases both at .
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Fig. 4.
First row shows images taken from the same subject from age 67 to age 74. Significant
longitudinal changes can be observed. Second row shows images taken from different
subjects, demonstrating the large structural variations across different subjects in the dataset.
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Fig. 5.
The same cross-sectional images obtained from the atlas constructed by the proposed
method at different ages. The expansion behavior of the lateral ventricle is captured.
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Fig. 6.
3D rendering of the atlas of age 74 constructed by: (a) the method proposed by Davis et al.
[2] and (b) the proposed method. Significant differences are highlighted with the green
circles.
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Fig. 7.
Mean tissue overlap ratios for: (a) white matter, (b) gray matter, and (c) ventricular CSF
across different ages by using Davis’s method [2] (yellow bars) and the proposed method
(blue bars).
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Fig. 8.
Subject-specific mean tissue overlap ratios for: (a) white matter, (b) gray matter, and (c)
ventricular CSF across different ages with Davis’s method [2] and the proposed method.
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Fig. 9.
Mean temporal consistency (TC) values for different subjects of: (a) white matter, (b) gray
matter, and (c) ventricular CSF with Davis’s method [2] and the proposed method.
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Algorithm 1

Growth Model Estimation for Subject i

Input: The rigidly-aligned and histogram-matched image sequence  of subject i, where ni denotes the total number of
images in the image sequence of subject i.

Output: Deformation fields  mapping from  to 

1. Construct the moving image sequence as .

2. Construct the reference image sequence by repeating the first time point image as .

3. Register the moving image sequence to the reference image sequence using the 4D registration method in [9]. Denote the resulting

deformation field that warps  to  as , where  is the identity deformation field.

4. Return .
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