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Abstract

Recently, there have been great interests for computer-aided diagnosis of Alzheimer’s disease 

(AD) and its prodromal stage, mild cognitive impairment (MCI). Unlike the previous methods that 

considered simple low-level features such as gray matter tissue volumes from MRI, and mean 

signal intensities from PET, in this paper, we propose a deep learning-based latent feature 

representation with a stacked auto-encoder (SAE). We believe that there exist latent non-linear 

complicated patterns inherent in the low-level features such as relations among features. 

Combining the latent information with the original features helps build a robust model in AD/MCI 

classification, with high diagnostic accuracy. Furthermore, thanks to the unsupervised 

characteristic of the pre-training in deep learning, we can benefit from the target-unrelated samples 

to initialize parameters of SAE, thus finding optimal parameters in fine-tuning with the target-

related samples, and further enhancing the classification performances across four binary 

classification problems: AD vs. healthy normal control (HC), MCI vs. HC, AD vs. MCI, and MCI 

converter (MCI-C) vs. MCI non-converter (MCI-NC). In our experiments on ADNI dataset, we 

validated the effectiveness of the proposed method, showing the accuracies of 98.8, 90.7, 83.7, 

and 83.3 % for AD/HC, MCI/HC, AD/MCI, and MCI-C/MCI-NC classification, respectively. We 

believe that deep learning can shed new light on the neuroimaging data analysis, and our work 

presented the applicability of this method to brain disease diagnosis.
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Introduction

Alzheimer’s disease (AD), characterized by progressive impairment of cognitive and 

memory functions, is the most prevalent cause of dementia in elderly people and is 

recognized as one of the major challenges to global health care systems. A recent research 

by Alzheimer’s association reports that AD is the sixth-leading cause of death in the United 

States, rising significantly every year in terms of the proportion of cause of death 

(Alzheimer’s 2012). It is also indicated that 10–20 % of people aged 65 or older have mild 

cognitive impairment (MCI), a prodromal stage of AD (Alzheimer’s 2012), and situated in 

the spectrum between normal cognition and dementia (Cui et al. 2011). Due to the limited 

periods for which the symptomatic treatments are available, it has been of great importance 

for early diagnosis and prognosis of AD/MCI in the clinic.

To this end, researchers in many scientific fields have devoted their efforts to understand the 

underlying mechanism that causes these diseases and to identify pathological biomarkers for 

diagnosis or prognosis of AD/MCI by analyzing different types of neuroimaging modalities, 

such as magnetic resonance imaging (MRI) (Davatzikos et al. 2011; Wee et al. 2011), 

positron emission tomography (PET) (Nordberg et al. 2010), functional MRI (fMRI) 

(Greicius et al. 2004; Suk et al. 2013), cerebrospinal fluid (CSF) (Nettiksimmons et al. 

2010), etc. In terms of clinical diagnosis, structural MRI provides visual information 

regarding the macroscopic tissue atrophy, which results from the cellular changes 

underlying AD/MCI, and PET can be used for the investigation of the cerebral glucose 

metabolism (Nordberg et al. 2010), which reflects the functional brain activity.

While these neuroimaging techniques have contributed substantially to our observation of 

the brain, significant breakthroughs in how we can efficiently understand and analyze the 

observed information have been of great concerns for the last decades. In that respect, 

machine learning has provided nice tools to tackle these challenges. Specifically, it has 

proved for their efficacy in multivariate pattern analysis and feature selection for clinical 

diagnosis. It is also impressive that they offered a new leverage strategy to efficiently fuse 

complementary information from different modalities including MRI, PET, biological and 

neurological data for discriminating AD/MCI patients from healthy normal controls (HC) 

(Fan et al. 2007; Perrin et al. 2009; Kohannim et al. 2010; Walhovd et al. 2010; Cui et al. 

2011; Hinrichs et al. 2011; Zhang et al. 2011; Wee et al. 2012; Westman et al. 2012; Yuan et 

al. 2012; Zhang and Shen 2012). Kohannim et al. (2010) concatenated features from 

modalities into a vector and used a support vector machine (SVM) classifier. Walhovd et al. 

(2010) applied multi-method stepwise logistic regression analyses, and Westman et al. 

(2012) exploited a hierarchical modeling of orthogonal partial least squares to latent 

structures. Hinrichs et al. (2011) and Zhang et al. (2011), independently, utilized a kernel-

based machine learning technique. There have been also attempts to select features by 
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means of sparse learning, which jointly learns the tasks of clinical label identification and 

clinical scores prediction (Yuan et al. 2012; Zhang and Shen 2012).

Although these researches presented the effectiveness of their methods in their own 

experiments on multi-modal AD/MCI classification, the main limitation of the previous 

work is that they considered only simple low-level features such as cortical thickness and/or 

gray matter tissue volumes from MRI (Klöppel et al. 2008; Gray et al. 2013; Zhang et al. 

2011; Zhang and Shen 2012; Cui et al. 2011; Desikan et al. 2009; Walhovd et al. 2010; Yao 

et al. 2012; Westman et al. 2012; Ewers et al. 2012; Zhou et al. 2011; Li et al. 2012; Liu et 

al. 2012), mean signal intensities from PET (Mosconi et al. 2008; Walhovd et al. 2010; 

Nordberg et al. 2010; Zhang et al. 2011; Zhang and Shen 2012; Gray et al. 2013), and t-tau, 

p-tau, and β-amyloid 42 (Aβ42) from CSF (Cui et al. 2011; Yuan et al. 2012; Zhang et al. 

2011; Zhang and Shen 2012; Walhovd et al. 2010; Westman et al. 2012; Ewers et al. 2012; 

Tapiola et al. 2009). In this paper, we assume that there exists hidden or latent high-level 

information, inherent in those low-level features such as relations among them, which can be 

helpful to build a more robust model for AD/MCI diagnosis and prognosis.

To tackle this problem, we exploit a deep learning framework, which has been efficiently 

used to discover visual features in computer vision (Hinton and Salakhutdinov 2006; Bengio 

et al. 2007; Lee et al. 2011; Yu et al. 2011). The main concept of the deep learning is that 

deep architectures can be much more efficient than shallow architectures in terms of 

computational elements and parameters required to represent unknown functions (Bengio et 

al. 2007). Furthermore, one of the key features of the deep learning is that the low-layer 

represents low-level features and the high-layer abstracts those low-level features. In the 

case of our neuroimaging and biological data, the deep or hierarchical architecture can be 

efficiently used to discover latent or hidden representation, inherent in the low-level features 

from modalities, and ultimately to enhance classification accuracy. Specifically, ‘stacked 

auto-encoder’ (SAE) is considered to discover latent representations from the original 

neuroimaging and biological features. It is also noteworthy that thanks to the unsupervised 

characteristic of the pre-training in deep learning, the SAE model allows us to benefit from 

the target-unrelated samples to discover general latent feature representations, and hence to 

leverage for further enhancement of the classification accuracy.

The main contributions of our work can be summarized as follows: (1) To our best 

knowledge, this is the first work that considers a deep learning for feature representation in 

brain disease diagnosis and prognosis. (2) Unlike the previous work in the literature, we 

consider complicated nonlinear latent feature representation, which can be discovered from 

data in self-taught learning. (3) By constructing an augmented feature vector via a 

concatenation of the original low-level features and the SAE-learned latent feature 

representation, we can improve diagnostic accuracy on the public ADNI dataset. (4) By 

means of pre-training of SAE in an unsupervised manner with the target-unrelated samples 

and then fine-tuning with target-related samples, the proposed method further enhances the 

classification performance.

Suk et al. Page 3

Brain Struct Funct. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Materials and image processing

Subjects

In this work, we use the ADNI dataset publicly available on the web1. Specifically, we 

consider only the baseline MRI, 18-fluoro-deoxyglucose (FDG) PET, and CSF data acquired 

from 51 AD patients, 99 MCI patients (43 MCI converters, who progressed to AD, and 56 

MCI non-converters, who did not progress to AD in 18 months), and 52 HC subjects2. The 

demographics of the subjects are detailed in Table 1. Along with the neuroimaging and 

biological data, two types of clinical scores, mini-mental state examination (MMSE) and 

Alzheimer’s disease assessment scale-cognitive subscale (ADAS-Cog), are also provided for 

each subject.

With regard to the general eligibility criteria in ADNI, subjects were in the age of between 

55 and 90 with a study partner, who could provide an independent evaluation of functioning. 

General inclusion/exclusion criteria3 are as follows: (1) healthy subjects: MMSE scores 

between 24 and 30 (inclusive), a clinical dementia rating (CDR) of 0, non-depressed, non-

MCI, and non-demented; (2) MCI subjects: MMSE scores between 24 and 30 (inclusive), a 

memory complaint, objective memory loss measured by education adjusted scores on 

Wechsler memory scale logical memory II, a CDR of 0.5, absence of significant levels of 

impairment in other cognitive domains, essentially preserved activities of daily living, and 

an absence of dementia; and (3) mild AD: MMSE scores between 20 and 26 (inclusive), 

CDR of 0.5 or 1.0, and meets the National Institute of Neurological and Communicative 

Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association 

(NINCDS/AD-RDA) criteria for probable AD.

MRI and PET scanning

The structural MR images were acquired from 1.5 T scanners. We downloaded data in 

Neuroimaging Informatics Technology Initiative (NIfTI) format, which had been pre-

processed for spatial distortion correction caused by gradient nonlinearity and B1 field 

inhomogeneity. The FDG-PET images were acquired 30–60 min post-injection, averaged, 

spatially aligned, interpolated to a standard voxel size, normalized in intensity, and 

smoothed to a common resolution of 8 mm full width at half maximum. CSF data were 

collected in the morning after an overnight fast using a 20- or 24-gauge spinal needle, frozen 

within 1 h of collection, and transported on dry ice to the ADNI Biomarker Core Laboratory 

at the University of Pennsylvania Medical Center.

Image processing and feature extraction

The MR images were preprocessed by applying the typical procedures of anterior 

commissure (AC)–posterior commissure (PC) correction, skull-stripping, and cerebellum 

removal. Specifically, we used MIPAV software4 for AC-PC correction, resampled images 

1URL: http://www.loni.ucla.edu/ADNI.
2Although there exist in total more than 800 subjects in ADNI database, only 202 subjects have the baseline data including all the 
modalities of MRI, FDG-PET, and CSF.
3Refer to http://www.adniinfo.org for the details.
4URL: http://mipav.cit.nih.gov/clickwrap.php.

Suk et al. Page 4

Brain Struct Funct. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.loni.ucla.edu/ADNI
http://www.adniinfo.org
http://mipav.cit.nih.gov/clickwrap.php


to 256 × 256 × 256, and applied N3 algorithm (Sled et al. 1998) to correct intensity 

inhomogeneity. An accurate and robust skull stripping (Wang et al. 2011) was performed, 

followed by cerebellum removal. We further manually reviewed the skull-stripped images to 

ensure clean and dura removal. Then, FAST in FSL package5 (Zhang et al. 2001) was used 

for structural MR image segmentation into three tissue types of gray matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF). We finally pacellated them into 93 regions of 

interests (ROIs) by warping Kabani et al.’s (1998) atlas to each subject’s space via 

HAMMER (Shen and Davatzikos 2002), although other advanced registration methods can 

also be applied for this process (Friston et al. 1995; Evans and Collins 1997; Rueckert et al. 

1999; Shen et al. 1999; Wu et al. 2006; Xue et al. 2006a, b; Avants et al. 2008; Yang et al. 

2008; Tang et al. 2009; Vercauteren et al. 2009; Jia et al. 2010). In this work, we only 

considered GM for classification, because of its relatively high relatedness to AD/MCI 

compared to WM and CSF (Liu et al. 2012).

Regarding FDG-PET images, they were rigidly aligned to the respective MR images, and 

then applied parcellation propagated from the atlas by registration. For each ROI, we used 

the GM tissue volume from MRI, and the mean intensity from FDG-PET as features6, which 

are most widely used in the field for AD/MCI diagnosis (Davatzikos et al. 2011; Hinrichs et 

al. 2011; Zhang and Shen 2012; Liu et al. 2013). Therefore, we have 93 features from a MR 

image and the same dimensional features from FDG-PET image. Here, we should note that 

although it is known that the regions of medial temporal and superior parietal lobes are 

mainly affected by the disease, we assume that other brain regions, although their 

relatedness to AD is not clearly investigated yet, may also contribute to the diagnosis of 

AD/MCI and thus we consider 93 ROIs in our study. In addition, we have three CSF 

biomarkers of Aβ42, t-tau, and p-tau as features.

Stacked auto-encoder for latent feature representation

In this section, we describe the proposed method for AD/MCI classification. Figure 1 

illustrates a schematic diagram of the proposed method. Given multi-modal data along with 

the class-label and clinical scores, we first extract low-level features from MRI and FDG-

PET as explained in “Image processing and feature extraction”. We then discover a latent 

feature representation from the low-level features in MRI, FDG-PET, and CSF, individually, 

by deep learning with SAE. In deep learning, we perform two steps sequentially: (1) We 

first pre-train the SAE in a greedy layer-wise manner to obtain good initial parameters. (2) 

We then fine-tune the deep network to find the optimal parameters. A sparse learning on the 

augmented feature vectors, i.e., a concatenation of the original low-level features and the 

SAE-learned features, is applied to select features that efficiently regress the target values, 

e.g., class-label and/or clinical scores. Finally, we fuse the selected multi-modal feature 

information via a multi-kernel SVM (MK-SVM) for diagnosis. Note that the latent feature 

representation and feature selection are performed for each modality individually. Hereafter, 

we do not explicitly indicate the modality of samples, unless specified, in order for 

5URL: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.
6While the low-level simple features should be the voxels in MRI and FDG-PET, due to high dimensionality and a small sample 
problem, in this paper, we take a ROI-based approach and consider the conical GM tissue volumes and the mean intensity for each 
ROI from MRI and FDG-PET, respectively, as the low-level features.
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simplicity. Basically, the method described below can be applied for each modality 

individually, but also applicable to the concatenated feature vectors of three modalities in 

terms of information fusion, which is considered later in our experiments for comparison.

Sparse auto-encoder

An auto-encoder, also called as auto-associator, is one type of artificial neural networks 

structurally defined by three layers: input layer, hidden layer, and output layer. The input 

layer is fully connected to the hidden layer, which is further fully connected to the output 

layer as illustrated in Fig. 2. The aim of the auto-encoder is to learn a latent or compressed 

representation of the input, by minimizing the reconstruction error between the input and the 

reconstructed one from the learned representation.

Let DH and DI denote, respectively, the number of hidden and input units in a neural 

network. Given a set of training samples  from N subjects, an auto-

encoder maps xi to a latent representation yi ∈ ℝDH through a linear deterministic mapping 

and a nonlinear activation function f as follows:

(1)

where W1 ∈ ℝDH×DI is an encoding weight matrix and b1 ∈ ℝDH is a bias vector. Regarding 

the activation function, in this study, we consider a logistic sigmoid function for f(a) = 1/(1 

+ exp(−a)), which is the most widely used in the field of pattern recognition or machine 

learning (Bengio et al. 2007; Lee et al. 2008; Bengio 2009; Larochelle et al. 2009; Ngiam et 

al. 2011; Shin et al. 2013). The representation yi of the hidden layer is then mapped to a 

vector zi ∈ ℝDI, which approximately reconstructs the input vector xi by another linear 

mapping as follows:

(2)

where W2 ∈ ℝDI×DH and b2 ∈ ℝDI are a decoding weight matrix and a bias vector, 

respectively.

Structurally, the number of input and output units are fixed to the dimension of an input 

vector. Meanwhile, the number of hidden units can be determined based on the nature of the 

data. If the number of hidden units is less than the dimension of the input data, then the auto-

encoder can be used for dimensionality reduction. However, it is noteworthy that in order 

for obtaining complicated non-linear relations among neuroimaging features, we can allow 

the number of hidden units to be even larger than the input dimension, from which we can 

still find an interesting structure by imposing a sparsity constraint (Lee et al. 2008; 

Larochelle et al. 2009).

From a learning perspective, we aim to minimize the reconstruction error between the input 

xi and the output zi with respect to the parameters. Let  and 

 denote a reconstruction error. In order for the sparseness of the 

hidden units, we further consider a Kullback-Leibler (KL) divergence between the average 
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activation ρ̂
j of the jth hidden unit over the training samples and the target average activation 

ρ defined as follows (Shin et al. 2013):

(3)

where ρ and ρ̂
j are Bernoulli random variables. Then our objective function can be written as 

follows:

(4)

With the introduction of the KL divergence weighted by a sparsity control parameter γ to the 

target objective function, we penalize a large average activation of a hidden unit over the 

training samples by setting ρ small7. This penalization drives many of the hidden units’ 

activation to be equal or close to zero, resulting in sparse connections between layers.

Note that the output from the hidden layer determines the latent representation of the input 

vector. However, due to its simple shallow structural characteristic, the representational 

power of a single-layer auto-encoder is known to be very limited.

Stacked auto-encoder

Inspired from the biological model of the human visual cortex (Fukushima 1980; Serre et al. 

2005), recent studies in machine learning have shown that a deep or hierarchical architecture 

is useful to find highly non-linear and complex patterns in data (Bengio 2009). Motivated by 

the studies, in this paper, we consider a SAE (Bengio et al. 2007), in which an auto-encoder 

becomes a building block, for a latent feature representation in neuroimaging or biological 

data. Specifically, as the name says, we stack auto-encoders one after another taking the 

outputs from the hidden units of the lower layer as the input to the upper layer’s input units, 

and so on. Figure 3 shows an example of a SAE model with three auto-encoders stacked 

hierarchically. Note that the number of units in the input layer is equal to the dimension of 

the input feature vector. But the number of hidden units in the upper layers can be 

determined according to the nature of the input, i.e., even larger than the input dimension.

Thanks to the hierarchical nature in structure, one of the most important characteristics of 

the SAE is to learn or discover highly non-linear and complicated patterns such as the 

relations among input features. Another important characteristic of the deep learning is that 

the latent representation can be learned directly from the data. Utilizing its representational 

and self-taught learning properties, we can find a latent representation of the original low-

level features directly extracted from neuroimaging or biological data. When an input 

sample is presented to a SAE model, the different layers of the network represent different 

levels of information. That is, the lower the layer in the network, the simpler patterns (e.g., 

linear relations of features); the higher the layer, the more complicated or abstract patterns 

inherent in the input feature vector (e.g., non-linear relations among features).

7In this work, we set γ = 0.01 and ρ = 0.05.
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With regard to training parameters of the weight matrices and the biases in the deep network 

of our SAE model, a straightforward way is to apply back-propagation with the gradient-

based optimization technique starting from random initialization taking the deep network as 

a conventional multi-layer neural network. Unfortunately, it is generally known that deep 

networks trained in that manner perform worse than networks with a shallow architecture, 

suffering from falling into a poor local optimum (Larochelle et al. 2009). However, recently, 

Hinton et al. introduced a greedy layer-wise unsupervised learning algorithm and showed its 

success to learn a deep belief network (Hinton et al. 2006). The key idea in a greedy layer-

wise learning is to train one layer at a time by maximizing the variational lower bound 

(Hinton et al. 2006). That is, we first train the first hidden layer with the training data as 

input, and then train the second hidden layer with the outputs from the first hidden layer as 

input, and so on. That is, the representation of the lth hidden layer is used as input for the (l 

+ 1)-th hidden layer. This greedy layer-wise learning is called ‘pre-training’ (Fig. 3a–c). The 

pre-training is performed in an unsupervised manner with a standard back-propagation 

algorithm (Bishop 1995). Later in our experiments, we utilize this unsupervised 

characteristic in pre-training to further find optimal parameters to discover a latent 

representation in the neuroimaging or biological data, taking benefits from target-unrelated 

samples.

Focusing on the ultimate goal of our work to improve diagnostic performance in AD/MCI 

identification, we further optimize the deep network in a supervised manner. In order for 

that, we stack another output layer on top of the SAE (Fig. 3d). This top output layer is used 

to represent the class-label of an input sample. We set the number of units in the output layer 

to be equal to the number of classes of interest. This extended network can be considered as 

a multi-layer neural network and, in this paper, we call it ‘SAE-classifier’. Therefore, it is 

straightforward to optimize the deep network by back-propagation with gradient descent, 

having parameters, except for the last classification network, initialized by the pre-trained 

ones. Note that the initialization of the parameters via pre-training makes the deep network 

different from the conventional neural network, and it helps the supervised optimization, 

called ‘finetuning’, reduce the risk of falling into local poor optima (Hinton et al. 2006; 

Larochelle et al. 2009). We summarize the deep learning of the SAE in Algorithm 1. 

Besides the fine-tuning of the parameters, we also utilize the SAE-classifier to determine the 

optimal SAE structure.

Later in our experiments, we consider the following two learning schemes, in which the 

main difference lies in the way of utilizing the training samples available: (1) The 

supervised approach learns the parameters of SAE from solely the target-related training 

samples. For example, in the task of classifying MCI converter (MCI-C) and MCI non-

converter (MCI-NC), we use the target-related training samples of MCI-C and MCI-NC for 

both pre-training and fine-tuning in deep learning, and for the SVM classifier learning (Fig. 

4a). (2) The semi-supervised approach first performs pre-training using both target-related 

and target-unrelated samples, and then fine-tune the model with only the target-related 

samples. For example, in the task of discriminating MCI-C from MCI-NC, we first perform 

pretraining with the samples of AD and HC as well as those of MCI-C and MCI-NC, and 

then fine-tuning with only the MCI-C and MCI-NC training samples (Fig. 4b). Finally, the 
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representation of the target-related MCI-C and MCI-NC training samples are used for SVM 

learning. The motivation of applying this learning scheme in our work is that the more 

samples we use in pre-training of the deep architecture, the better good initialization of the 

parameters we can obtain, and thus the better latent representation inherent in the low-level 

features we can discover (Larochelle et al. 2009). Hereafter, we use the terms of 

‘supervised’ and ‘semi-supervised’, respectively, to specify the strategy of learning 

parameters of a SAE model as described above throughout the paper.

Algorithm 1

Deep learning of a stacked auto-encoder

Input: train feature samples: X ∈ ℝDI × N, train labels: L ∈ ℝN, sparsity control parameter: γ, target average activation: 
ρ

Output: weight matrices: , biases: 

/* H: number of hidden layers */

Step 1) Pre-training hidden layers:

– Initialization: Y0 = X

– Greedy layer-wise training h ∈ {1, ⋯, H}

-
Find parameters {W̃1

h , b̃1
h } for the h-th hidden layer (auto-encoder) by minimizing 

l(Yh −1, Z) + γ∑ j

Dh KL(ρ ρ̃ j)

- Yh = f (W̃1
h Yh −1 + b̃1

h )

Step 2) Fine-tuning the whole network:

–
Initialization: {Ŵ1

h = W̃1
h , b̃1

h = b1
h }h =1

H , {Ŵ1
H +1, b̃1

H +1} = random

– Back-propagation with a gradient-descent technique

Once we determine the structure of a SAE model, we consider the outputs from the top 

hidden layer as our latent feature representation, i.e., , 

where  and  denote, respectively, the trained weight matrix and bias of the top Hth 

hidden layer, and YH−1 is the outputs from the (H−1)-th hidden layer. To utilize both the 

low-level simple features and the high-level latent representation, we construct an 

augmented feature vector X̂ by concatenating the SAE-learned feature representation YH 

with the original low-level features X, i.e., , which is then 

fed into the sparse learning for feature selection as described below.

Feature selection with sparse representation learning

Earlier, Zhang and Shen showed the efficacy of sparse representation for feature selection in 

AD/MCI diagnosis (Zhang and Shen 2012). Here, we consider two sparse representation 

methods, namely, least absolute shrinkage and selection operator (lasso) (Tibshirani 1996) 

and group lasso (Yuan and Lin 2006), which penalize a linear regression model with l1-norm 
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and l21-norm, respectively. In this work, we select features for each modality individually 

and defer the multi-modal information fusion to MK-SVM learning. The rationale for the 

modality-specific feature selection is that we believe it would be helpful to find the 

discriminative features in a low dimension rather than in a high dimension of the modality-

concatenated feature vectors.

Let m ∈ {1, …, M} denote an index of modalities and X̂(m) ∈ ℝN×D denote a set of the 

augmented feature vectors, where N and D(= DH + DI) are, respectively, the number of 

samples and the dimension of the augmented feature vector. In lasso, we focus on finding 

optimal weight coefficients a(m) to regress the target response vector t(m) ∈ ℝN by a 

combination of the features in X̂(m) with a sparsity constraint as follows:

(5)

where λ1 is a sparsity control parameter. In our work, the target response vector corresponds 

to the target clinical labels. The l1-norm penalty to linear regression imposes sparsity to the 

solution of a(m), which means that many of the elements are to be zero. By the application of 

the lasso, we can select features whose weight coefficients are non-zero.

Meanwhile, unlike the lasso that considers a single target response vector, the group lasso 

can accommodate multiple target response vectors, where each target response vector can be 

regarded as one task, and impose a constraint that encourages the correlated features to be 

jointly selected for multiple tasks in a data-driven manner.

(6)

where s ∈ {1, …, S} denotes an index of tasks8, , and λ2 is a 

group-sparsity control parameter. In Eq. 6, , where 

A(m)[d, :] denotes the dth row of the matrix A(m). This l2,1-norm imposes to select features 

that are jointly used to represent the target response vector  across tasks9. We can 

select features whose absolute weight coefficient is larger than zero.

From the inspection of Eqs. 5 and 6, we can see that the group lasso is a generalized form of 

the lasso in terms of the number of tasks involved in regression. That is, if we have 

information for a single task, then the group lasso becomes the conventional lasso. Later in 

our experiments, we consider both of these sparse representation learning and observe their 

effects on selecting features as well as classification performance. We use a set of class-

labels in lasso, and clinical scores as well as class-labels in group lasso. The hyper-

parameters of λ1 and λ2 in Eqs. 5 and 6, respectively, are determined by a grid search within 

8In our case, the tasks are to regress class-label, and MMSE and ADAS-Cog scores.

9In this work, .
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a space of [0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3]. For the optimization, we use a SLEP 

toolbox10.

Multi-kernel SVM learning

It is witnessed in the previous studies that the biomarkers from different modalities can 

provide complementary information in AD/MCI diagnosis (Perrin et al. 2009). In this paper, 

we combine the complementary information from modalities of MRI, FDG-PET, and CSF 

in the feature kernel space with linear SVM, which has proved its efficacy in many fields 

(Wee et al. 2012; Han and Davis 2012; Suk and Lee 2013). Given the dimension-reduced 

training samples  through the sparse representation learning as described 

in “Feature selection with sparse representation learning”, and the test sample of x̃(m), where 

m ∈ {1, …, M} denotes an index of modalities, the decision function of the MK-SVM is 

defined as follows:

(7)

where ζi is the class-label of the ith sample, αi and b are, respectively, a Lagrangian 

multiplier and a bias,  is a kernel 

function, ϕ(m) is a kernel-induced mapping function, and β(m) ≥ 0 is a weight coefficient of 

the mth modality with the constraint of . Refer to Gönen (2011) for a detailed 

explanation on the MK-SVM.

Experimental results

Experimental setup

In this section, we evaluate the effectiveness of the proposed method for a non-linear latent 

feature representation by deep learning with SAE, considering four binary classification 

problems: AD vs. HC, MCI vs. HC, AD vs. MCI, and MCI-C vs. MCI-NC. In the 

classifications of MCI vs. HC, and AD vs. MCI, both MCI-C and MCI-NC data were used 

as the MCI class. For each classification problem, we applied a tenfold cross validation 

technique. That is, we randomly partitioned the dataset into 10 subsets, each of which 

included 10 % of the total dataset, and then used 9 out of 10 subsets for training and the 

remaining one for testing. We repeated these whole process 10 times for unbiased 

evaluation.

To show the validity of the proposed method of combining SAE-learned feature 

representation with the original low-level features, we compared the results of the proposed 

method with those from the original low-level features and SAE-learned feature 

representation, respectively, by applying the same strategies of feature selection and MK-

SVM learning. Hereafter, we denote LLF, SAEF, and LLF + SAEF, respectively, for the 

cases of using the original low-level features, SAE-learned features, and the concatenation 

10URL: http://www.public.asu.edu/~jye02/Software/SLEP/index.htm.
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of LLF and SAEF. It is noteworthy that we use the same training and test samples over the 

competing methods for fair comparison.

Determination of the structure of a SAE model

With regard to the structure of a SAE model, we considered three hidden layers for MRI, 

FDG-PET, and CONCAT11, and two hidden layers for CSF, by taking into account the 

dimensionality of the low-level features in each modality. To determine the number of 

hidden units, we performed classification with a SAE-classifier by a grid search12. Due to 

the possibility of over-fitting with a small number of training samples, we early stopped the 

fine-tuning step by setting a small number for iteration. The optimal structure of the SAE 

models and the respective performance are presented in Table 2. For example, in 

classification of AD and HC, we obtained the best accuracy of 85.7 % with MRI from a 

SAE-classifier of 500-50-10 (from bottom to top) hidden units in supervised learning13. We 

used a DeepLearnToolbox14 to train our SAE model.

Classification results

Regarding the feature selection, we observed that the lasso-based method showed better 

classification performance compared to the group lasso-based one. Here, we present the 

classification results obtained by lasso-based feature selection method.

Table 3 shows the mean accuracies of the competing methods in the classification of AD 

and HC. Although the proposed method of LLF + SAEF with a single-modality was 

outperformed for a couple of cases by the LLF-based one, e.g., 89 % (LLF) vs. 88.2 % (LLF 

+ SAEF) with MRI, 93.7 % (LLF) vs. 93.5 % (LLF + SAEF) with CONCAT, those from 

multi-modality fusion via MK-SVM showed the best accuracies of 97.9 and 98.8 % in 

supervised and semi-supervised learning, respectively. Compared to the accuracy of 97 % 

with a LLF-based method, the proposed method improved the accuracy by 0.9 and 1.8 %, in 

supervised and semi-supervised learning, respectively.

In the classification of MCI and HC, as presented in Table 4, the proposed method showed 

the best classification accuracies of 88.8 and 90.7 % with supervised and semi-supervised 

learning schemes, respectively. The performance improvements compared to the 

classification accuracy of 84.8 % with the LLF-based method were 4 and 5.9 %, 

respectively.

In the classification of AD and MCI, as shown in Table 5, the proposed method showed the 

best classification accuracies of 82.7 and 83.7 % with supervised and semi-supervised 

learning schemes, respectively. We could enhance the classification accuracy by 3.9 and 4.9 

% with supervised and semi-supervised learning schemes, respectively, compared to the 

LLF-based method, whose accuracy was 78.8 %.

11CONCAT represents a concatenation of the features from MRI, FDG-PET, and CSF into a single vector, which is the most direct 
and intuitive way of combining multimodal information.
12We considered [100, 300, 500, 1,000]–[50, 100]–[10, 20, 30] and [10, 20, 30]–[1, 2, 3] (bottom–top) for three-layer and two-layer 
networks, respectively.
13Refer to “Sparse auto-encoder” for explanation of the supervised learning.
14URL: https://github.com/rasmusbergpalm/DeepLearnToolbox.
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In discriminating MCI-C from MCI-NC, the proposed method also outperformed the LLF-

based method as presented in Table 6. While the LLF-based method showed the 

classification accuracy of 76 % with multi-modality fusion via MK-SVM, we could obtain 

the classification accuracies of 77.9 and 83.3 % in supervised and semi-supervised learning, 

respectively. It is remarkable that the semi-supervised learning scheme enhanced the 

performance by 7.3 % compared to that of the LLF-based method.

We also plotted the best performances of the competing methods, regardless of the model 

training schemes, for four binary classification problems with their sensitivity and 

specificity given in Fig. 5. From the figure, we can clearly see that the proposed method 

outperforms the competing methods. It is noteworthy that there is a tendency of the 

improvement increase in the order of AD vs. HC, AD vs. MCI, MCI vs. HC, and MCI-C vs. 

MCI-NC. That is, we made higher improvements in the more challengeable and important 

tasks, e.g., classifying between MCI-C and MCI-NC, for early diagnosis and treatment.

Discussions

Deep learning-based latent feature representation

In our method of discovering a latent feature representation, we built a SAE-classifier for a 

means of determining the optimal SAE-structure. It is worth noting that, across classification 

tasks, different numbers of hidden units for the same modality were determined, e.g., 

500-50-10 in AD vs. HC, 100-100-20 in MCI vs. HC, 1000-50-30 in AD vs. MCI, and 

100-100-10 in MCI-C vs. MCI-NC for MRI in supervised learning. We believe that this 

reflects the necessity of considering different high-level non-linear relations inherent in LLF 

for different classification problems.

In terms of the model architecture, the SAE-classifier can be considered as a simple logistic 

regression model taking the SAE-learned feature representation as input. Despite the simple 

architecture, it presented classification accuracies higher than or comparable to those from 

the SVM classifier, into which SAE-learned features were fed after feature selection. This is 

resulted from the fact that the SAE-learned features were optimized to the SAE-classifier, 

not to the SVM classifier.

In the meantime, when we constructed an augmented feature vector via a concatenation of 

LLF and SAEF, we could greatly improve the accuracies. That is, the original low-level 

features are still informative for brain disease diagnosis along with the latent feature 

representations.

In comparison with the LLF-based method, the proposed method of LLF + SAEF, greatly 

improved the diagnostic accuracy over all the classification problems considered in this 

work. Specifically, the proposed method consistently outperformed the competing methods 

over uni-modality and multi-modality with semi-supervised learning.

In deep learning, it is an important issue for the size of training samples. While there is a 

limited number of samples available in ADNI dataset, we would like to note that under the 

circumstance of a small sample size, there is an empirical proof that the unsupervised pre-
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training helps deep learning find better optimal parameters for reducing errors (Erhan et al. 

2010). In the same perspective, we could also obtain the best performances in four binary 

classification problems from the semi-supervised learning, which means that we could 

benefit from the target-unrelated samples for pre-training and learning the optimal 

parameters for the deep network, and hence enhance the classification accuracy. This is one 

of the most prominent and important characteristics of deep learning in SAE, compared to 

the conventional neural network. In the conventional neural network, we find the optimal 

parameters starting from random initialization in a supervised manner, which means that we 

can only use limited number of target-related samples in learning. Therefore, it is restricted 

for the application of neural networks with only a small number of layers in structure. 

Meanwhile, the deep learning allows to utilize the unlabeled or target-unrelated samples in 

learning. From a practical point of view, it is of great importance to exploit information from 

unlabeled or target-unrelated data, which we have much more available in the reality.

It is also important for the interpretation of the trained weights and the latent feature 

representations. We can regard the trained weights as filters that can find different types of 

relations among the inputs. For example, each hidden unit in the first hidden layer captures a 

different representation via the non-linear transformation of the weighted linear combination 

of the input low-level features. Note that each unit has a different weight set and the weights 

of the input low-level features can be positive, negative, or zero. That is, by assigning 

different weights to each low-level feature, e.g., GM tissue volume from MRI or mean 

intensity from FDG-PET, the model discovers different latent relations among the low-level 

features from hidden units. From a neuroscience perspective, the hidden layer can discover 

the structural non-linear relations from MRI features and the functional non-linear relations 

from FDG-PET features. The outputs of the first hidden layer are further combined in the 

upper hidden layer capturing even more complicated relations. In this way, the SAE 

hierarchically captures latent complicated information inherent in the input low-level 

features, which are helpful to classify patients and healthy normal controls. Theoretically, to 

date, there is no standard way to visualize or interpret the trained weights in an intuitive 

way, but it still remains a challenging issue also in the field of pattern recognition or 

machine learning. We would like to mention that while it is not straightforward to interpret 

the meaning of the trained weights or the latent feature representations, it is clear from our 

experiments that the latent complicated information is useful in AD/MCI diagnosis.

To further validate the effectiveness of the proposed method, we also presented a statistical 

significance of the results with paired t test in Table 7. The test was performed with the 

results obtained from LLF and LLF + SAEF with MK-SVM. The lasso-based feature 

selection was considered for both methods, and, for LLF + SAEF, the SAE model was 

learned in a semi-supervised manner. The proposed method statistically outperformed the 

LLF-based method across all cases, except for CSF, rejecting the null hypothesis beyond the 

95 % of confidence level. We believe that due to the low dimensionality of the original 

features from CSF, the SAE-learned latent feature representation was not much informative 

in classification.
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Lasso vs. group lasso for feature selection

Here, we compare the performances with lasso- and group lasso-based feature selection 

methods. In group lasso, we considered the clinical labels and clinical scores of MMSE and 

ADAS-cog as the target responses. In conclusion, we observed that the method of lasso-

based feature selection outperformed that of group lasso-based one as presented in Fig. 6. 

The reason for this result is that, we believe, although the l21-norm-based multi-task learning 

can be used to take the advantage of richer information, it focuses on the target regression 

instead of the classification. Therefore, it finds features that most accurately regress the 

target values, i.e., clinical labels and clinical scores, regardless of the discriminative power 

of the selected features between classes. Moreover, the MMSE scores for different groups 

were highly overlapped, which means it provided mere information and might act as a 

potential confounding in discriminative feature selection. Meanwhile, in l1-norm-based 

single-task learning, the clinical labels, the prediction of which is our main goal, are used as 

the target response. That is, the selected features to regress the target clinical labels can be 

class-discriminative in some sense. However, we should note that the multi-task learning is a 

generalized form of the single-task sparse learning. Therefore, if there exists other class-

related information, we should utilize the information in the framework of multi-task 

learning and it should thus produce better performance.

Comparison with the state-of-the-art method

We also compared the performance of the proposed method with that of the multi-task 

multi-modal learning (M3T) method (Zhang and Shen 2012), which first performs multi-

task learning, i.e., group lasso, on LLF for feature selection and then fuses multi-modal 

information via MK-SVM. For fair comparison, we used the same training and test samples 

for M3T. Compared to the accuracies of M3T, which were 94.5 ± 0.8, 84 ± 1.1, 78.8 ± 1.8, 

and 71.8 ± 2.6 % for AD vs. HC, MCI vs. HC, AD vs. MCI, and MCI-C vs. MCI-NC 

classification, respectively, the proposed method with LLF + SAEF made a performance 

improvement of 3.4, 4.8, 3.9, and 6.1 % using a supervised learning scheme, and 4.3, 6.7, 

4.9, and 11.5 % using a semi-supervised learning scheme, both of which used a l1-norm 

based feature selection.

Selected region of interests

From Figs. 7, 8, 9 and 10, we can see that the SAE-learned latent features did not show high 

frequency of being selected for classification. However, based on the classification 

accuracies and the fewer number of high frequency ROIs in the graphs, we assume that the 

SAE-learned latent features affected to filter out the original low-level features, which were 

not discriminative in classification, during feature selection. But, in classification of MCI vs. 

HC, a larger number of ROIs were involved for discrimination in the proposed method. Our 

understanding for this phenomenon is that due to its subtlety of the involved cognitive 

impairment in MCI compared to AD, we need to consider a larger number of ROIs and also 

the relations among them for more accurate diagnosis.

The selected ROIs included medial temporal lobe that involves a system of anatomically 

related structures that are vital for declarative or long-term memory: amygdala, hippocampal 

formation, entorhinal cortex, hippocampal region, and the perirhinal, entorhinal, and 
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parahippocampal cortices (Braak and Braak 1991; Visser et al. 2002; Mosconi 2005; Lee et 

al. 2006; Devanand et al. 2007; Burton et al. 2009; Desikan et al. 2009; Ewers et al. 2012; 

Walhovd et al. 2010), and also the regions of supramarginal gyrus (Buckner et al. 2005; 

Desikan et al. 2009; Dickerson et al. 2009; Schroeter et al. 2009), angular gyrus (Schroeter 

et al. 2009; Nobili et al. 2013; Yao et al. 2012), superior parietal lobule, precuneus, cuneus 

(Bokde et al. 2006; Singh et al. 2006; Davatzikos et al. 2011), cingulate region (Mosconi 

2005), anterior limb of internal capsule (Zhang et al. 2009), caudate nucleus (Dai et al. 

2009), fornix (Copenhaver et al. 2006).

Limitations of the current work

Although we could achieve performance enhancements in four different classification 

problems, there exist some limitations and disadvantages of the proposed method.

First, in PET imaging, it is known that the partial volume effect, caused by a combination of 

the limited resolution of PET and image sampling, can lead to underestimation or 

overestimation of regional concentrations of radioactivity in the reconstructed images and 

further errors in statistical parametric images (Aston et al. 2002). However, in this work, we 

did not apply a procedure for partial volume correction. Therefore, there is a possibility of 

resulting in mixed combination of multiple tissue values in each voxel, reducing the 

differences between GM and WM. On the other hand, since we are using the ROI-based 

features for our classification, the performance of our method is less affected by this partial 

volume effect.

Second, as for the computational complexity, once the model was built by determining the 

network structure, learning the model parameters, and selecting the features, it took less than 

a minute to get the result for a given patient in our system of Mac OSX with 3.2GHz Intel 

Core i5 and 16 GB of memory. However, as stated in “Deep learning-based latent feature 

representation”, to date, there is no general or intuitive method for visualization of the 

trained weights or for interpretation of the latent feature representations. The problem of 

efficient visualization or interpretation of the latent feature representation is another big 

challenge that should be tackled by the communities of machine learning and clinical 

neuroscience, collaboratively. Furthermore, we used a relatively small data samples (51 AD, 

43 MCI-C, 56 MCI-NC, and 52 HC). Therefore, the network structures used to discover 

latent information in our experiments are not necessarily optimal for other datasets. We 

believe that it needs more intensive studies such as learning the optimal network structure 

from big data for practical use of deep learning in clinical settings.

Third, according to a recent broad spectrum of studies, there are increasing evidences that 

subjective cognitive complaints are one of the important genetic risk factors increasing the 

risk of progression to MCI or AD (Loewenstein et al. 2012; Mark and Sitskoorn 2013). That 

is, among cognitively normal elderly individuals, who have subjective cognitive 

impairments, there exists a high possibility for some of them to be in the stage of ‘pre-MCI’. 

However, in the ADNI dataset, there is no related information. Thus, in our experiments, the 

HC group could include both genuine controls and those with subjective cognitive 

complaints.
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Lastly, we should mention that the data fusion in our deep learning is considered through a 

simple concatenation of the features from modalities into a vector, resulting in a low 

performance compared to that of the multi-kernel SVM. But, in terms of the network 

architecture, it is limited as a shallow model to discover the non-linear relations among 

features from multiple modalities. We believe that although the proposed SAE-based deep 

learning is successful to find latent information in this work, there is still a room to design a 

multi-modal deep network for the shared representation across modailities. Furthermore, 

inspired from the recent computer vision researches (Ngiam et al. 2011; Srivastava and 

Salakhutdinov 2012), we can efficiently handle the incomplete data problem (Yuan et al. 

2012) with multi-modal deep learning. Therefore, it will be our forthcoming research issue 

to build a novel multimodal deep architecture that can efficiently model and combine 

complementary information in a unified framework. Besides that, while we used the 

complimentary information from three different modalities of MRI, FDG-PET, and CSF in 

this work, it will be also beneficiary to consider the genetic risk factor such as the presence 

of the allele ε4 in the Apoliopoprotein E (ApoE) for our future work.

Conclusions

Due to the increasing proportion of AD as the cause of death in elderly people, there have 

been great interests in early diagnosis and prognosis of the neurodegenerative disease in the 

clinic. Recent neuroimaging tools and machine learning techniques have greatly contributed 

for computer-aided brain disease diagnosis. However, the previous work in the literature 

considered only simple low-level features such as cortical thickness and/or gray matter 

tissue volumes from MRI, mean signal intensities from FDG-PET, and t-tau, p-tau, and Aβ42 

from CSF.

The main motivation of our work is that there may exist hidden or latent high-level 

information inherent in the original low-level features, such as relations among features, 

which can be helpful to build a more robust diagnostic model. To this end, in this paper, we 

proposed to utilize a deep learning with SAE for a latent feature representation from the data 

for AD/MCI diagnosis.

While the SAE is a neural network in terms of the model structure, thanks to the two-step 

learning scheme of greedy layer-wise pre-training and the fine-tuning in deep learning, we 

could reduce the risk of falling into a poor local optimum, which is the main limitation of 

the conventional neural network. We believe that deep learning can shed new light on the 

analysis of neuroimaging data, and our paper presented the applicability of the method to 

brain disease diagnosis for the first time.

The contributions of our work are that (1) to our best knowledge, this is the first work that 

considers a deep learning for feature representation in brain disease diagnosis and prognosis, 

(2) unlike the previous work in the literature, we considered a complicated non-linear latent 

feature representation, which was directly discovered from data, (3) by constructing an 

augmented feature vector via a concatenation of the original low-level features and the SAE-

learned latent feature representation, we could greatly improve diagnostic accuracy, and (4) 

thanks to the unsupervised characteristic of the pre-training in deep learning, the proposed 
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method can utilize target-unrelated samples to discover a general feature representation, 

which helped to further enhance classification performance. Using the publicly available 

ADNI dataset, we evaluated the effectiveness of the proposed method and achieved the 

maximum accuracies of 98.8, 90.7, 83.7, and 83.3 %forADvs. NC, MCI vs. NC, AD vs. 

MCI, and MCI-C vs. MCI-NC classification, respectively, outperforming the competing 

methods.
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Fig. 1. 
An illustration of the proposed method for AD/MCI diagnosis
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Fig. 2. 
Illustration of an auto-encoder and its parameters. (The bias parameters b1 and b2 are 

omitted for clarity.)
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Fig. 3. 
A deep architecture of our stacked auto-encoder and the two-step (unsupervised greedy 

layer-wise pretraining and supervised fine-tuning) parameter optimization scheme. (The 

black arrows denote the parameters to be optimized in the current stage). a Pre-training of 

the first hidden layer with the training samples as inputs, b pre-training of the second hidden 

layer with the outputs from the first hidden layer as inputs, c pre-training of the third hidden 

layer with the output from the second hidden layer as inputs, d fine-tuning of the whole 
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network with an additional label-output layer, taking the pre-trained parameters as the 

starting point in optimization
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Fig. 4. 
An example of SAE model training schemes for MCI converter (MCI-C) and MCI non-

converter (MCI-NC) classification. The colored-boxes denote the samples used for training 

during the specified step. The size of a rectangle represents the number of training samples 

available for each class
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Fig. 5. 
Comparison of the best performances of the competing methods, regardless of the learning 

schemes for a SAE model
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Fig. 6. 
Comparison of the best performances between lasso- and group lasso-based feature selection 

methods
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Fig. 7. 
Frequencies of the selected ROIs in AD vs. HC classification. Blue and red bars correspond, 

respectively, to the original low-level features and the SAE-learned feature representations
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Fig. 8. 
Frequencies of the selected ROIs in MCI vs. HC classification. Blue and red bars 

correspond, respectively, to the original low-level features and the SAE-learned feature 

representations

Suk et al. Page 31

Brain Struct Funct. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 9. 
Frequencies of the selected ROIs in AD vs. MCI classification. Blue and red bars 

correspond, respectively, to the original low-level features and the SAE-learned feature 

representations
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Fig. 10. 
Frequencies of the selected ROIs in MCI-C vs. MCI-NC classification. Blue and red bars 

correspond, respectively, to the original low-level features and the SAE-learned feature 

representations
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Table 1

Demographic and clinical information of the subjects

AD
(N = 51)

MCI
converter
(N = 43)

MCI non-
converter
(N = 56)

HC
(N = 52)

Female/male 18/33 15/28 17/39 18/34

Age (mean ± SD) 75.2 ± 7.4 [59–88] 75.7 ± 6.9 [58–88] 75.0 ± 7.1 [55–89] 75.3 ± 5.2 [62–85]

Education (mean ± SD) 14.7 ± 3.6 [4–20] 15.4 ± 2.7 [10–20] 14.9 ± 3.3 [8–20] 15.8 ± 3.2 [8–20]

MMSE (mean ± SD) 23.8 ± 2.0 [20–26] 26.9 ± 2.7 [20–30] 27.0 ± 3.2 [18–30] 29 ± 1.2 [25–30]

CDR (mean ± SD) 0.7 ± 0.3 [0.5–1] 0.5 ± 0 [0.5–0.5] 0.5 ± 0 [0.5–0.5] 0 ± 0 [0–0]

N number of subjects, SD standard deviation, [min–max]
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Table 2

Classification accuracies (mean ± standard deviation) obtained from SAE-classifiers and their corresponding 

structures in terms of the number of hidden units

Supervised Semi-supervised

# Hidden units Accuracy # Hidden units Accuracy

AD vs. HC

  MRI 500-50-10 0.857 ± 0.018 300-50-20 0.844 ± 0.025

  PET 1,000-50-30 0.859 ± 0.021 100-50-10 0.834 ± 0.020

  CSF 50-3 0.831 ± 0.016 10-3 0.757 ± 0.048

  CONCAT 500-100-20 0.899 ± 0.014 1,000-100-10 0.888 ± 0.009

MCI vs. HC

  MRI 100-100-20 0.706 ± 0.021 500-50-20 0.697 ± 0.032

  PET 300-50-10 0.670 ± 0.018 500-50-20 0.673 ± 0.021

  CSF 10-3 0.683 ± 0.020 10-2 0.664 ± 0.021

  CONCAT 100-50-20 0.737 ± 0.025 100-50-20 0.752 ± 0.025

AD vs. MCI

  MRI 1,000-50-30 0.645 ± 0.024 1,000-50-10 0.655 ± 0.027

  PET 100-50-10 0.659 ± 0.017 500-50-10 0.655 ± 0.026

  CSF 10-1 0.661 ± 0.009 10-1 0.660 ± 0.013

  CONCAT 100-100-20 0.689 ± 0.023 1,000-100-20 0.672 ± 0.025

MCI-C vs. MCI-NC

  MRI 100-100-10 0.549 ± 0.037 300-100-30 0.571 ± 0.036

  PET 100-100-10 0.595 ± 0.044 100-50-30 0.581 ± 0.045

  CSF 30-2 0.589 ± 0.026 30-1 0.562 ± 0.020

  CONCAT 500-50-20 0.602 ± 0.031 300-100-30 0.613 ± 0.042

Refer to Fig. 4a, b, and the contexts for explanation of ‘supervised’ and ‘semi-supervised’
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Table 3

Performance comparison of different feature sets with lasso-based feature selection in AD vs. HC 

classification

AD vs. HC

LLF SAEF LLF + SAEF

Supervised

    MRI 0.890 ± 0.018 0.821 ± 0.026 0.882 ± 0.019

    PET 0.848 ± 0.026 0.832 ± 0.020 0.850 ± 0.018

    CSF 0.797 ± 0.014 0.802 ± 0.017 0.801 ± 0.018

    CONCAT 0.937 ± 0.013 0.835 ± 0.018 0.935 ± 0.012

  MK-SVM 0.970 ± 0.010 0.947 ± 0.018 0.979 ± 0.007

Semi-supervised

    MRI – 0.838 ± 0.028 0.924 ± 0.015

    PET – 0.827 ± 0.023 0.887 ± 0.027

    CSF – 0.785 ± 0.033 0.797 ± 0.014

    CONCAT – 0.889 ± 0.018 0.960 ± 0.014

  MK-SVM – 0.945 ± 0.017 0.988 ± 0.004

Bold best performance across both the feature types and the learning schemes, italics best performance across the feature types in the same learning 
scheme
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Table 4

Performance comparison of different feature sets with lasso-based feature selection in MCI vs. HC 

classification

MCI vs. HC

LLF SAEF LLF + SAEF

Supervised

    MRI 0.736 ± 0.013 0.674 ± 0.020 0.802 ± 0.016

    PET 0.683 ± 0.016 0.672 ± 0.027 0.745 ± 0.018

    CSF 0.678 ± 0.020 0.662 ± 0.023 0.679 ± 0.022

    CONCAT 0.756 ± 0.022 0.726 ± 0.031 0.836 ± 0.005

  MK-SVM 0.848 ± 0.014 0.799 ± 0.024 0.888 ± 0.012

Semi-supervised

    MRI – 0.709 ± 0.022 0.794 ± 0.019

    PET – 0.682 ± 0.021 0.749 ± 0.025

    CSF – 0.664 ± 0.019 0.682 ± 0.013

    CONCAT – 0.724 ± 0.033 0.833 ± 0.020

  MK-SVM – 0.808 ± 0.017 0.907 ± 0.012

Bold best performance across both the feature types and the learning schemes, italics best performance across the feature types in the same learning 
scheme
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Table 5

Performance comparison of different feature sets with lasso-based feature selection in AD vs. MCI 

classification

AD vs. MCI

LLF SAEF LLF + SAEF

Supervised

    MRI 0.617 ± 0.020 0.631 ± 0.023 0.704 ± 0.026

    PET 0.667 ± 0.023 0.645 ± 0.015 0.711 ± 0.025

    CSF 0.659 ± 0.004 0.661 ± 0.002 0.655 ± 0.009

    CONCAT 0.693 ± 0.019 0.681 ± 0.023 0.752 ± 0.030

  MK-SVM 0.788 ± 0.018 0.759 ± 0.019 0.827 ± 0.025

Semi-supervised

    MRI – 0.659 ± 0.025 0.721 ± 0.039

    PET – 0.640 ± 0.021 0.715 ± 0.024

    CSF – 0.659 ± 0.002 0.659 ± 0.005

    CONCAT – 0.682 ± 0.022 0.781 ± 0.028

  MK-SVM – 0.757 ± 0.017 0.837 ± 0.015

Bold best performance across both the feature types and the learning schemes, italics best performance across the feature types in the same learning 
scheme
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Table 6

Performance comparison of different feature sets with lasso-based feature selection in MCI converter (MCI-C) 

vs. MCI non-converter (MCI-NC) classification

MCI-C vs. MCI-NC

LLF SAEF LLF + SAEF

Supervised

    MRI 0.541 ± 0.042 0.544 ± 0.026 0.561 ± 0.037

    PET 0.573 ± 0.025 0.598 ± 0.048 0.611 ± 0.039

    CSF 0.569 ± 0.017 0.581 ± 0.028 0.576 ± 0.032

    CONCAT 0.597 ± 0.034 0.596 ± 0.030 0.713 ± 0.030

  MK-SVM 0.760 ± 0.020 0.733 ± 0.035 0.779 ± 0.027

Semi-supervised

    MRI – 0.559 ± 0.060 0.693 ± 0.020

    PET – 0.573 ± 0.029 0.689 ± 0.038

    CSF – 0.548 ± 0.024 0.577 ± 0.030

    CONCAT – 0.596 ± 0.048 0.786 ± 0.032

  MK-SVM – 0.737 ± 0.031 0.833 ± 0.021

Bold best performance across both the feature types and the learning schemes, italics best performance across the feature types in the same learning 
scheme
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Table 7

Statistical significance (paired t test) between the classification accuracies obtained from LLF and LLF + 

SAEF, which used supervised and semi-supervised learning schemes, respectively

AD vs.
HC

MCI vs.
HC

AD vs.
MCI

MCI-C vs.
MCI-NC

MRI 0.0014 4.18e–06 2.32e–06 2.67e–06

PET 0.0025 3.26e–05 2.51e–04 2.51e–06

CSF 0.8673 0.4031 0.9955 0.2357

CONCAT 0.0014 5.74e–07 2.53e–05 2.18e–06

MK-SVM 8.45e–04 5.78e–07 5.36e–05 9.28e–06

All 0.005 6.70e–16 2.80e–12 3.43e–11
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