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Abstract
Background—Structural magnetic resonance imaging (MRI) is sensitive to neurodegeneration
and can be used to estimate the risk of converting to Alzheimer’s disease (AD) in individuals with
mild cognitive impairment (MCI). Brain changes in AD and prodromal AD involve a pattern of
widespread atrophy. The use of multivariate analysis algorithms could enable the development of
diagnostic tools based on structural MRI data. In this study we investigated the possibility of
combining multiple MRI features in the form of a severity index.

Methods—We used baseline MRI scans from two large multicentre cohorts (AddNeuroMed and
ADNI). Based on volumetric and cortical thickness measures at baseline with AD cases and
healthy control (CTL) subjects as training sets, we generated an MRI-based severity index using
the method of orthogonal projection to latent structures (OPLS). The severity index tends to be
close to 1 for AD patients and 0 for CTL subjects. Values above 0.5 indicate a more AD-like
pattern. The index was then estimated for subjects with MCI, and the accuracy of classification
was investigated.

Results—Based on the data at follow-up, 173 subjects converted to AD, of whom 112 (64.7%)
were classified as AD-like and 61 (35.3%) as CTL-like.

Conclusion—We found that joint evaluation of multiple brain regions provided accurate
discrimination between progressive and stable MCI, with better performance than hippocampal
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volume alone, or a limited set of features. A major challenge is still to determine optimal cut-off
points for such parameters and to compare their relative reliability.

Keywords
AD; MCI; MRI; multivariate analysis; progression to AD; sensitivity; specificity

Introduction
Alzheimer’s disease (AD) is a progressive age-related neurodegenerative disease and a
growing health problem. Definite diagnosis can only be made post-mortem, and requires
histopathological confirmation of amyloid plaques and neurofibrillary tangles. At the time of
clinical manifestation of dementia, significant irreversible brain damage is already present.
Therefore, an accurate diagnosis of AD at an early stage is a prerequisite for initiating
disease-modifying treatments. Mild cognitive impairment (MCI) is a heterogeneous
syndrome recently recognized as a diagnostic entity that includes the prodromal stage of AD
[1]. Thus, subjects with MCI have a markedly increased risk of developing AD, with a
conversion rate to AD of 15–20% per year in memory clinic settings (in the general
population, the conversion rate is 1–2%) [2]. However, not all subjects with MCI go on to
develop AD and some may even revert to normal cognition [3].

Neuroimaging biomarkers follow a dynamic model of change during different stages of the
disease and could be valuable predictors of patient outcome. Structural magnetic resonance
imaging (MRI) is sensitive to neurodegeneration and analysis of structural changes can be
used to estimate the risk of converting to AD in individuals with MCI. The ability to identify
an individual at risk of developing AD will be critical if disease-modifying treatments
become available.

Brain changes in AD and prodromal AD lead to a pattern of widespread atrophy (measured
as both volume and thickness), involving a number of different structures across the brain
(e.g. hippocampus, entorhinal cortex, cingulate gyrus and frontal cortices) [4, 5].

Advances in statistical learning with the development of new multivariate and machine
learning algorithms capable of dealing with high-dimensional data [e.g. support vector
machines and orthogonal projection to latent structures (OPLS)] could enable the
development of new diagnostic tools based on structural MRI data [6, 7]. These techniques,
based on the principle of multivariate statistics, can be used to perform studies across
multiple dimensions of data, while taking into account the effects of all variables on the
responses of interest.

Published neuroimaging results are usually difficult to compare because of two main issues:
sample size and unaligned MRI acquisition protocols. We have shown previously that the
pattern of structural brain differences is similar when comparing two large cohorts with
aligned MRI acquisition protocol, regardless of the demographic characteristics [8]. Results
from combined large datasets with long follow-up periods would be easier to extrapolate to
the general population, giving a more complete picture of dementia/AD. It is anticipated that
this will lead to an earlier diagnosis for individual subjects and provide suitable markers for
treatment response.

The main goal of this study was to derive an MRI-based severity index, based on multiple
MRI features, with potential clinical value for estimating the future clinical progression of
subjects with MCI. We used baseline MRI data from two large multicentre cohorts, the
AddNeuroMed, a part of Innovative Medicines in Europe (InnoMed) project and the
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Alzheimer’s Disease Neuroimaging Initiative (ADNI) studies. Based on volumetric and
cortical thickness measures, and using the AD cases and healthy control (CTL) subjects as
training sets, we used the multivariate technique OPLS to generate a severity index. The
index was then estimated for subjects with MCI and the accuracy of classification was
evaluated using the available follow-up clinical diagnosis as a priori information. Analysis
was performed in order to investigate the cognitive profile of the subjects and the influence
of the apolipoprotein E4 (ApoE4) status in connection with the severity index. We also
investigated whether additional characteristics of the study subjects (age, education,
cognitive profile and ApoE4 status) validate the severity index in those with MCI who did
not progress to AD during the study period.

Material and methods
Subjects

Data of subjects from two large multicentre studies, AddNeuroMed and ADNI, were used
for the present study.

The AddNeuroMed project is part of the InnoMed European Union FP6 programme,
designed to develop and validate novel surrogate markers in AD. It includes a human
neuroimaging component [9, 10] which combines MRI data with other biomarker and
clinical information. Data were collected from six different sites across Europe: University
of Kuopio, Finland; University of Perugia, Italy; Aristotle University of Thessaloniki,
Greece; King’s College London, UK; University of Łodz, Poland; and University of
Toulouse, France. Written consent was obtained from research participants where possible;
in those individuals in whom capacity was compromised by dementia, assent from the
patient and written consent from a relative, according to local laws, was obtained. This study
was approved by ethical review boards in each participating country. A total of 348 subjects
from the AddNeuroMed project were included in the present study: 119 AD patients, 119
MCI patients and 110 healthy CTL subjects.

Data from the ADNI cohort were obtained from the ADNI database (www.loni.ucla.edu/
ADNI). ADNI was launched in 2003 by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering, the Food and Drug Administration,
private pharmaceutical companies and non-profit organizations as a 5-year public–private
partnership. The primary goal of ADNI has been to test whether serial MRI, of MCI and
early AD could establish a set of sensitive and specific markers of very early AD
progression in order to aid researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the duration and cost of clinical trials. Subjects aged 55
to 90 years from more than 50 sites across the USA and Canada participated in the ADNI
study; more detailed information is available at www.adni-info.org. For the present study,
716 subjects were included from the ADNI cohort: 176 AD patients, 315 MCI patients and
225 healthy CTL subjects.

Inclusion and exclusion criteria
For the AddNeuroMed cohort, inclusion criteria for the AD group were the National
Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's
Disease and Related Disorders Association and Diagnostic and Statistical Manual of Mental
Disorders (DSM-IV) [11] criteria for probable AD, Mini Mental State Examination
(MMSE) score between 12 and 28, age 65 years or above. Exclusion criteria were
significant neurological or psychiatric illness other than AD, significant unstable systematic
illness or organ failure. All AD subjects had a Clinical Dementia Rating (CDR) scale score
of ≥0.5.
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Criteria for inclusion in the CTL and MCI groups were MMSE score between 24 and 30,
Geriatric Depression Scale score of <5, age 65 years or above, stable medication and good
general health, whereas exclusion criteria were DSM-IV criteria for dementia, significant
neurological or psychiatric illness other than AD, significant unstable systematic illness or
organ failure. Discrimination between patients with MCI and CTL subjects was based on
two criteria: (i) CDR score of 0 for CTL subjects and CDR of 0.5 for those with MCI; and
(ii) reported occurrence of memory problems (by subject or informant) for MCI patients.

CDR, MMSE and the Consortium to Establish a Registry for Alzheimer’s disease (CERAD)
cognitive battery scores were assessed for each subject. The CERAD cognitive battery was
replaced with the Alzheimer's disease Assessment Scale (ADAS-Cog) for patients with AD.
This cognitive test is specially designed for AD trials [12]. Both the ADAS-Cog and the
CERAD battery use the same 10-word recall task, although the scoring in the two tests is in
the opposite direction. The mean number of words that were not recalled in the word list of
the CERAD immediate recall task was calculated. The variable obtained was termed
ADAS1, corresponding to the first subtest of ADAS-Cog. This was performed to provide
comparable measures for the ADNI and AddNeuroMed cohorts.

For the ADNI cohort, a detailed description of the inclusion criteria can be found at http://
www.adni-info.org/Scientists/AboutADNI.aspx#. Subjects were between 55 and 90 years of
age, had a study partner who was able to provide independent evaluation of functioning, and
spoke either English or Spanish. All subjects were willing and able to undergo all test
procedures including neuroimaging and agreed to longitudinal follow-up. Use of specific
psychoactive medications was excluded.

Inclusion criteria for the AD group were MMSE score between 20 and 26, CDR scale score
of 0.5 or 1 and NINCDS/ADRDA criteria for probable AD. For inclusion in the MCI group,
criteria were MMSE score between 24 and 30, memory problems with objective memory
loss measured with the Wechsler Memory Scale Logical Memory II (education-adjusted
scores), CDR score of 0.5, absence of significant levels of impairment in other cognitive
domains, preservation of activities of daily living and absence of dementia. Inclusion criteria
for the CTL group were MMSE score between 24 and 30, CDR score of 0, and absence of
depression, MCI and dementia.

A total of 1064 subjects were included in the current study. Ten MCI subjects were
classified as CTLs at follow-up and were excluded from the analysis. The characteristics of
the study subjects are presented in Table 1, with the demographics of the individual ADNI
and AddNeuroMed cohorts shown in Supplementary Table 1. Although both studies have a
longitudinal design, only baseline MRI data were analysed in the present study.

Based on the follow-up diagnosis (12 months for the AddNeuroMed study and 12, 18, 24
and 36 months for the ADNI study), subjects with MCI were divided into two groups: those
who did not progress to AD (stable MCI; MCI-s) and those who did progress to AD (MCI
converting to AD; MCI-c).

MRI acquisition protocol
Data acquisition for the AddNeuroMed study was designed to be compatible with that of
ADNI [13]. The imaging protocol for both studies included a high-resolution sagittal 3D T1-
weighted MPRAGE volume (voxel size 1.1 × 1.1 × 1.2 mm3) and axial proton density/T2-
weighted fast spin echo images. The MPRAGE volume was acquired using a customized
pulse sequence specifically designed for the ADNI study to ensure compatibility across
scanners [13]. Full brain and skull coverage was required and detailed quality control was
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carried out on all MRI data according to the AddNeuroMed quality control procedure [9,
10].

Post-acquisition image analysis
Volumetric segmentation, cortical surface reconstruction and cortical parcellation, based on
the FreeSurfer software package, version 4.5.0 (http://surfer.nmr.mgh.harvard.edu/), were
used to quantify the baseline thicknesses and volumes of brain regions, as described in detail
previously [14, 15]. The procedure automatically assigns a neuroanatomical label to each
voxel in an MRI volume based on probabilistic information automatically estimated from a
manually labelled training set. The regional cortical thickness was measured from 34 areas
and the regional volumes were measured from 23 areas (see Table 2). Left- and right-sided
thicknesses were averaged. Volumetric measures were corrected for differences in head size
by dividing each measurement by the estimated total intracranial volume. This segmentation
approach has been previously shown to be comparable in accuracy with manual labelling.
The atlas-based normalization procedure increases the robustness and accuracy of the
segmentation across scanner platforms [16]. This segmentation approach has been used for
multivariate classification of patients with AD and healthy CTL subjects [17, 18],
neuropsychological image analysis [19], imaging genetic analysis [20] and biomarker
discovery [21].

Statistical methods
To determine the sensitivity and specificity for discriminating between AD and healthy CTL
subjects, orthogonal partial least squares to latent structures (OPLS), a supervised
multivariate data analysis method was employed under SIMCA P+ software package
(UMETRICS AB, Umeå, Sweden). FreeSurfer-derived MRI measures were analysed using
the OPLS method [22–24].

Pre-processing was performed using unit variance scaling and mean centring. Variables with
a high level of variance are more likely to be expressed in modelling than those with a low
variance. Therefore, unit variance scaling was selected to scale the data appropriately. This
method uses the inverse standard deviation as a scaling weight for each variable. Mean
centring improves the interpretability of the data, by subtracting the variable average from
the data; thus the dataset is repositioned around the origin. In this study we used seven-fold
cross-validation, which means that one-seventh of the data is omitted for each cross-
validation round. Balanced groups were maintained during all cross-validation rounds so
that further analysis was not affected. The predictive component is given a Q2(Y) value that
describes its statistical significance for separating groups. Q2(Y) values >0.05 are regarded
as statistically significant (http://www.umetrics.com/Content/Document%20Library/Files/
UserGuides-Tutorials/SIMCA-P_12_UG.pdf).

A total of 57 variables were used for OPLS analysis. No feature selection was performed; in
other words, all measured variables were included in the analysis. OPLS classifiers were
trained on all data (the 57 variables in Table 2) from all subjects in the combined group of
AD and CTL subjects and were then applied to data from subjects with MCI. Feature
selection was not used, meaning all variables were included. By excluding specific regions,
the models might be less representative and structural features measured from a limited set
of pre-defined regions might not be able to reflect the complete pattern of structural
abnormalities [25]. Furthermore, Cuingnet et al. have shown that feature selection does not
improve the classification but does increase computational time [7]. The effect of feature
selection was investigated in another recent study [26] and was shown to improve the results
for small cohorts but have little effect on larger samples. The cohort size in the present study
was much larger than the largest sample used in the latter study.
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It is however important to compare new methods with established approaches. Therefore, as
well as using the OPLS technique on the 57 regional MRI measures, we created a further
three models based on (i) hippocampal volume alone, (ii) the combination of hippocampal
volume and lateral ventricles as recently suggested by Heister et al. [27] and (iii) 10
temporal lobe and ventricular measures based on previously reported information about the
most affected regions (medial temporal lobe structures: hippocampus, entorhinal cortex,
inferior temporal gyrus, medial temporal gyrus, superior temporal gyrus, parahippocampal
gyrus, lateral ventricles, inferior lateral ventricles and third and fourth ventricles).

OPLS is a supervised method which means it has both X and Y variables. The X variables
are the original variables (volumes and cortical thickness measures) and Y contains the
information about group membership. Y is set to 1 for AD cases and 0 for CTL subjects in
the AD versus CTL model. The prediction value for a subject to belong to a group is equal
to 1 for maximum likelihood and 0 for minimum likelihood, or vice versa depending on the
group. The cut-off value for accepting the observation as correctly predicted is 0.5. When
the model is generated, each subject receives a predictive Y value while it is omitted from
the modeling during the cross-validation rounds and then predicted on to the model. The AD
versus CTL model was used as a classifier to investigate how well it could predict
conversion from MCI to AD. Each individual MCI subject was predicted on to the AD
versus CTL model and this produced a discriminant index (the severity index based on MRI
data) for each individual with MCI, reflecting the degree to which the individual’s MR
pattern resembled the pattern of AD subjects or the pattern of CTL subjects. MCI subjects
demonstrating a more AD-like or CTL-like pattern than the AD and CTL subjects used to
generate the OPLS model may be characterised by OPLS scores above 1 or below 0,
respectively, as shown by others [28]. A more detailed description of the method has been
reported previously [28].

In order to further evaluate the use of the OPLS score for MCI prediction, we created
survival curves for the ADNI cohort alone, as follow-up data to 36 months were available.

Receiver operating characteristic (ROC) curves were computed from the resulting scores by
using the cross-validated prediction values of the OPLS models and the areas under the
ROC curve (AUCs) were computed.

The AUC is similar to the Wilcoxon statistic, which provides a way to approximate the
standard error. This enables the comparison of two algorithms based on formal statistical
criteria [29–32]. We used the ROCKIT ROC analysis software package (developed at the
University of Chicago and part of the Metz ROC software) for statistical comparisons.
Values of P<0.05 were considered significant. Bonferroni correction was used to correct for
multiple comparisons.

Analysis of variance (ANOVA) was used to compare continuous measures (e.g. FreeSurfer-
derived variables, MMSE score and age) between groups.

Four main study groups were used for analyses: CTL, MCI-s, MCI-c and AD.

The severity index is based only on MRI data and characterises the atrophy pattern of each
individual subject as AD-like or CTL-like. In order to investigate how demographic factors
and cognitive scores (e.g. age, gender, ApoE4 status, baseline MMSE, 1-year change in
MMSE, baseline CDR-SOB and 1-year change in CDR-SOB) alter with the severity index,
we divided all subjects (CTL, MCI-s, MCI-c and AD) into groups based on AD-like or
CTL-like classification and ApoE4 status.
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Results
Demographic and clinical characteristics of the study groups are summarized in Table 1.
There were no differences in age between the main study groups. Overall the AD subjects
had a higher and the MCI-c subjects a lower level of education compared with the MCI-s
group.

Of the 434 MCI subjects, 173 progressed to a diagnosis of AD at follow-up (12 months for
the AddNeuroMed cohort and 12, 18, 24 and 36 months for the ADNI cohort).

First we assessed whether the FreeSurfer measures replicated previously published
differences between the MCI-s and MCI-c groups. We found significant differences between
groups for the following structures: banks of superior temporal sulcus, entorhinal cortex,
fusiform gyrus, inferior parietal cortex, inferior temporal gyrus, isthmus of cingulate gyrus,
lateral occipital cortex, lateral orbitofrontal cortex, medial orbitofrontal cortex, middle
temporal gyrus, parahippocampal gyrus, precuneus cortex, rostral middle frontal gyrus,
superior parietal gyrus, superior temporal gyrus, supramarginal gyrus, temporal pole,
nucleus accumbens, amygdala, hippocampus and inferior lateral ventricle [ANOVA
followed by unequal n honestly significant difference (HSD) post hoc analysis]. Figure 1
shows the differences for some of the most AD-specific brain structures (hippocampus,
entorhinal cortex, middle temporal gyrus and superior temporal gyrus) in the study groups.

OPLS modelling and quality
An OPLS model was created for CTL versus AD subjects including 57 FreeSurfer measures
(34 cortical thickness and 23 volume measures; Table 2). The final model resulted in one
predictive and zero orthogonal (1+0) components with cross-validated predictability Q2(Y)
= 0.592.

The mean±standard deviation severity indexes were 0.19±0.20 and 0.78±0.28 for the CTL
and the AD groups and 0.38±0.28 and 0.65±0.26 for the MCI-s and MCI-c groups,
respectively (Figure 2).

CTL versus AD subjects
The classification results for CTL versus AD subjects are summarized in Table 3. The OPLS
classifier enabled the discrimination of subjects with AD from CTLs with high cross-
validated sensitivity (86.1%) and specificity (90.5%). Characteristics of the AD and CTL
subjects based on their OPLS classification are shown in Table 4. Of 295 AD subjects, 242
were classified as AD-like and 53 as CTL-like. AD subjects classified as CTL-like were
younger, although the difference was not statistically significant. This group also had a
higher level of education. We found that CTL subjects classified as AD-like were often
older than the true negatives, meaning that the oldest controls were more often misclassified,
without any influence of the ApoE4 status. Misclassified CTL subjects were also more
highly educated.

In order to compare the use of a combination of the 57 measures to use of hippocampal
volume alone, hippocampal volume plus lateral ventricle volume, and features selected
based on prior knowledge, three additional models were created. The following results were
obtained: (i) hippocampus alone: sensitivity 82.7%, specificity 82.1%, accuracy 82.4%,
AUC 0.895 [confidence interval (95% CI) for AUC 0.868–0.917]; (ii) hippocampus and
lateral ventricles: sensitivity 82.7%, specificity 81.9%, accuracy 82.3%, AUC 0.893 (CI
0.865–0.915); and (iii) hippocampus, entorhinal cortex, inferior temporal gyrus, medial
temporal gyrus, superior temporal gyrus, parahippocampal gyrus, lateral ventricles, inferior
lateral ventricles and third and fourth ventricles: sensitivity 83.0%, specificity 88.6%,
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accuracy 85.8%, AUC 0.923 (CI 0.902–0.943). Comparison of the AUC values using the
method of Hanley and McNeil [31] showed that each of these three models provided inferior
results to the use of the full 57 measures [AUC 0.948 (CI 0.9290–0.9630); P<0.001].

MCI-c versus MCI-s subjects
Using FreeSurfer-derived measures as input to the OPLS model, subjects in the MCI-c
group were separated from those in the MCI-s group with 69.6% sensitivity and 66.8%
specificity.

Histograms of the OPLS severity index for both MCI-s and MCI-c groups are presented in
Figure 3. Subjects in the MCI-c group were significantly more likely to have the AD atrophy
phenotype (112/173, 64.34%) for the OPLS index than the CTL-like phenotype (61/173,
35.26%). ANOVA and post hoc analysis (unequal n HSD method) revealed statistical
differences in the severity index between the MCI-s and MCI-c groups (Figure 2). MCI-c
subjects classified as CTL-like were younger than those classified as AD-like, but this
difference did not reach statistical significance. Of the 173 subjects who progressed to AD
(MCI-c), 64.2% were ApoE4 carriers and 28 of these were homozygotes (4/4 genotype).
There were no statistically significant differences between the MCI-c AD-like carrier and
non-carrier groups nor between the MCI-c CTL-like carrier and non-carrier groups with
regard to age, baseline MMSE, 1-year change in MMSE, baseline CDR-SOB, 1-year change
in CDR-SOB and years of education (see Table 6).

Histograms of the severity index for the MCI-s and MCI-c groups are shown in Figure 3.
MCI-s subjects were divided into three subgroups based on the OPLS-derived index: <0.25
(MCI-s-1), 0.25–0.75 (MCI-s-2) and >0.75 (MCI-s-3), similar to the reported method of
Davatzikos et al. [28]. The characteristics of subjects in the three subgroups are presented in
Table 5. Although there were no statistically significant differences between these three
groups, a clear trend for all variables was present. Using pattern classification in order to
differentiate stable from progressive MCI subjects, the same trend was also observed for the
SPARE-AD score [28].

Figure 4 shows survival curves for the AD-like and CTL-like MCI subgroups based on
baseline MRI data, illustrating the much higher subsequent conversion rate to AD of the
AD-like subgroup.

Of the 261 subjects who remained stable (MCI-s), only 36% were ApoE4 carriers (Table 6).
Among MCI-s subjects classified as CTL-like, ApoE4 carriers were younger than non-
carriers.

Discussion
A challenge in developing informative neuroimaging biomarkers for early AD diagnosis is
the need to identify biomarkers that are altered before the onset of clinical symptoms, and
which have adequate sensitivity and specificity on an individual patient basis.

We found differences in AD-specific brain structures, which is in line with previous findings
of structural MRI as a sensitive biomarker for AD pathology [34]. Volumetric and cortical
thickness data from this study extend previously published findings [5, 35]. There were
significant differences between the MCI-s and MCI-c groups in hippocampal volume, as
well as in the thickness of medial temporal gyrus, superior temporal gyrus and entorhinal
cortex. This indicates a widespread pathology for MCI-c subjects; however, whether these
findings can be integrated to provide a meaningful clinical intervention remains an open
question. Machine learning algorithms and multivariate statistical techniques could have the
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potential to assist in the early diagnosis of AD. However, manual measures of different brain
regions are time consuming and operator dependent and hence are not regularly used in
clinical settings. For this reason, in the present study we investigated the applicability of
OPLS using only automated regional subcortical volumes and cortical thickness measures.
The results show that using all the acquired 57 structural measures and OPLS is superior to
using single measures such as hippocampus alone or using feature selection based on prior
knowledge (regions known to be affected in AD). Nevertheless, the challenges of translating
research techniques into clinical practice should not be underestimated. Jack et al. (36) have
highlighted the substantial work required for standardization of hippocampal measures and
the significant regulatory hurdles to overcome for even a single measure such as this.

Here, we investigated whether structural brain measures (both volume and thickness)
combined under the form of a severity index can be used to differentiate between clinically
relevant groups. The OPLS model resulted in a prediction accuracy which was significantly
better than chance for the discrimination of patients with AD from normal ageing (88.4%),
with high sensitivity (86.1%) and specificity (90.4%). Both misclassified AD and CTL
subjects were younger and more educated than correctly classified subjects. This finding is
in line with previously published results [7]. The severity index was higher than 0.5 in most
MCI-c subjects. As expected, those in the MCI-s group presented a more heterogeneous
pattern for the severity index.

The performance of our classifier is comparable to that of previously published methods and
suggests similar conclusions [7, 25]. Cuingnet et al. compared several different methods for
the separation of MCI-c and MCI-s using subjects from the ADNI study and confirmed that
discrimination is difficult, even with different analysis approaches [7]. Similarly, Davatzikos
et al. [28] derived a classification index which they compared with clinical assessment and
prognosis, with a performance similar to the one used in the current study (66.6%
sensitivity) when applied to a subset of the ADNI cohort. We used the same MCI-c
subgroups as Davatzikos and colleagues [28] to allow direct comparison between the two
methods. However, a strength of the present study is that we used a much larger cohort than
in the latter study. McEvoy et al. used rigid regularized quadratic discriminant analysis on a
subsample of the ADNI cohort [37]. Fifty-eight FreeSurfer measurements were used as input
into the analysis and, as in our study, an atrophy score for each MCI subject was generated
that was used to compute an average risk of conversion. The authors concluded that
individuals with atrophy scores in the highest percentile had a greater than two-fold increase
in risk of conversion to AD, whereas those with atrophy scores in the lowest percentile had a
five-fold decreased risk.

The issue of non-converter MCI subjects cannot be solved without long-term follow-up,
although MRI changes can be detected at least 3 years before the diagnosis of AD [38].
Longitudinal studies have shown that the majority of subjects with MCI progress to AD in
the first 2 years [39]. Thus, a 1-year follow-up period (as in the AddNeuroMed cohort) may
be insufficient to ensure adequate clinical separation between the MCI-c and MCI-s groups.
This may explain the lower accuracy achieved for the MCI predictions. The survival curves
shown in Figure 4 however do illustrate that a substantially higher proportion of the MCI
subjects who demonstrate an AD-like MRI pattern at baseline convert to AD in the
following 36 months compared to those with a CTL-like pattern.

These results further support the notion that sophisticated statistical methods, such as
multivariate analysis, are necessary to capture complex patterns of brain atrophy. Such
methods are more informative for predicting clinical course, compared to the use of a
limited number of predefined regions known to be affected early in the disease course.
Using a limited set of predefined regions may not reflect completely the spatial and temporal
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pattern of structural and physiological abnormalities [25]. Most existing pattern
classification methods usually use only one individual modality of biomarker that may affect
the overall classification performance, as is the case in this study. In addition to
neuroimaging biomarkers (structural MRI and FDG-PET), biological and genetic
biomarkers are available. Different biomarkers provide complementary information, which
may be useful for the diagnosis of AD and MCI when used together. Recently, Zhang et al.
proposed a new multimodal data fusion and classification method based on kernel
combination for AD and MCI subjects [25]. We have also previously combined MRI
measures and cerebrospinal fluid (CSF) markers to predict conversion at several future time
points using OPLS in a subsample of the ADNI cohort. We found that the addition of CSF
markers further improved the predictions [30].

Multiple follow-up diagnostic visits were available for the subjects in the ADNI cohort, but
not those in the AddNeuroMed study. Although the clinical evolution of MCI remains
poorly understood, our study is one of the largest to date to investigate an MRI-based
severity index. As the annual conversion rate for the MCI subjects is 10–15%, it is
anticipated that many in the MCI-s group will convert to AD in the near future. The
distribution of the severity index suggests that a subgroup of MCI-s subjects has normal
brain structures. However, a large subgroup has a distinct AD-like pattern, which we believe
reflects the underlying AD pathology.

Subjects with MCI who did not progress to AD within the follow-up period of this study are
characterized by differences in characteristics (e.g. age, MMSE score and ApoE4 status)
depending on severity index subgroup. The subgroup of MCI-s with the highest severity
index (MCI-s-1) was associated with a faster decline in MMSE score and older age. By
contrast, subjects belonging to the MCI-s-2 and MCI-s-3 groups, although showing
relatively similar decline in MMSE scores, had statistically significant differences in
severity index. Among MCI-s subjects, the subgroup with the highest severity index had a
different proportion of APOE4 carriers compared to the other two subgroups.

Dividing the MCI-s group into three subgroups revealed that gradual brain changes over
long periods of time might eventually lead to clinical progression. These results are
important because they demonstrate the robustness of the structural MRI dementia measure
that we have used to detect structural brain differences between groups. In a previous study
by Davatzikos et al., the MCI-s group was categorized in a similar way [28]. The present
results confirm their findings in a much larger cohort. Although not statistically significant,
we observed a trend towards lower MMSE scores, higher CDR-SOB and ADAS1 scores and
a higher percentage of ApoE4 carriers with a higher severity index.

MRI is a promising adjunct to the clinical diagnosis of AD and is useful for assessing the
early stages of disease. However, there are several obstacles to the widespread use of
volumetric MRI in the clinical setting: variation in imaging protocols, spatial distortion of
MRI data, the absence of normative values and labour-intensive methods have all reduced
the potential impact of MRI measures. Developments are needed to allow consistency in
acquisition of MRI data across sites and fully automated image segmentation before being
able to introduce the clinical use of volumetric MRI. Large, multicentre trials, such as ADNI
and AddNeuroMed, are important for facilitating greater use of MRI in clinical settings by
providing image standardization, correction for spatial distortion, improved data throughput,
and on-site quality control procedures.

These results confirm that joint evaluation of brain regions is beneficial for increasing the
accuracy of predicting progression to AD. Future studies with longer follow-up periods will
improve our estimates of specificity. In addition, information such as age, ApoE4 status and
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level of education should be used as co-factors when deciding cut-off values for severity
indices similar to the index proposed in this study.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Box plots of AD-specific brain structures (hippocampal volume and thickness of entorhinal
cortex, medial and superior temporal gyruses) that showed significant differences between
MCI-s and MCI-c groups using ANOVA with unequal n HSD post hoc test. Data are
presented normalised as z-score. Median, percentiles 25–75 (box), range (whiskers). MCI-s,
MCI stable; MCI-c, MCI converting to Alzheimer’s disease.
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Figure 2.
Box plots of the OPLS score for the study groups. Median, percentiles 25–75 (box), range
(whiskers). Subjects with a score above 0.5 show a more AD-like pattern of atrophy and
below 0.5 a more control-like pattern. MCI-s, MCI stable; MCI-c, MCI converting to AD.
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Figure 3.
Histograms of the severity index for the subjects with MCI (MCI-s, MCI stable; MCI-c,
MCI converting to AD). Subjects with a score above 0.5 show a more AD-like pattern of
atrophy and below 0.5 a more control-like pattern.
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Figure 4.
Survival curves for the AD-like and CTL-like MCI subgroups based on baseline MRI data
for the ADNI cohort. The X axis represents the time in months since entry into the study and
the Y axis represents percentage of MCI subjects.
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Table 1

Baseline characteristics

CTL MCI-s MCI-c AD

Number 335 261 173 295

Age (years) 74.95±5.74 74.79±6.59 74.33±6.90 75.25±6.81

Gender (male/female) 167/168 152/109 102/71 129/166

Education (years) 14.31±4.37 13.20±4.91* 14.83±3.68* 11.92±4.76

MMSE score 29.12±1.05 27.31±1.69* 26.61±1.71* 22.35±3.57

CDR-SOB score 0.04±0.14 1.34±0.76* 1.80±0.96* 5.19±2.62

ADAS1 score 3.1±1.3 4.6±1.4 5.4±1.3 6.3±1.5

ApoE 4+ 26.3% 36.0% 64.0% 60.3%

Data are mean±standard deviation. AD, Alzheimer's disease; MCI, mild cognitive impairment (c, converter; s, stable); CTL, healthy control;
MMSE, Mini Mental State Examination; CDR-SOB, Clinical Dementia Rating – Sum of Boxes; ADAS1, word list non-learning. Subjects with
MCI are divided into MCI-s and MCI-c subgroups based on their follow-up diagnosis at 12, 18, 24 and 36 months.

*
Statistically significant difference between MCI-s and MCI-c, ANOVA.
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Table 2

Variables included in OPLS analysis

Cortical thickness measures Volumetric measures

Banks of superior temporal sulcus Third ventricle

Caudal anterior cingulate Fourth ventricle

Caudal middle frontal gyrus Brainstem

Cuneus cortex Corpus callosum anterior

Entorhinal cortex Corpus callosum central

Fusiform gyrus Corpus callosum midanterior

Inferior parietal cortex Corpus callosum midposterior

Inferior temporal gyrus Corpus callosum posterior

Isthmus of cingulate cortex Cerebrospinal fluid

Lateral occipital cortex Accumbens

Lateral orbitofrontal cortex Amygdala

Lingual gyrus Caudate

Medial orbitalfrontal cortex Cerebellar cortex

Middle temporal gyrus Cerebellar white matter

Parahippocampal gyrus Hippocampus

Paracentral sulcus Inferior lateral ventricle

Frontal operculum Putamen

Orbital operculum Cerebral cortex

Triangular part of inferior frontal gyrus Cerebral white matter

Pericalcarine cortex Lateral ventricle

Postcentral gyrus Pallidum

Posterior cingulate cortex Thalamus proper

Precentral gyrus Ventral DC

Precuneus cortex

Rostral anterior cingulate cortex

Rostral middle frontal gyrus

Superior frontal gyrus

Superior parietal gyrus

Superior temporal gyrus

Supramarginal gyrus

Frontal pole

Temporal pole

Transverse temporal cortex

Insula
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