
ODVBA: Optimally-Discriminative Voxel-Based Analysis

Tianhao Zhang [Member, IEEE] and
T. Zhang is with the Section of Biomedical Image Analysis, Department of Radiology, University
of Pennsylvania, Philadelphia, PA 19104 USA (Tianhao.Zhang@uphs.upenn.edu)

Christos Davatzikos† [Senior Member, IEEE]
C. Davatzikos is with the Section of Biomedical Image Analysis, Department of Radiology,
University of Pennsylvania, Philadelphia, PA 19104 USA (Christos.Davatzikos@uphs.upenn.edu)

Abstract
Gaussian smoothing of images prior to applying voxel-based statistics is an important step in
Voxel-Based Analysis and Statistical Parametric Mapping (VBA-SPM), and is used to account for
registration errors, to Gaussianize the data, and to integrate imaging signals from a region around
each voxel. However, it has also become a limitation of VBA-SPM based methods, since it is
often chosen empirically and lacks spatial adaptivity to the shape and spatial extent of the region
of interest, such as a region of atrophy or functional activity. In this paper, we propose a new
framework, named Optimally-Discriminative Voxel-Based Analysis (ODVBA), for determining
the optimal spatially adaptive smoothing of images, followed by applying voxel-based group
analysis. In ODVBA, Nonnegative Discriminative Projection is applied regionally to get the
direction that best discriminates between two groups, e.g., patients and controls; this direction is
equivalent to local filtering by an optimal kernel whose coefficients define the optimally
discriminative direction. By considering all the neighborhoods that contain a given voxel, we then
compose this information to produce the statistic for each voxel. Finally, permutation tests are
used to obtain a statistical parametric map of group differences. ODVBA has been evaluated using
simulated data in which the ground truth is known and with data from an Alzheimer’s disease
(AD) study. The experimental results have shown that the proposed ODVBA can precisely
describe the shape and location of structural abnormality.

Index Terms
Gaussian smoothing; Statistical Parametric Mapping; Nonnegative Discriminative Projection;
Optimally-Discriminative Voxel-Based Analysis; Voxel-Based Morphometry; Alzheimer’s
disease; ADNI

I. Introduction
Voxel-Based Analysis and Statistical Parametric Mapping (VBA-SPM) [1][18] of imaging
data have offered the potential to analyze structural and functional data in great spatial
detail, without the need to define a priori regions of interest (ROIs). As a result, numerous
studies [7][11][23][33][48][49][50] during the past decade have better investigated brain
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structure and function in normal and diseased populations, and have enabled the
quantification of spatio-temporal imaging patterns.

A fundamentally important aspect of VBA-SPM has been the spatial smoothing of images
prior to analysis. Typically, Gaussian blurring of full-width-half-max (FWHM) in the range
of 8–16mm is used to account for registration errors, to Gaussianize the data, and to
integrate imaging signals from a region, rather than from a single voxel. The effect of this
smoothing function is critical: if the kernel is too small for the task, statistical power will be
lost and large numbers of false negatives will result in missing many regions that might
present group differences in structure and function; if the kernel is too large, statistical
power can also be lost by blurring image measurements from regions that display group
differences with measurements from regions that have no group difference. In the latter case,
spatial localization is also seriously compromised, as significant smoothing blurs the
measurements out and often leads to false conclusions about the origin of a functional
activation or of brain atrophy. Moreover, a filter that is too large, or that is not matched with
the underlying group difference, will also have reduced sensitivity in detecting group
differences. As a result, Gaussian smoothing is often chosen empirically, or in an ad hoc
fashion, an obvious limitation of such VBA-SPM analyses, in part because of its heuristic
nature, and in part because it can lead to overfitting of the data without proper cross-
validation or correction for multiple comparisons.

However, the most profound limitation of Gaussian smoothing of images prior to applying
the General Linear Model (GLM) [18] is its lack of spatial adaptivity to the shape and
spatial extent of a structural or functional region of interest. For example, if atrophy or
functional activation in the hippocampus is to be detected, Gaussian smoothing will blur
volumetric or activation measurements from the hippocampus with such measurements from
surrounding tissues, including the ventricles, the fusiform gyrus, the amygdala and the white
matter. Previous work in the literature [13] has shown that spatially adaptive filtering of
image data can dramatically improve statistical power to detect group differences. However,
little is known about how to optimally define the shape and extent of the smoothing filter, so
as to maximize the ability of VBA-SPM to detect group effects.

In this paper, we present a mathematically rigorous framework for determining the optimal
spatial smoothing of structural (and potentially functional) images, prior to applying voxel-
based group analysis. We consider this problem in the context of determining group
differences, and we therefore restrict our experiments to voxel-wise statistical hypothesis
testing. However, the mathematical formalism and algorithm are generally applicable to any
type of VBA. In order to determine the optimal smoothing kernel, a regional discriminative
analysis, restricted by appropriate nonnegativity constraints, is applied to a spatial
neighborhood around each voxel, aiming to find the direction (in a space of dimensionality
equal to the size of the neighborhood) that best highlights the difference between two groups
in that neighborhood. Since each voxel belongs to a large number of such neighborhoods,
each centered on one of its neighboring voxels, the group difference at each voxel is
determined by a composition of all these optimal smoothing directions. Permutation tests are
used to obtain the statistical significance of the resulting ODVBA maps.

This approach is akin to some fundamental principles of signal and image processing, and
more specifically to the matched filtering, which states that optimal detection of a signal in
the presence of noise is achieved by filtering whose kernel is related to the signal itself. In
the context of voxel-based statistical analysis, the “signal” is not known, as it relates to the
underlying (unknown) group difference. Therefore, the purpose of our optimization is to
actually find the kernel that maximizes the signal detection.
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ODVBA has some similarities with the searchlight approach [29][30], however it is
significantly different. The searchlight method is basically a local multivariate analysis
constrained to the immediate neighborhood of a voxel, whereas ODVBA performs a high-
dimensional discriminative analysis using machine learning technique over large
neighborhoods, which captures anatomical and functional patterns of larger range, thereby
determining the optimally discriminative spatially varying filter. ODVBA also relates to the
extensive literature using linear discriminant analysis (LDA) on multivariate patterns of
whole brain images. However, implementing the standard LDA directly on the images
usually suffers from the singularity problem [14] because the number of images is much
smaller than the number of brain voxels. To overcome the problem, Kustra and Strother [31]
used the smoothness-constrained, penalized LDA as a tool not only for a strict classification
task of positron emission tomography (PEI) images, but also for extracting the activation
patterns. Thomaz et al. [45][46] presented a PCA plus Maximum uncertainty LDA that
solves the small sample size problem for classification and visual analysis of structural
MRIs. Carlson et al. [6] used PCA plus LDA to classify brain activities of different stimulus
categories [20][40] and to find which voxels contribute to the activity. Unfortunately,
although the singularity problem has been addressed in the above LDA-based methods, a
great deal of important information in the images would be lost, since they employ the
smoothness constraint or PCA to reduce the dimensionality prior to implementing LDA.
However, ODVBA does not have the singularity problem since it never involves the matrix
inverse computation and the discriminative analysis is conducted on the data set constructed
according to the local neighborhood so it avoids the curse of dimensionality naturally. More
importantly, all these three methods attempt to obtain discriminants or a “canonical image”,
which is a spatial distribution of voxels that maximally differentiates between different
experimental conditions, for interpretation of abnormality or activation in the groups.
However, the resulting discriminants are then usually analyzed based on visual inspection or
simply thresholding without determining a voxel-wise statistical value; therefore, they do
not produce the p values for each voxel in the style of traditional SPM, whereas ODVBA
does. Finally, ODVBA also employs a non-negativity constraint, which is important as it
prohibits canonical images with positive and negative value cancelations, which are often
difficult to interpret, especially if a brain region is involved in many canonical images with
different weights.

The rest of the paper is organized as follows: Section II describes the general formulation,
and its numerical optimization solution. Section III introduces a method of computationally
efficient implementation for the ODVBA. Section IV presents a number of experiments with
1) simulated data of known ground truth and 2) structural images of elderly individuals with
Alzheimer’s disease (AD). These experiments demonstrate that the proposed methodology
significantly improves both the statistical power in detecting group differences, and the
accuracy with which the spatial extent of the region of interest is determined by VBA-SPM
analysis. Section V contains the discussion and conclusion. For convenience, Table I lists
important notations used in the paper.

II. The Proposed Framework
The proposed framework consists of the following stages:

1) Regional Nonnegative Discriminative Projection
For each voxel, we examine a (typically large) neighborhood centered on it (sometimes
referred to as a “subvolume”), and use the Nonnegative Discriminative Projection (NDP) to
find the direction that best discriminates the two groups being compared. This direction can
be viewed as a spatially adaptive filter, which locally amplifies the group differences, since
projection is a weighted average of all voxels in the subvolume, i.e. it is a filter.
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2) Determining each voxel’s statistic
A given voxel belongs to a number of neighborhoods centered on its neighboring voxels, so
it may correspond to a collection of values, each being part of a different discriminative
direction and reflecting underlying group differences. In order to eventually determine a
single value for each voxel that represents the group difference at that spatial location and
will be used for statistical analysis, we observe that the contribution of each voxel to a
discriminative direction of a neighborhood to which it belongs is given by the respective
coefficient of the optimally discriminative direction of that neighborhood. We sum up all
these coefficients belonging to a given voxel to determine a quantity that reflects the voxel’s
discriminating value.

3) Permutation tests
Since assumptions of Gaussianity cannot be made for the derived voxel-wise discriminative
measurements, we resort to permutation tests [24][39] to obtain statistical significance (p
values).

4) Classification (optional)
Although not necessarily part of ODVBA, classification is demonstrated here as an
additional use of ODVBA. In particular, along the lines of the COMPARE algorithm [16],
the regional clusters showing the highest group differences are used as the input features to
be fed to a classifier, e.g., an SVM.

A. Regional Nonnegative Discriminative Projection
For a given voxel x in volume X, we construct its neighborhood ℕ in which each voxel xi
follows ‖x − xi‖ < ξ. To render this process computationally efficient when the
neighborhood size is large, we randomly select k − 1 voxels x1, ⋯, xk−1 in this
neighborhood and represent this neighborhood using a k dimensional subvolume vector: θ⃗ =
[x, x1, ⋯, xk−1]T. Provided that there are N subjects, we can obtain N subvolume vectors
which form a data set: Θ = [θ⃗1, θ⃗2, ⋯, θ⃗N] for learning. The procedure can be illustrated as
Fig. 1. If there are M voxels in each subject (i.e. if the template to which all subjects were
normalized has M voxels), we will have M learning sets.

1) The Basic Idea of NDP—The Nonnegative Discriminative Projection (NDP)
algorithm which is developed based on Nonnegative Quadratic Programming [42] is used to
find the optimal discriminative directions which project the high-dimensional samples onto a
1-dimensional space that maximizes the classification accuracy, and therefore the group
differences. NDP is implemented on each learning set. The resultant optimally discriminant
vector w⃗ has a special property: it is nonnegative. This stems from the nonnegativity
constraint that is incorporated into the objective function of the NDP method. This
constraint is used to help us interpret the group differences. Specifically, our goal is not
simply to find an image contrast, prescribed by w⃗, which distinguishes the two groups, but
also requires that this contrast tells us something about the properties of the images we are
measuring, e.g. about regional volumetrics or functional activity. We therefore limit
ourselves to nonnegative, albeit arbitrarily shaped, local filters, each of which prescribes a
regional weighted average of the signal being measured. In a regional volumetric analysis,
for example, the optimal regional filter will reflect the shape of the region whose volume is
different between two groups. In a functional image analysis, this filter might represent the
region whose signal is summed up to reflect the activation. This is in contrast with the
traditional methods of feature extraction for pattern classification, which are free to derive
any feature obtained by any image filter that maximizes classification accuracy, but are not
designed to necessarily measure (interpretable) group differences.
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To better illustrate the idea of NDP, we show its results on a toy dataset before we describe
the formulation. In this artificial test, we generated images that contained a square (the
region of group difference) with intensity that varied from one image to another. We
generated two groups of images: the first set of squares had intensities with mean 120.53
and standard deviation 5.79, while the second had 90.36 and 5.72, respectively. Fig. 2A
shows the difference of means from the two groups. Fig. 2B shows the w⃗ obtained from the
learning set constructed according to the neighborhood I; it is basically noise with very
small values of (w⃗)i, indicating that no local filter can be found that distinguishes the two
groups at that neighborhood. Fig. 2C shows the w⃗ obtained from the learning set constructed
according to the neighborhood II; the estimated optimal filter w⃗ is well aligned with the
underlying group difference, within which it has high values. The bottom line here is that,
following the formulation to be presented next, the filter that locally amplifies the group
difference in this set of images calls for a weighted average of the pixel values within the
part of the square that is included in the neighborhood, correctly reflecting the underlying
difference. We now present the details of the formulation.

2) The Formulation of NDP—Using one given learning set constructed by the
subvolume vectors from all the involved individuals, we probe into neighborhood elements’
contributions for discrimination of the two groups. We expect to find such a nonnegative
vector w⃗ to describe the contributions of elements in the neighborhood: the larger the value
of (w⃗)i is, the more the corresponding element (θ⃗)i contributes to the discrimination.
Equivalently, (w⃗)i is the ith coefficient of the regional filter denoted by w⃗. By exploiting w⃗,
the learning set can be projected from the k-dimensional space ℝk onto the 1-dimensional
space ℝ to be optimally classified, such as

(1)

where, Ψ is the 1-dimensional projection of θ⃗ ∈ ℝk. We expect that the two classes will be
separated as much as possible along w⃗, and at the same time the samples from the same
class get more compact.

A measure of the separation between the two classes is the distance of projected class
means:

(2)

where, ; Ci means the ith class, i = 1, 2; Ni denotes the number of samples in

Ci; ; SB = (m⃗1 − m⃗2) (m⃗1 − m⃗2)T.

And, the intra-class compactness is defined as follows:

(3)

where, .

SB and SW are called the between-class scatter matrix and the within-class scatter matrix
separately, according to the classic Fisher Linear Discriminant Anaylsis [14] in which the
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criterion function is based on the generalized Rayleigh quotient. Herein we consider SB and
SW under the formulation of quadratic programming which is amenable to the nonnegative
constraint as follows:

(4)

where, A = (γSW − SB + (|λmin| + τ2)I); γ is the controlling parameter; |λmin| is the absolute
value of the smallest eigenvalue of γSW − SB; τ2 << 1 acts as the regularization parameter; I
is the identity matrix; e⃗ is the vector with all ones; the second term e⃗T w⃗ is used to achieve

 which means the solutions of (w⃗)i are not all zeros under the nonnegative
constraint; μ is the balance parameter.

Theorem 1. A is a positive definite matrix

The proof is in the Appendix A.

Since A is positive definite, J (w ⃗) is a convex function and has the unique global minimum.
We solve the above optimization problem using the Nonnegative Quadratic Programming
(NQP) [42]. According to [42], let A+ and A− denote the nonnegative matrices described as:

(5)

and

(6)

It is clear that A = A+ − A−. According to the two nonnegative matrices, the objective
function in (4) can be written as the combination of three terms:

(7)

where

(8)

We define their derivatives as follows:
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(9)

Note that the partial derivatives on Ja and Jc above are guaranteed to be nonnegative because
of the nonnegativity of w⃗.

Using the above derivatives, multiplicative updates rule which does not involve the learning
rates is introduced to minimize the objective function iteratively:

(10)

where i = 1, ⋯, k. Equation (10) means that all the elements in w⃗ are updated in parallel.
Since A+ w⃗ ≥ 0 and A− w⃗ ≥ 0, the updated w⃗ in (10) is always nonnegative.

Theorem 2. The function of J(w⃗) in Equation (4) decreases monotonically to the value of its
global minimum under the multiplicative updates in Equation (10).

The proof is in Appendix B.

B. Determining each voxel’s statistic
For all the M voxels in one volume, we have M discriminative directions, each applied to a
different neighborhood, as described in Section II-A. For a given voxel x, we obtain a list of
(w⃗)i values from different w⃗ since x may belong to a number of neighborhoods, as shown in
Fig. 3. (Recall that for each neighborhood to which x belongs, the respective coefficient in w⃗
reflects the discrimination power of this voxel in terms of the pattern seen in that
neighborhood.). To quantify the group difference measured at voxel x, we use the following
function, termed discrimination degree, which relates to the effect size [8]:

(11)

where, ϕ is a tuning parameter aiming to reduce potential outliers in the dataset. Let Δ = {ℕ|
x ∈ ℕ} denote the set of neighborhoods that the given voxel x belongs to, then we define the
group difference on x by summing up contributions from all neighborhoods to which it
participates:
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(12)

where, w⃗ℕ denotes the coefficients corresponding to voxels in ℕ, (w⃗ℕ)i denotes that x is the
ith element in ℕ, and δℕ which acts as the weight for w⃗ℕ denotes the discrimination degree
achieved in neighborhood ℕ and is defined in (11). Sx will serve as the statistic reflecting
group differences on the respective voxel x, and will be used next to determine statistical
significance. Higher values of Sx reflect stronger group differences.

It is worth noting that, in ODVBA, one learning set is constructed according to one given
neighborhood (subvolume vector) by different individuals. Actually, based on one learning
set, the obtained coefficient w⃗ has only one direction (group1>group2 / group2>group1) to
maximize the classification accuracy. When ODVBA handle data that have both possible
positive and negative differences, it does not need to calculate the w⃗ twice using
Nonnegative Discriminative Projection described in Section II-A, but it has to determine two
different statistical values Sx for both positive and negative cases, before implementing
permutation test respectively. In particular, only having the coefficient w⃗, by which the
projected class means m̃group1 > m ̃group2 (referring to (2)), involved in (12), we can get the

statistical value for positive case . Conversely, only use w⃗ by which the projected class

means m̃group1 < m̃group2, we can get the  for negative case.

Moreover, for one given neighborhood, the optimal coefficients can only reflect the positive
(assuming group1>group2) signals if the projected class means m̃group1 > m̃group2 in this
subvolume. However, the negative signals will never be ignored if they are really
significant, because they may be highlighted in other random neighborhood where they are
stronger than the positive ones, so that m ̃group1 < m̃group2.

C. Permutation tests
Assuming that the null hypothesis is that there is no difference between the two groups, the
statistical significance can be assessed by comparison with the distribution of values
obtained when the labels are randomly permuted [24][39]. In particular, we randomly assign
the subjects into two groups, and then implement Section II-A and Section II-B to calculate
the statistic for each voxel. The above relabeling is repeated Np times. For one given voxel,
let S0 denote the statistic value obtained under the initial class labels, and Si, i = 1, ⋯, Np
denote the ones obtained by relabeling. The p value for the given voxel is calculated
according to:

(13)

where,

(14)

III. Computationally Efficient Implementation
The original method described in Section II is based on voxel-wise computation, an extreme
solution that uses all the neighborhoods corresponding to all the M voxels. Unfortunately,
this approach would be complicated and computationally expensive. The simplest way to
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reduce the computational complexity is to randomly select a subset of the neighborhoods to
represent all the neighborhoods, and then the number of the involved learning sets can be
reduced. However, with this method, the selected neighborhoods may not cover all the
voxels, and therefore, it is not guaranteed that statistics can be derived for each voxel. In this
section, we use the Greedy Algorithm [10] to select the subset of the neighborhoods which
include all the voxels and at the same time overlap each other under a certain rate.
Moreover, to facilitate the greedy search, we introduce a new approach named Graph-
assisted Greedy Neighborhoods Cover, which uses a graph to assist in seeking one
neighborhood in each iteration of the greedy algorithm.

A. Minimum Subset of the Neighborhoods for ODVBA
We select the minimum subset of the neighborhoods B as the replacement of all the ones F,
where B ⊆ F, and then the learning sets are constructed corresponding to the selected
neighborhoods respectively. To get a reasonable statistic value for each voxel after obtaining
the discriminative directions using NDP, the selected neighborhoods are expected: i) to
cover all the voxels in X, that is,

(15)

ii) to overlap each other under at least an overlapping factor [51] a (0 < a < 1), that is,

(16)

for each ℕ in B.

B. The Traditional Greedy Neighborhoods Cover Algorithm
The problem introduced in Section III-A can be solved using the greedy algorithm [10][51],
which works by picking ℕ that covers the maximum number of remaining elements that are
uncovered under certain constraint in each iteration. Let U contain all the remaining
uncovered elements at each iteration. The algorithm chooses the neighborhood ℕi that
overlaps with the selected neighborhoods in B and covers as many uncovered elements in U
as possible. Then, the selected ℕi is put into B and the elements covered by ℕi is removed
from U. It finally terminates when U is empty. The algorithm is summarized in Table II.

C. Graph-assisted Greedy Neighborhoods Cover algorithm
It is worth noting that Line 5 of the algorithm in Table II may be time-consuming because it
picks ℕi from all the M neighborhoods without using the neighbor information for searching
in each iteration. We propose a Graph-assisted Greedy Algorithm which select ℕi by
implementing simple operations on the small sub-block of the graph in each iteration. The
algorithm is described as follows.

A graph G is introduced to model the neighbor relationship between every two voxels in X.
Each sample point in X is a vertex of the graph. An edge is put from xi to xj if xj is located
in the neighborhood centered at xi. That is:

(17)
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Obviously, each row of G represents one neighborhood. Let B̃ denote the set of the elements
covered by the neighborhoods from B, that is B̃ = ∪ℕ ∈ B ℕ, use IB to denote the index set
of the selected neighborhoods, and we can get the sub-matrix from G as follows:

(18)

where set L follows

1. L ⊂ X;

2. L ∩ IB = ∅;

3. Gsub (i, B̃) · e⃗ ≠ k, i ∈ L;

4.
(19)

Among the terms in (19), 1) means that the rows of Gsub come from G; 2) means that the
neighborhoods to which the rows of Gsub correspond have never been selected to B; 3)
means the sum of each row in Gsub are not equal to k, that is, the neighborhood which are
fully covered by the B̃ are removed; 4) means the neighborhoods having no intersection with
B̃ are removed.

Compute

(20)

and we can know T(i) is the number of elements covered by B̃, in the L {i}th neighborhood.
Let imin denote the index of element which is the minimum in T with constraint: T(imin) ≥ a ·
|ℕ| = a · k. Then the selected ℕ in this iteration should be ℕL{imin}. The proposed algorithm
is summarized in Table III.

IV. Experiments and Results
In this section, we designed two different kinds of experiments to evaluate the performance
of ODVBA compared with the original SPM [1][44] and nonparametric permutation based
SPM (referred to SnPM) [24][39]. In the first experiment, we applied the three methods to
the simulated atrophy data in which we know the ground truth. Here, it is easy for us to
evaluate the accuracy and statistical power of ODVBA, in comparison with SPM and SnPM.
The second experiment demonstrated the success of our method on the real data of AD
patients from ADNI (www.loni.ucla.edu/ADNI).

A. Simulated Atrophy Data
1) “Blurring” case—The dataset consisted of real MRI scans of 60 normal controls, with
a relatively small age range, obtained from ADNI. The description of the MR Image
acquisition and pre-processing protocol can be found in Section IV-B. Finally, RAVENS
maps [13] which quantify the regional distribution of GM, WM, and CSF, are formed for
each tissue type. In this test, RAVENS of GM is employed. Next, 30 samples were
randomly picked and manipulated to introduce 30% atrophy with “U”-like shape in the
specific region (a gyrus). In other words, the corresponding RAVENS values in that region
are decreased by 30%. Fig. 4. Shows one selected slice of RAVENS map and the location of
the atrophy.
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Regarding the simulated data as a group of patients and the remaining data as the control
group, we conduct SPM, SnPM and ODVBA for the group analysis. The smoothing size
(FWHM of the involved Gaussian filter) in SPM and SnPM is 7mm. The parameters in
ODVBA are set as ξ = 15, ϕ = 1, μ = 1, γ = 10−5, τ2 = 10−5. The experimental results are
shown in Fig. 5. The background is the RAVENS map of a sample, appearing as a gray
image, and the overlapping areas are the red regions obtained by different p value thresholds
(p <0.05, 0.02). We can see that the proposed ODVBA method precisely describes the “U”-
like shape of the atrophy, while SPM and SnPM do not. In SPM and SnPM, the images are
blurred so that the results are not accurate.

For the simulated data, since we know the ground truth, we employ several types of metrics
to evaluate ODVBA, compared with SPM and SnPM. We denote the significant voxels
obtained from the three different methods as VR, the ground truth voxels as VG, and all the
voxels involved in analysis as VA. True Positive Rate (TPR) and False Positive Rate (FPR),
two commonly used assessment metrics, are defined as follows:

(21)

where #(·) means the number of voxels.

We varied the significance level of the group analysis from [0, 1] providing a series of TPR/
FPR to build the receiver-operating characteristics (ROC) curve [35], as demonstrated in
Fig. 6. We also list the TPR and FPR values with different specific p value thresholds (p
<0.05, 0.02) in Table IV. We can see that, for the “Blurring” case, SPM and SnPM not only
produce worse accuracies but also suffer from high false positive errors. Otherwise,
ODVBA offers a globally better result since for any FPR, the corresponding TPR is higher.

2) “Different degrees” case—The data used in this experiment contain 60 normal
controls which also come from ADNI. The purpose is to evaluate the capabilities of three
methods for detecting the simulated atrophies with different degrees. As well as in the
“Blurring” case, RAVENS maps are finally created to represent the tissue density (which is
proportional to regional volume, at that location). We randomly selected 30 volumes of GM
and introduced the atrophy of 10%, 15%, 20%, 25%, 30%, and 35% (RAVENS values are
reduced by 10%–35%) in the region around Hippocampus, separately. Fig. 7 shows one
selected slice and the location of the simulated atrophy. The remaining 30 samples were
regarded as control. The smoothing size in SPM and SnPM is 8mm. The parameters in
ODVBA are set as ξ = 15, ϕ = 1, μ = 1, γ = 10−5, τ2 = 10−5. Fig. 8 demonstrates the
performances (TPR and FPR) of the three involved methods versus the different degrees of
atrophy. The p value which is used to get the significant region is 0.05. We can see that
ODVBA has higher TPR but lower FPR on each dataset with different degrees of atrophy
than SPM and SnPM. In Fig. 9, we provide some representative slices on which we plot the
ground truth and the detected significant regions obtained by the three methods. It is shown
that ODVBA is much more powerful to detect the true atrophy hidden in the data.

3) Effect of kernel size—In this section, we study the effect of the kernel size on the
performance of the three methods, using the simulated data with 30% atrophy in the
“Different degrees” case. For SPM and SnPM, the kernel size means the FWHM of the
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involved Gaussian filter, which is changed from 5mm to 9mm. For ODVBA, the kernel size
means the size of neighborhood with varying ξ from 9mm to 17mm, with an interval of
2mm. By changing the kernel size, we can get a series of different results for the three
different methods. Since the ground truth is known, we plot the corresponding ROC curve in
Fig. 10. As shown, the performance of ODVBA is stable. However, the sensitivity/
specificity of SPM and SnPM vary a lot with different kernel sizes and are companied with
high FPR increasing.

4) Effect of discrimination degree—In this section, we look into the effect of the
discrimination degree on the performance of ODVBA, using the simulated data with 30%
atrophy in the “Different degrees” case. By varying the tuning parameter ϕ described in (11),
we can get a series of different resulting significant maps of ODVBA. Note that larger ϕ
means the coefficient (w⃗)i will be combined with a stronger discrimination degree to
determine the statistical value (referring to (12)), and ϕ = 0 means that only (w⃗)i is used.
Since the ground truth is known, we plot the corresponding TPR and FPR versus ϕ in Fig.
11. As shown, along with the increasing of ϕ, the power of detecting the true positives is
gradually enhanced, accompanied by low level FPR.

B. Real AD data
With the development of computer-aided diagnosis, Alzheimer’s disease has attracted a lot
of attention [3][17][27][28][37][47] in the community of neuroimage. The data used in this
experiment was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (www.loni.ucla.edu/ADNI), which has recruited approximately 800 adults, ages 55
to 90, including 200 with Normal Control (NC), 400 with mild cognitive impairment (MCI)
and 200 with AD. For up-to-date information, see www.adni-info.org.

The goal of our study is to conduct complete evaluations of the structural MR images, and
identify potentially complex spatial patterns of brain atrophy in AD patients, compared with
NC subjects. We randomly selected 100 subjects from the ADNI cohort. This included 50
NCs and 50 ADs, whose MRI scans were then analyzed. The datasets included standard T1-
weighted images with varying resolutions. Adhering to volumetric 3D MPRAGE or
equivalent protocols, only images obtained using 1.5 T scanners were used. The sagittal
images were preprocessed according to a number of steps detailed on the ADNI website,
which corrected for field inhomogeneities and image distortion, and were resliced to axial
orientation. Images were preprocessed according to the following steps. 1) Alignment of the
brain with the ACPC plane; 2) Removal of extra-cranial material (skull-stripping); 3) Tissue
segmentation into grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF),
using [41]; 4) High-dimensional image warping [43] to a standardized coordinate system, a
brain atlas (template) that was aligned with the MNI coordinate space [26]; 5) Formation of
tissue density maps, i.e. RAVENS maps, typically used in the modulated SPM analysis [12]
and in [2].

RAVENS maps quantify the regional distribution of GM, WM, and CSF, since one
RAVENS map is formed for each tissue type. RAVENS values in the template’s
(stereotaxic) space are directly proportional to the volume of the respective structures in the
original brain scan [12]. Therefore, regional volumetric measurements and comparisons can
be performed via measurements and comparisons of the RAVENS maps. In this experiment,
we used GM for evaluation purposes.

1) Resulting Significant Maps—Based on the measurements of tissue density maps, we
compared the performance of SPM, SnPM, and our proposed ODVBA method. For SPM
and SnPM, smoothing is performed using 8 mm FWHM kernel. For ODVBA, the
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parameters are set as follows: ξ = 15, ϕ = 1, μ = 1, γ = 10−5, τ2 = 10−5. Both SnPM and
ODVBA were implemented with 2000 permutations. Fig. 12 shows some selected sections
from the results (with the p value < 0.001 threshold) of SPM, SnPM, and our ODVBA,
respectively. We can see that the results of ODVBA not only reflect significant GM loss in
AD compared with NC, but also identify many additional regions, e.g., Precuneus (Fig.
12A), Insula Cortex (Fig. 12B), Middle Temporal Gyrus (Fig. 12C), Lentiform (Fig. 12D),
Occipital Lobe (Fig. 12E), Parahippocampal Gyrus (Fig. 12F), Superior Parietal Gyrus (Fig.
12G), Middle Frontal Gyrus (Fig. 12H), and Inferior Frontal Gyrus (Fig. 12I). As shown in
the above mentioned sections in Fig. 12, the significant regions detected by ODVBA are
either totally or partially missing from the results of SPM and SnPM. Fig. 13 shows the
surface rendering of significant regions obtained from the three different methods.
Moreover, these are all regions that are generally known from histopathology studies [4][5]
[15][21][22][34].

Fig. 14 shows two representative magnified regions that were discovered by SPM, SnPM
and ODVBA. Among them, Fig. 14A shows the region near the Hippocampus and Fig. 14B
shows the region around the Temporal Lobe. For the Fig. 14A, we can see that SPM and
SnPM blurred the regions of the Hippocampus and Fusiform Gyrus. In contrast, a clear
division between the two regions can be found in the results of ODVBA. For the Fig. 14B,
SPM and SnPM blurred the different gyri and sulci in the region of the Temporal Lobe,
while failing to detect other significant areas altogether; however, ODVBA delineates a
more precise area of significant atrophy in that region.

We also employ the FDR procedure [25], a powerful approach commonly used in
neuroimaging applications to adjust for statistical error. FDR aims to control the portion of
false positive error, instead of excluding this error [38]. In addition, FDR is adaptable since
its value is computed directly on the observed p value distribution. We partitioned the
resulting significant maps with p values of 0.001 and 0.05 (FDR corrected) respectively,
according to predefined anatomical regions from the Jacob Atlas; calculated the means of
the tissue density maps per region for all the samples; and finally, computed the t value
based on these means according to the class information.

Table V lists the sizes and t statistics of major anatomical regions. We can see that not only
the sizes detected by ODVBA, but also the corresponding t values are generally greater than
those detected by SPM and SnPM. This means that the regions found by ODVBA display a
higher degree of differentiation between the two groups and that SPM and SnPM might have
missed some significant information.

2) Pattern Classification—In a separate experiment, we used the detected significant
regions as the features input to a classifier of individual scans into NC or AD, and compared
the three different methods in terms of the performance of classification with SVM. We
randomly divided the original 50 (NC) +50 (AD) into 5 subsets (10+10 each), and then
implemented 5-fold cross validation.

For each fold, 1) we used 40+40 for training and got the significant regions (with the p value
< 0.001 threshold) by the three different group analysis methods; 2) we calculated the means
of the tissue density values of significant voxels in each predefined anatomical region (from
the Jacob Atlas) for all the samples, and using the means from different regions as the input
features, we got the SVM classifier [9]; 3) finally, we used the left testing set with size of
10+10 for validation.
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The radial basis function (RBF) kernel is used in this study. Based on the 5-fold cross-
validation, the classification rate of ODVBA (90%) is superior to that of SPM (86%) and
that of SnPM (87%).

V. Discussion and Conclusion
In this paper, we have introduced a new framework, termed Optimally-Discriminative
Voxel-Based Analysis (ODVBA), for group analysis of medical images. In the proposed
framework, Nonnegative Discriminative Projection (NDP) is introduced to find the optimal
discriminative direction in each learning set constructed by the neighborhood centered at the
given voxel. Subsequently, each voxel’s statistic is determined by a composition of all the
smoothing directions which are associated with the given voxel. Finally permutation tests
are used to obtain the statistical significance of the resulting ODVBA maps. In addition, to
reduce the cost of computation, we developed a new method termed Graph-assisted Greedy
Neighborhoods Cover to select a minimum subset of the neighborhoods which are used to
learn the discriminative directions. We compared ODVBA to the traditional SPM and the
nonparametric SPM (SnPM) with both simulated data and real AD data from the ADNI
cohort. The experimental results have shown tested ODVBA against the conventional
smoothing methods.

The main premise of our approach is that it effectively applies a form of matched filtering,
to optimally detect a group difference. Since the shape of the target region of group
difference is not known, regional discriminative analyses are used to identify voxels
displaying the most significant differences. In addition to potentially improving sensitivity
of detection of a structural or functional signal, this approach was shown in several
experiments to better delineate the region of abnormality, in contrast with conventional
smoothing approaches that blur through boundaries and dilute the signal from regions of
interest with signal from regions that do not display a group difference. We use the coarse
grid search over tuning parameters, e.g., ξ, ϕ, μ, and γ. Section IV-A.3) Effect of kernel size
and Section IV-A.4) Effect of discrimination degree are examples of the parameter selection
that we studied the performance of ODVBA on different parameters. Generally, our method
is not so sensitive to the tuning parameters once its performance is stable. We can determine
the optimal parameters in the simulated data in which we know the ground truth. If the
simulated data and the real data come from the same data source, have similar sample size,
and have similar size and degree of atrophy, we assume that the optimal parameters
determined by the simulated data are also suitable for the real data. That is, the simulated
data would be an appropriate reference for the real data to select the optimal parameters.

As described in the Introduction, our method are related with methods which use LDA and
its variants over the entire image to determine “canonical image” that best discriminate
between two groups or conditions. However our approach has significant differences from
these approaches. In particular, such global LDA-based methods tend to be very limited by
the small sample size and high-dimensionality problem, and therefore are typically able to
only detect some of the regions that display group differences or activations, but not all.
They are most suitable for classification purposes, rather than for voxel-based analysis. Most
importantly, these methods produce both positive and negative loadings, which reflect
cancelations in the data and therefore render it very difficult to interpret the data. In general,
they are not designed to construct a precise spatial map of a group difference, but rather to
find the best global discriminant. The non-negativity constraints in our ODVBA are
essential. Our results can be interpreted in terms of brain activity or atrophy, for example,
and the regions found match exactly the underlying regions of interest. The non-negativity
constraints are by far not a trivial issue to implement, since they influence the entire
optimization process.
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APPENDIX A

Proof of the Positive Definite Matrix
If λmin ≥ 0, the smallest eigenvalue of γSW − SB + (|λmin|+τ2) I is 2λmin+τ2 which is
greater than 0. If λmin < 0, the smallest eigenvalue of γSW − SB + (|λmin| + τ2)I is just τ2. In
a word, all the eigenvalues of A is greater than 0. Since SW, SB, and I are all symmetric
matrices, A = γSW − SB + (|λmin| + τ2)I is a symmetric matrix. Thus, we complete the
proof.

APPENDIX B

Proof of Convergence and Optimality
Auxiliary function [32] is used to derive the rule of multiplicative updates in (10).

Definition 1. G (υ⃗, w⃗) is an auxiliary function for J (w⃗) if the conditions

(22)

are satisfied.

Lemma 1. if G (υ⃗, w⃗) is an auxiliary function, then J (w⃗) is nonincreasing under the update:

(23)

One can refer to [32] for the proof of the above lemma. Following [42], we introduce such
an auxiliary function for J (w⃗):

(24)

Note that  [42],
so it is clear that the conditions G (υ⃗, w ⃗) ≥ J (υ⃗) and G (w ⃗, w⃗) = J (w⃗) are met.

Rewrite the auxiliary function as the following form:
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(25)

where, Gi ((υ⃗)i) means a function for each component in υ⃗:

(26)

Then, the minimization of G (υ⃗, w ⃗) can be achieved by minimizing each Gi ((υ⃗)i), and
according to (23) we have:

(27)

Since the derivative of Gi ((υ⃗)i) is:

(28)

and considering (w⃗′)i ≥ 0, we obtain the update rule as follows:

(29)
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Fig. 1.
Learning set construction.

Zhang and Davatzikos Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 July 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Illustration of the basic idea of NDP using a toy dataset.
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Fig. 3.
A given voxel belonging to a set of neighborhoods.
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Fig. 4.
Location of simulated atrophy (red points in the dashed ellipse) in the “Blurring” case.
Different colors in the background reflect different RAVENS values, that is, different tissue
densities.
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Fig. 5.
The maps of p values from the “Blurring” case. The background is the RAVENS map of a
sample, appearing as a gray image, and the overlapping areas are the red regions obtained by
different p value thresholds.
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Fig. 6.
ROC curve of the “Bluring” case.
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Fig. 7.
Location of simulated atrophy (red points in the black dashed ellipse) in the “Different
degrees” case. Different colors in the background reflect different RAVENS values, that is,
different tissue densities.
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Fig. 8.
Performance vs. the degree of atrophy in the “Different degrees” case. (a) TPR vs. the
degree of atrophy; (b) FPR vs. the degree of atrophy.
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Fig. 9.
Respective slices with ground truth and significant regions. The background is the MR
image of the template, appearing as a gray image, the overlapping green color areas are the
ground truth, and the overlapping red color areas are the detected significant region. The
results in 1st–6th columns are obtained from data with 10%–35% atrophy, respectively. The
results in 1st–4th columns are threshold by p<0.05; The results in 5th and 6th columns are are
threshold p <0.005.
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Fig. 10.
Performances of three methods with different kernel sizes.
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Fig. 11.
Performance of ODVBA vs. ϕ. (a) TPR vs. ϕ ; (b) FPR vs. ϕ.
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Fig. 12.
Representative sections with regions of relatively reduced GM in AD compared to NC. The
scale indicates the −log(p) values.
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Fig. 13.
Surface renderings of regions detected by the three methods.
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Fig. 14.
Two representative magnified regions. The scale indicates the −log(p) values.
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TABLE I

Important Notations Used In The Paper.

Notation Description Notation Description

X set of voxels in an image p significant level

x coordinates of a single voxel ϕ tuning parameter

k number of voxels in one neighborhood τ2 regularization parameter

θ⃗ vector of subvolume I identity matrix

Θ learning set Ni number of samples in ith class

ℝm m-dimensional Euclidean space ℕ given neighborhood

M number of voxels in X μ balance parameter

w⃗ nonnegative discriminative direction γ controlling parameter

SW within-class scatter matrix B set of selected neighborhoods

SB between-class scatter matrix F set of all the neighborhoods

δi discrimination degree U set of uncovered voxels

m⃗i class mean G graph on voxels

e⃗ vector with all ones Gsub submatrix of G
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TABLE II

Algorithm of Greedy Neighborhoods Cover

Input: X, F, a, k
Output: B

1. Select arbitrary ℕi ∈ F

2. B ← {ℕi}

3. U ← X − ℕi

4. while U ≠ Ø

5.   do selet ℕj ∈ F that maximizes |ℕj ∩ U|

      under the condition |ℕj ∩ U| ≤ (1 − a) · k

6.      U ← X − ℕj

7.      B ← B ∪ {ℕj}

8. end while
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TABLE III

Algorithm of Graph-assistanted Greedy Neighborhoods Cover

Input: X, F, a, k, G
Output: B

1. Select arbitrary ℕi ∈ F

2. B ← {ℕi}

3. U ← X − ℕi

4. while U ≠ Ø

5.   do B̃ = ∪ℕ∈B ℕ

6.      get L according to (19)

7.      Gsub = G (L, B̃)

8.      T = Gsub · e⃗

9.      let imin denote the index of element which is the

      minimum in T wich constraint: T(imin) ≥ a · k

10.      U ← X − ℕL{imin}

11.      B ← B ∪{ℕL{imin}}

12. end while
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TABLE IV

TPR and FPR values with the specific p value thresholds in the “Blurring” case.

P < 0.05 P < 0.02

SPM
TPR 0.4167 0.3194

FPR 0.0094 0.0028

SnPM
TPR 0.5069 0.3924

FPR 0.0196 0.0076

ODVBA
TPR 0.8646 0.7535

FPR 0.0032 0.001
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