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Abstract
Age-related changes in brain structure result from a complex interplay between various
neurobiological processes, which may contribute to more complex trajectories than can be
described by simple linear or quadratic models. We used a non-parametric smoothing spline
approach to delineate cross-sectionally estimated age-trajectories of the volume of 17
neuroanatomical structures in 1100 healthy adults (18–94 years). Accelerated estimated decline in
advanced age characterized some structures, e.g. hippocampus, but was not the norm. For most
areas, one or two critical ages were identified, characterized by changes in the estimated rate of
change. One year follow up data from 142 healthy older adults (60–91 years) confirmed the
existence of estimated change from the cross-sectional analyses for all areas except one (caudate).
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The cross-sectional and the longitudinal analyses agreed well on the rank order of age effects on
specific brain structures (Spearman’s ρ = .91). The main conclusions are that most brain structures
do not follow a simple path throughout adult life, and that accelerated decline in high age is not
the norm of healthy brain aging.
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1. Introduction
The volume of most brain structures shrinks with age, but the degree of change is highly
heterogeneous across different structures (Allen et al., 2005, Raz and Rodrigue, 2006). Also,
age-related changes result from a complex interplay between various neurobiological
processes, which is likely to have different impact in different phases of life. This is likely to
produce more complex trajectories than what can be described by linear or the usually
employed higher order polynomial (quadratic or even cubic) models (Fjell et al., 2010a).
The present study was undertaken with the purpose of estimating trajectories across age of
17 brain structures in a large cross-sectional sample (n = 1100). Parts of these data have
been previously published (e.g. Fjell et al., 2009c), and we now re-analyze them by applying
a statistical approach (the smoothing spline) sensitive to local changes in estimated rate of
change (Fjell et al., 2010a). This makes it possible to identify critical ages where life-phases
characterized by relative stability are followed by periods where estimated atrophy
accelerates, or critical ages where periods of estimated reduction eventually level off. The
cross-sectional results were compared with longitudinal atrophy rates from a sample of 142
healthy elderly drawn from the Alzheimer Disease Neuroimaging Initiative (ADNI)
(previously presented in (Fjell et al., 2009a)).

Previous literature, including reports based on samples overlapping the present, indicates
inverse U-shaped trajectories for hippocampus, cerebral WM, cerebellum WM and the brain
stem (Allen et al., 2005, Walhovd et al., 2011, Lupien et al., 2007), while U and J-forms
have been reported for caudate and the ventricular system (Sullivan et al., 1995, Good et al.,
2001, Walhovd et al., 2011). In contrast, mainly linear trajectories have been reported for
amygdala, thalamus, accumbens and putamen (Gunning-Dixon et al., 1998, Jernigan et al.,
2001a, Raz et al., 2003, Sullivan et al., 2004, Allen et al., 2005, Alexander et al., 2006,
Nunnemann et al., 2007, Abe et al., 2008, Greenberg et al., 2008, Curiati et al., 2009,
Walhovd et al., 2011). Both linear and quadratic reductions have been found for pallidum
(Abe et al., 2008, Walhovd et al., 2011). The rational for the present study was to go beyond
these general trends, by more accurately delineating the trajectories for the different
structures across adult life, and to identify critical ages characterized by changes in
estimated rate of atrophy. We included volume for 17 major regions and structures estimated
from the whole-brain segmentation approach in FreeSurfer (Fischl et al., 2002). Surface-
based cortical thickness results were presented in a previous publication (Fjell et al., in
press).

2. Materials and Methods
2.1 Samples

2.1.1 Cross-sectional sample—1100 healthy adults (424 men/ 676 women), with an
age range of 76 years (18–94 years, mean = 48, SD = 20) were included, pooled from five
independent studies. Distribution of participants across decades are shown in Table 1. All
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the healthy samples were screened for diseases and history of neurological conditions and
dementia, and none of the participants showed signs of cognitive dysfunction. The details of
each of the subsamples are described in Supplementary Table 1, but a brief description is
provided here: Sample 1 (Walhovd et al., 2005), n = 69, age 20–88 years (mean 51.3);
Sample 2 (Espeseth et al., 2008), n = 208, 19–75 years (mean 46.8); Sample 3 is from the
Open Access Series of Imaging Studies(www.oasis-brains.org, Marcus et al., 2007), n =
309, 18–94 years (44.5); Sample 4 (Raz et al., 2004a), n = 191, 18–81 years (47.3); Sample
5 (Fjell et al., 2010; Westlye et al., 2010), n = 323, 20–85 years (50.8).

2.1.2 Longitudinal sample—The longitudinal sample consisted of 142 (60–90 years,
mean age = 75.6 years, 48% females) participants from the Alzheimer Disease
Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI), followed for one
year. The raw data were obtained from the ADNI database, Principal Investigator Michael
W. Weiner, VA Medical Center and University of California – San Francisco. The sample is
identical to that included in a previous publication (Fjell et al., 2009a), and is included to
allow direct statistical comparisons with the cross-sectional results. ADNI eligibility criteria
are described at http://www.adni-info.org/index.php?
option=com_content&task=view&id=9&Itemid=43.

2.2 MRI processing
All scans were obtained from 1.5T magnets from two different manufacturers (Siemens,
Erlangen, Germany; General Electric CO, Milwaukee, WI), and from five different models
(Siemens: Avanto, Symphony, Sonata, Vision/ GE: Signa). All participants within each
sample were scanned on the same scanner. For details of the sequences, please consult Fjell
et al. (Fjell et al., 2009b).

Cross-sectional data were processed and analysed with FreeSurfer 4.01 (http://
surfer.nmr.mgh.harvard.edu/)(Fischl et al., 2002). A neuroanatomical label is automatically
assigned to each voxel in an MRI volume based on probabilistic information automatically
estimated from a manually labeled training set (Fischl et al., 2002). The training set included
both healthy persons in the age range 18–87 yrs and a group of Alzheimer’s disease patients
in the age range 60–87 yrs, and the classification technique employs a registration procedure
that is robust to anatomical variability, including the ventricular enlargement typically
associated with aging. The technique has previously been shown to be comparable in
accuracy to manual labeling (Fischl et al., 2002; Fischl et al., 2004). An atlas-based
normalization procedure was used, shown to increase the robustness and accuracy of the
segmentations across scanner platforms (Han and Fischl, 2007). For samples 1, 2, 3 and 5,
2–4 MPRAGEs were averaged before pre-processing to increase signal-to-noise (SNR) and
contrast-to-noise ratio (CNR). The following structures/ areas were included in the analyses:
total brain volume (TBV), cerebral cortex and white matter (WM), hippocampus, amygdale,
pallidum, caudate, putamen, thalamus, accumbens, brain stem, cerebellum cortex and WM,
lateral ventricles, inferior lateral ventricles, 3rd ventricle and 4th ventricle. All segmentations
were manually inspected for accuracy by an experienced operator, and corrected in case of
errors. Minor manual edits were performed on most participants (> 80%), usually restricted
to removal of non-brain tissue, typically dura/ vessels adjacent to the cortex. Additionally,
presence of local artefacts sometimes caused small parts of WM to be segmented as GM.
Such errors were routinely corrected. For 21 participants, the final segmentations were
judged to be of insufficient quality, and these were thus excluded from all analyses, reducing
the sample from an initial 1121 to the reported 1100.

Intracranial volume (ICV) was estimated by use of an atlas-based normalization procedure,
where the atlas scaling factor is used as a proxy for ICV, shown to correlate highly with
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manually derived ICV (r = .93) (Buckner et al., 2004). In a previous publications with an
overlapping sample pool, the results for the pooled samples were replicable in each of the
subsamples (Fjell et al., 2009b, Walhovd et al., 2011), indicating that the sensitivity of
detecting effects are upheld and the statistical power are increased manifold. Thus, we are
convinced that the approach of pooling data from different samples yields valid results. Still,
to remove any offset effects of scanner, all analyses were done on the residuals after scanner
was regressed out (see Statistical analyses).

Longitudinal change was calculated by use of Quarc, previously demonstrated to be highly
sensitive to longitudinal volumetric changes based on MRI (Holland & Dale, 2011; Holland
et al., 2011). Two MPRAGEs at each time-point were averaged to increase the ANR and
CNR. An increase in SNR/ CNR is expected to yield more accurate change estimates.
Labeling was done as described in Fischl et al. (2002) with FreeSurfer 3.0.2.

2.4 Statistical analyses
To reduce the number of comparisons, mean values for left and right hemisphere were used
in all ROI analyses. Analyses were performed on residuals after the effects of sample/
scanner and ICV were removed. ICV was regressed out to remove the effects of the slight
age-differences in head size (r = −.12, p < 10−4).

For the cross-sectional analyses, a nonparametric local smoothing model, the smoothing
spline, implemented in Matlab, was fitted to the data. We have previously shown that this
approach gives less biased solutions than the more commonly employed higher-order
polynomial functions (Fjell et al., 2010a), and that caution should be exerted in inferring
trajectories from global fit models, e.g. the quadratic model. For instance, the peaks of
quadratic functions will inherently depend on the age range sampled. The quadratic function
is always a parabola, which sometimes causes the model to indicate a non-monotonous age-
relationship when non-linear but monotonous trajectories are a more likely. Also, for
quadratic models, the second derivative is assumed to be constant across the life span, and
hence the point of maximum acceleration of slope change cannot be determined.

We used an algorithm that optimizes smoothing level based on a version of Bayesian
Information Criterion (BIC), i.e. the smoothing level that minimizes BIC for each analysis
was chosen. BIC offers a relative measure of amount of information lost when a model is
used to describe a set of data, and thus describes the trade off between bias and variance in
the construction of models. BIC rewards goodness of fit, but includes a penalty that is an
increasing function of the number of estimated parameters. Thus, BIC attempts to find the
model that best explains the data with a minimum of free parameters, i.e. with a largest
possible smoothing level. With no smoothing, the smoothing spline will yield an extremely
good apparent fit to the data, but the model would not be generalizable (over-fitting). BIC
takes this into account by penalizing for loss of degrees of freedom. As BIC contains scaling
constants, the absolute BIC values are irrelevant. To ease comparison of BIC between
Ordinary Least Squares (OLS) linear models and smoothing spline models, we used ΔI,
which is the difference between BIC for the model and the lowest BIC - in this case, the
difference between the smoothing spline model and the linear OLS model. As a rule of
thumb, ΔI ≤ 2 would indicate that the two models are essentially indistinguishable with
regard to goodness of fit, ΔI ≥ 4 would indicate considerable differences between the
models, and ΔI ≥ 10 would indicate that the linear model has essentially no support.

We calculated the ages where the slope of the local smoothing curve changed (the second

derivative), using the expression . We named these age-points critical ages, and
identified zero, one or two critical ages for each brain structure.
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There were no clear differences in age distribution across samples (see Supplementary
Figure 1). Still, to avoid possible bias resulting from uneven age-distribution across samples
that could not be resolved by regressing out linear effects of sample and scanner, the main
smoothing spline analyses were also run for the main structures in a subset of participants
without any sample × age interaction. For each sample, an equal number of participants
were chosen for each decade, before the data were pooled. This sample included 522
participants, with a perfect distribution of participants across decades and samples.

For the longitudinal analyses, annual percentage change was calculated for each ROI. These
results have previously been reported (Fjell et al., 2009a), but was included to allow direct
comparison with the cross-sectional results. Correspondence between longitudinal data and
the smoothing spline models based on the cross-sectional data was assessed in two ways.
First, we tested whether the structures or regions that showed increases or decreases in the
full cross-sectional sample also showed longitudinal increases or decreases, respectively, in
the independent ADNI sample. Second, we tested to what extent the pattern of estimated
change across structures was the same in the cross-sectional and the longitudinal data.
Unfortunately, the ADNI database contains only data for the latter part of the age-range (60–
91 years), so comparisons with the cross-sectional results cannot be done throughout the
adult life-span. Because the methods used to calculate longitudinal change and to fit the
cross-sectional trajectories differ in important aspects, and the samples do not overlap, direct
comparisons of estimations of absolute rates of atrophy between the longitudinal and cross-
sectional results were not performed. Longitudinal reductions were measured as proportion
of change between time points, and further converted to annual percentage volume change.
Brain volumes in the cross-sectional data were regressed on sample and ICV, and age-
reductions estimated from the cross-sectional data were measured in standard deviation
decline in volume in the age-range 60 to 90.

3. Results
3.1 Cross-sectional data

To compare the linear and the smoothing spline models, we calculated BIC for the
relationship between each brain volume and age (Supplementary Table 2, also including the
quadratic model for comparison purposes). Scatterplots illustrating the estimated trajectories
are presented in Figure 1 (structures) and Figure 2 (ventricular system). Of the 17 tested
regions, a non-linear model represented the data best for 13 (total brain volume, cerebral
cortex and WM, hippocampus, caudate, cerebellar WM, brain stem, pallidum, putamen, and
lateral, inferior lateral, 3rd and 4th ventricle). The linear model showed the best fit for five
regions (nucleus accumbens, cerebellar cortex, amygdala, thalamus). For the putamen, BIC
indicated that the smoothing spline model was marginally better than a linear model (BIC =
4.16), but deviation from linearity was minute. To test the stability of the results, a split half
analysis was performed for WM volume (Supplementary Figure 2), yielding identical spline
curves.

Inspections of the plots revealed substantial differences in estimated trajectories for the non-
linear models. Especially, there were large differences in curvature. For some structures,
there was a peak or an inflection point after which the age-relationship increased in strength
(cerebral and cerebellar WM and hippocampus, to some degree TBV and the brainstem). For
cerebral WM was a non-monotonous, inverse U-shaped relationship observed. For other
structures, advanced age was accompanied by reduction in estimated change (caudate and all
ventricular cavities, to some degree cerebral cortex and pallidum). Validation analyses in the
subset of participants perfectly distributed across decades in all samples confirmed the
results (Supplementary Figure 3).
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For the structures that showed deviations from linearity (except putamen), critical ages, i.e.
the ages where estimated atrophy started to accelerate or decelerate, were identified. For
some structures, one critical age was identified, while two were found for others (referred to
as early and late critical age, see Figure 3). Early critical age varied greatly across structures,
from 31 to 59 years, and volume-age correlations differed between the defined periods. For
the regions best described by a linear fit, age-correlations were as follows: amygdala r = −.
56, putamen r = −.69, thalamus r = −.65, nucleus accumbens r = −.70 and cerebellum GM r
= −.52.

3.2 Longitudinal validation
All ROIs showed significant longitudinal change at p < .05. This confirmed the finding of
substantial atrophy/ ventricular expansion observed cross-sectionally for all ROIs, except the
caudate nucleus. For caudate, a weak positive correlation with age was observed after 59
years in the cross-sectional data, which was not found in the longitudinal analyses.

Next, we studied how well the pattern of cross-sectionally estimated change matched the
longitudinal findings. In the age-range 60–90 years, Spearman ρ between the cross-sectional
estimate of shrinkage and the longitudinally measured volume loss was .91 (p < 10−5). In the
cross-sectional analyses, the regions with the steepest estimated decline between 60 and 90
were cerebral WM (z = −2.20), hippocampus (z = −2.05), cerebellum WM (z = −1.29) and
thalamus (z = −1.14). In the longitudinal analyses, the hippocampus showed the fastest
shrinkage rate (−0.83% annually), followed by amygdala (−0.81%), thalamus (−0.69%),
cerebral WM (−0.58%), accumbens and cerebellum WM (−0.57%), putamen (−0.43%),
pallidum (−0.40%), cerebellar cortex (−0.35%), the brainstem (−0.31%) and the caudate
(−0.24%). For the ventricles, there was perfect overlap between the cross-sectionally and
longitudinally estimated expansion, in that the inferior lateral ventricles (cross-sectionally
estimated z = 2.92/ vs. longitudinally estimated % annual change = 5.47) showed the largest
effects, followed by the lateral ventricles (z = 2.15 vs. 4.40%), the 3rd ventricle (z = 1.8 vs.
3.07%) and the 4th ventricle (z = 0.59 vs. 0.71%). Thus, although there was not a one-to-one
correspondence between the pattern of change across structures from the large cross-
sectional sample and the longitudinal sample, there was still substantial overlap.

4. Discussion
There were three main findings: First, a heterogeneous pattern of discontinuous age-
correlations in different age-spans characterised the majority of brain regions, and critical
ages for changes in estimated rates of atrophy could be identified. Second, accelerated
estimated reduction with advanced age is not the norm of brain aging. Rather, different
structures showed a mix of trajectories. When more negative (positive for CSF) age-volume
correlations were seen in the last part of the age-span, this would typically start in mid-life.
Finally, the longitudinal analyses in general supported the cross-sectional results, with a
reasonably coherent pattern of atrophy across structures.

4.1 Trajectories of estimated change across the adult life-span
Cross-sectional studies have shown non-linear age-relationships for the volume of several
brain structures (Raz et al., 2004, Allen et al., 2005, Lupien et al., 2007), including studies
with samples overlapping the present (Walhovd et al., 2009). There have, however, been
few attempts to describe the trajectories in detail (for exceptions, see (Jernigan et al., 2001b,
Fjell et al., 2010a, Schuff et al., 2010)). We identified three basic types of trajectories:

1. Linear reduction: Amygdala, putamen, thalamus, accumbens and the cerebellar
cortex were all linearly related to age (all r’s < −.52), confirming previous findings
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(Gunning-Dixon et al., 1998, Jernigan et al., 2001a, Allen et al., 2005, Curiati et al.,
2009, Walhovd et al., 2011).

2. Stability followed by decline: Hippocampus, the brain stem and cerebellar WM
exhibited initial weak age-correlations, but with acceleration of estimated decline
from around mid-life. Hippocampus is especially important due to its role in
memory and early AD (de Leon et al., 2006, Du et al., 2007, Jack et al., 2008,
Fennema-Notestine et al., 2009, McEvoy et al., 2009). Cross-sectional studies have
shown prolonged development (Ostby et al., 2009) and a marked non-linear pattern
of estimated change in adulthood (Allen et al., 2005, Jernigan and Gamst, 2005,
Walhovd et al., 2005, Kennedy et al., 2008, Fjell et al., 2010a). We found that after
a period of relative stability during mid-life, accelerated estimated reductions
started at about 50 years of age, followed by a strongly negative linear age-
relationship from 60 years. Cerebral WM was the only structure positively
correlated with age in the earliest part of the age-range, followed by a strong
negative relationship. This pattern is in line with a previous publication reporting
multi-modal imaging data from 8–85 years, partly overlapping sample five
(Westlye et al., 2010b). The ventricles showed modest estimated increase or slow
decrease until 50–60 years, followed by steep estimated expansion during the last
phase of life.

3. Steep, non-linear decline: Total brain volume (TBV), cerebral cortex and pallidum
showed two critical ages with slight differences in estimated decline. TBV
correlated stronger with age after 60 years than in the preceding life-phases (p < .
05, by use of t-tests of Fisher’s z-transformed correlations). In contrast, pallidum
and the cerebral cortex correlated stronger with age early (p < .05).

Caudate was the most deviant structure, best described by a U-shaped trajectory. We advise
to interpret this with great caution, however, as this result was not in coherence with the
longitudinal analyses, and we have no reason to expect an increase in volume in the latter
part of the life-span.

4.2 Critical ages in estimated regional brain change
The trajectory of a neuroanatomical volume across age represents the additive combination
of several neurobiological processes. We suggest that changes in the relative impact of these
can be observed as turning points in the estimated change in brain volumes, what we refer to
as critical ages (see Figure 4). For instance, WM increases in volume well into adulthood
(Pfefferbaum et al., 1994, Giedd, 2004, Wozniak and Lim, 2006, Westlye et al., 2010b),
with myelination being one likely underlying factor. After mid-life, volume decreases (Allen
et al., 2005, Walhovd et al., 2011), likely partly caused by loss of small myelinated fibers
and myelin breakdown (Meier-Ruge et al., 1992, Peters et al., 2000). This will be affected
by medical conditions such as hypertension, cholesterol, diabetes or metabolic syndrome,
genetic variations such as apolipoprotein E (APOE), and variables such as cognitive activity
and education. Processes with opposite effects on WM volume probably work concurrently,
e.g. redundant myelination (Peters et al., 2000) and fluid bubbles in the myelin sheet with
higher age (Peters and Sethares, 2002). The relative impact of each of these processes likely
changes across the age-span. To speculate, one scenario may be as follows: The additive
effects of developmental processes cause the observed WM volume growth in the first half
of the age-span. However, after a certain age, myelin breakdown and loss of small
myelinated fibers play increasingly important roles, likely before the developmental
processes have come to an end. Eventually, the degenerative processes will impact the WM
volume to such an extent that yearly growth is no longer linear, but is gradually reduced. At
this point, the second derivative of the age-volume trajectory will change, representing a
critical age. As such, the estimated volume of a brain structure alone reflects the sum of
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many concurrent developmental and degenerative biological processes. We believe that
identification of turning points may add to our understanding of the trajectories of brain
volumes across the adult life-span. The trajectory depicted in Figure 4 is meant to illustrate
the principle of how accumulated influence of opposing factors affects volume, but is not
intended to accurately depict the life-course of any single structure.

The differences in the slope of the curves between the critical ages varied greatly between
structures. While the cerebral cortex was almost linearly related to age, cerebral WM and the
hippocampus showed large slope differences in the age-ranges on each side of the critical
age. Although not estimated in the present study, confidence intervals for the critical ages
will likely be larger for the more linear slopes than for the distinct non-linear and even non-
monotonous slopes.

4.3 Cross-sectional vs. longitudinal results
It is impossible to infer changes in brain structures based on cross-sectional data alone (Raz
and Lindenberger, 2010), as this depends on assumptions of no cohort-effects and selection
bias. These assumptions may generally not be valid and cross-sectional estimates of change
diverge substantially (Raz et al., 2005), and sometimes even oppose longitudinal
observations (Nyberg et al., 2010, Raz and Lindenberger, 2011). Therefore, longitudinal
data from an independent sample (Fjell et al., 2009a) were included in the present paper.
With the exception of caudate volume, the direction and statistical significance of the age-
relationships in the cross-sectional data were confirmed by the longitudinal analyses.
Further, although far from perfect, there was a reasonably coherent relationship between the
pattern of atrophy between cross-sectional and longitudinal results: the structures with the
largest age-correlations in the cross-sectional material tended to show the highest rates of
annual atrophy/ expansion. The rank-order correlation was .91. Thus, at least in their rank
order of magnitude, the cross-sectional results for the age-range above 60 years seem to be
largely in coherence with independent longitudinal data.

Nonetheless, caution must still be exercised in interpreting the results, as longitudinal data
were available for the oldest part of the sample only. The observed correlation between age
and ICV indicates that cohort differences may indeed exist in the sample. Still, age
accounted for only 1.4% of the variance in ICV, and all analyses were performed on
residuals after ICV was regressed out. As the main determinant of ICV is the lifetime
maximum size of the brain, ICV-corrections reduce the impact of cohort effects. Some
evidence even suggests that cross-sectional studies may underestimate the extent of regional
brain shrinkage in some regions (Raz et al., 2005).

Of more general concern is that the inherent problem of mapping life-span trajectories from
cross-sectional examinations cannot easily be resolved with longitudinal data, since
longitudinal examinations of brain structures over decades are not feasible, and longitudinal
studies have methodological problems of their own (e.g. selective recruitment and attrition).
Adding to this, most longitudinal studies are limited in age-span, sample size and number of
follow-ups. To some degree, combined cross-sectional and longitudinal designs can alleviate
the concerns raised above. For instance, accelerated hippocampal atrophy with age has been
demonstrated (Raz et al., 2005, Driscoll et al., 2009, Fjell et al., 2009a, Raz et al., 2010).
However, all of these studies except Raz et al. (2005) comprised middle-aged and elderly
participants only, and the results thus inform us less about life-span trajectories.

It is important to keep in mind that brain volumes change within relatively narrow time
windows. As long as we do not know the true shape of these processes, it is unclear how
many critical turning points there are in brain development and aging. An ideal approach to
reproduce the dynamic process of change would be longitudinal studies with high density of
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measures and assessment of multiple time windows across the life span (Raz et al., 2010;
Raz & Lindenberger, 2011).

Several factors affect the estimated trajectories at the group level and the actual trajectories
at the individual level. These include genetic variations such as APOE, and medical factors
such as hypertension, cholesterol and diabetes (for a review, see e.g. Raz et al., 2012). In
addition, cognitive activity or training may impact brain structure even in older age (Zatorre
et al., 2012). Future studies should further explore the impact and interactions between
genetic, environmental and medical factors on brain structure throughout the adult life. More
knowledge about these processes will increase our understanding of normal brain aging.
Also, possible influence of pre-symptomatic Alzheimer’s disease (AD) can be difficult to
disentangle from normal age-changes in the older participants, as follow-up examinations
over several years are necessary to exclude subjects with incipient disease. However, while
this factor is difficult to completely rule out from the present results, there are indications
that this is not likely to have affected the trajectories to a substantial degree. Even though
hippocampal volume is the structure that distinguishes best between AD-patients and
healthy elderly, amygdala is also affected in early stages of the disease (Fjell et al., 2010b).
While the age-slope for hippocampus is much steeper after 60 years, this is not seen for
amygdala, which would be expected if incipient AD was a major factor in shaping the
estimated trajectories. Even if a few of the participants had incipient AD and consequently
abnormal volume decline in select structures, the smoothing spline approach is relatively
robust to the influence of outliers as long as the sample size is large.

4.4 Conclusion
The present study shows that the majority of brain structures follow complex, non-linear
volumetric trajectories through adult life. Important next step to increased understanding of
the mechanisms of brain aging will be to conduct large-scale, multi-modal imaging studies,
combining e.g. volumetry, DTI and intensity/contrast measures (Fjell et al., 2008, Westlye et
al., 2010b, a), as well as longitudinal studies with high density of measurements to examine
the trajectories across age with regards to the critical phases proposed on the basis of the
cross-sectional analyses.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Scatterplots of age-brain structure relationships
The figure shows the individual data points and the cross-sectionally estimated trajectories
for the 13 brain structures of interest based on the smoothing spline. Y-axis values represent
mean volume across hemispheres, corrected for the influence of sample and intracranial
volume (Z-scores). The right bottom figure shows some of the segmented structures of the
average brain of Sample 2. The three-dimensional renderings illustrate the average shape,
extension and relative position within the brain. The cerebral cortex and underlying white
matter are made transparent to allow visualization of the underlying subcortical structures.
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Figure 2. Scatterplots of age - ventricular system relationships
The figure shows the individual data points and the cross-sectionally estimated trajectories
for the ventricles based on the smoothing spline. Y-axis values represent mean volume
across hemispheres, corrected for the influence of sample and intracranial volume (Z-
scores).
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Figure 3. Estimated age-trajectories and critical ages
The figure shows the estimated age-trajectories from the cross-sectional analyses for the 12
areas that deviated from linearity, based on the smoothing spline. Critical ages, identified by
changes in the second derivative, are displayed. Pearson correlations between brain volume
and age are shown for each age phase separated by the critical ages. All correlations were
significant at p < .05, except for pallidum in middle age (.01), cerebellum WM in young age
(−.02) and brain stem in young age (.01). Due to small age-variance, correlations are not
presented for age-phases defined by critical ages of 80 years or higher. Critical ages are
indicative of phases where estimated changes in brain volumes are in transitions.
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Figure 4. A hypothetic model for discontinuous change in rate of atrophy
The figure represents a simplified attempt to visualize how two sets of age-dependent
degenerative effects can affect the age-trajectory of a brain volume, and how timing of
critical ages reflect the start and endpoint of these effects. The blue line represents the
volume of a brain structure through life, e.g. WM volume. In the first part of life, volume
increases, caused by the sum of progressive events, e.g. myelination and axonal growth
(green line). Before the maturational changes caused by the progressive events have come to
an end, degenerative events starts, e.g. selective loss of small-diameter myelinated axons
(primary degenerative event) and demyelination of larger connections (secondary
degenerative event). The onset of these processes will affect the growth rate of the curve,
detected as a change in the second derivative, and this change can be termed early critical
age. After this point, the volume increase slowly decelerates. After continuous impact on the
volume from these two processes, one of them eventually burns out in higher age while the
other continues further. This causes a late critical age, where the volume reductions slowly
starts to level off. This is of course a gross simplification of the processes in the brain and
the trajectories that may characterize them. The main point is to illustrate that critical ages
may be used in the characterisation of estimated age-trajectories of brain volumes, and that
they may be related to underlying neurobiological events, both developmental and
degenerative.
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Table 1

Sample split by decade and sex

Age years Total sample n (%) Female n (%) Male n (%)

< 30 315 (28.6) 186 (27.5) 129 (30.4)

30.1–40.0 121 (11.0) 72 (10.7) 49 (11.6)

40.1–50.0 154 (14.0) 94 (13.9) 60 (14.2)

50.1–60.0 159 (14.5) 107 (15.8) 52 (12.3)

61.1–70.0 187 (17.0) 114 (16.9) 73 (17.2)

71.1–80.0 123 (11.2) 74 (10.9) 49 (11.6)

> 80.1 41 (3.7) 29 (4.3) 12 (2.8)

Total 1100 (100) 676 (100) 424 (100)
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