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Abstract

Increasing the clinical applicability of functional neuroimaging technology is an emerging

objective, e.g., for diagnostic and treatment purposes. We propose a novel Bayesian spatial

hierarchical framework for predicting follow-up neural activity based on an individual’s baseline

functional neuroimaging data. Our approach attempts to overcome some shortcomings of the

modeling methods used in other neuroimaging settings, by borrowing strength from the spatial

correlations present in the data. Our proposed methodology is applicable to data from various

imaging modalities including functional magnetic resonance imaging (fMRI) and positron

emission tomography (PET) and we provide an illustration here using PET data from a study of

Alzheimer’s disease to predict disease progression.
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1. Introduction

Functional neuroimaging quantifies noninvasive measures of neurophysiology and

neuroreceptor binding and helps to define the neural basis of illnesses and risk factors for

major psychiatric disorders such as depression, schizophrenia and Alzheimer’s disease

(AD). The clinical capabilities of neuroimaging tools for guiding treatment decisions for

such disorders, however, have not been fully established. There is emerging interest in using

functional neuroimaging to guide treatment selections for individual patients and to predict

the progression of disease, prompting the need to develop statistical methodology that would

provide clinicians with predictive information about patients’ brain activity. Such methods

may assist clinicians in making treatment decisions by forecasting post-treatment neural

activity. In studying the progression of dementia, they can identify preclinical changes that

may predict, for example, the onset of Alzheimer’s disease.

Functional brain imaging, such as functional magnetic resonance imaging (fMRI) and

positron emission tomography (PET), has only recently been used to predict brain and

clinical outcomes in individual patients. [1] proposed a predictive statistical model for PET

and fMRI data, using a Bayesian hierarchical framework, that uses patient’s pretreatment
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scans, coupled with relevant patient characteristics, to predict brain activity in schizophrenic

patients after a specified treatment regimen. [2] used relevance vector regression (RVR) to

predict clinical scores from individual scans. In particular, they used individuals’ MRI T1

weighted images to predict their performances on established tests used in the evaluation of

Alzheimer’s disease. Predicted and actual clinical scores were highly correlated. Their

analysis uses only structural MRI, rather than neural activity derived from fMRI or PET

scans.

Recently, Gaussian processes (GPs), based on Bayesian theory, emerged as an alternative to

Support Vector Machines (SVM). A GP is a generalization of the multivariate Gaussian

distribution to infinitely many dimensions, with the distribution of the process at any finite

number of points having a multivariate normal distribution. [3] evaluate the predictive

capability of GP models for two types of quantitative prediction: multivariate regression and

probabilistic classification, using whole-brain fMRI volumes from a study investigating

subjective responses to thermal pain. They show that GP regression models outperform

support vector and relevance vector regression.

Although each of these methods represents an important contribution to predicting treatment

outcome or brain activity based on neuroimaging data, none uses the spatial information

from the neighboring voxels/regions to improve the prediction accuracy. In addition to

background spatial correlations inherent in neuroimaging data, functional neuroimaging data

naturally exhibit correlations due to underlying functional connectivity. We propose a model

that borrows strength from such correlations, with the goal of improving prediction.

[4] and [5] provide a spatial Bayesian hierarchical model for analyzing functional

neuroimaging data that establishes a unified framework to obtain neuroactivation inferences

as well as task-related functional connectivity inferences. The model combines whole-brain

voxel-by-voxel modeling and ROI analyses. An unstructured variance/-covariance matrix

for regional mean parameters allows for the study of inter-regional (long-range) correlations,

and the model employs an exchangeable correlation structure to capture intraregional

(shorter-range) correlations. A major limitation of this approach for prediction, however, is

that it does not capture temporal correlations between the brain activity in repeated scanning

sessions.

We propose a novel Bayesian hierarchical framework for predicting follow-up neural

activity based on the baseline functional neuroimaging data that attempts to overcome some

shortcomings of the modeling methods used in other neuroimaging settings by borrowing

strength from the spatial correlations present in the data.

Several types of correlations are addressed at various levels of our hierarchical model.

Correlations between repeated scanning sessions are addressed through regional covariance

matrices between the baseline and follow-up glucose uptake. Long-range spatial correlations

between anatomical brain regions are incorporated through the unstructured covariance

matrix of the random effect parameters. Intermediate-range correlations are incorporated

through within region (exchangeable) random effects structure, and short-range correlations
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between neighbouring voxels are incorporated through a multivariate conditional

autoregressive (CAR) structure within first–order neighborhood.

We apply our method to data from a study of Alzheimer’s disease and compare it to other

competing methods. We also present results from a simulation study to evaluate the

accuracy of our estimation procedure.

2. Experimental Data

We use data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study (http://

www.loni.ucla.edu/ADNI/). The goal of this national multi-center project is to develop

biomarkers of Alzheimer’s Disease (AD) in elderly subjects. We consider [18F]-2-uoro-2-

deoxy-2-glucose (FDG) PET scans obtained at baseline (screening) and 6 months. FDG is

an analogue of glucose, and in PET it yields concentrations of the injected tracer indicating

tissue metabolic activity, in terms of regional glucose uptake. For more details about the

ADNI, see [6].

Participants are classified as having mild cognitive impairment (MCI), as Alzheimer’s

disease (AD) patients, or as healthy controls (HC). The data from 40 AD and 40 HC subjects

were used in the training step of the prediction model development. The model is then

applied for predicting the month 6 follow-up PET scan, based on the baseline scan, for an

additional group of 33 AD and 33 HC subjects.

The processing steps for the PET scans are as follows. (1) Co-registration: In most cases, six

five-minute frames are acquired 30 to 60 minutes post-injection. Each extracted frame is co-

registered to the first extracted frame of the raw image file. (2) Averaging: the six five-

minute frames of the co-registered image set are averaged to create a single 30 min PET

image. (3) Standardizing image and voxel size: Each subject’s co-registered, averaged image

from their baseline PET scan is reoriented into a standard 160 × 160 × 96 voxel image grid,

having 1.5 mm cubic voxels. This standardized image then serves as a reference image for

all PET scans on that subject. (4) Spatial smoothing: Each image set is filtered with a

scanner-specific filter function (can be a non-isotropic filter) to produce images of a uniform

isotropic resolution of 8 mm FWHM, the approximate resolution of the lowest resolution

scanners used in ADNI. In addition to the above preprocessing steps, we performed a spatial

normalization to a standard 91 × 109 × 91 MNI space (see [7]).

The following covariates were included in our analysis: the Alzheimer’s Disease

Assessment Scale – cognitive subscale [ADAS-Cog] and the subjects’ ages (in years).

ADAS was designed to measure the severity of the most important symptoms of AD. Its

subscale ADAS-cog consists of 11 tasks measuring the disturbances of memory, language,

praxis, attention and other cognitive abilities, which are often referred to as the core

symptoms of AD.

3. Methodology

We propose a novel Bayesian hierarchical framework for predicting follow-up (or post-

treatment) neural activity based on the baseline (or pre-treatment) functional neuroimaging
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data. Our prediction model borrows strength from the spatial correlations present in the data

(both local, between-voxel, correlations and more long-range, between-region correlations).

The model builds on the proper multivariate conditional autoregressive model (MCAR

(ρ,Σ)) proposed in [8]. Our algorithm is similar to the predictive method of [1], but our

proposed model incorporates spatial information between neighbouring regions, in addition

to capturing correlations between repeated scans, thus providing additional information

about neural processing. Our model can also be seen as an extension of a hierarchical model

for functional neuroimaging data proposed by [4]. Using our proposed method, we analyze

the PET data from the study of Alzheimer’s disease described in Section 2.

3.1 Model and Estimation

We consider an anatomical parcellation of the brain consisting of g = 1, …, G regions,

where we may set G to be as high as 116 ([7]). Alternative anatomical parcellations are also

available, such as those based on Brodmann regions ([9]). Let i = 1, …, n denote subjects, v

= 1, …, V voxels, and let Vg represent the number of voxels in a particular region indexed by

g. We denote the regional glucose use, as a proxy for brain activity at voxel v, by Y (v). Let

Yig(v) = (Yig(v)(1), Yig(v)(2))T, where superscripts (1) and (2) denote the baseline and follow-

up scans, respectively. Before processing, a local neighbourhood of each voxel included in

the analysis must be selected, for the voxel-level spatial modeling. We apply a three-

dimensional (3D) neighborhood structure containing the 26 immediate neighboring voxels:

9 above, 9 below, and 8 adjacent. In addition, we consider only within-region neighbours.

For each voxel, the neighbourhood information is saved in a connectivity matrix W. W =

{wvv′}(V×V) is a symmetric matrix (i.e. wvv′ = 1 if voxel v′ is in the defined 3D neighborhood

of v), and wv+ is the sum of the elements in row v of W.

We propose a multivariate Bayesian hierarchical model that accounts for both spatial

correlations between intra-regional voxels, and between regions. The model also accounts

for correlations between baseline and follow-up regional glucose use. In particular, our

proposed model has the following hierarchical structure:

(1)

where j denotes the scanning session (i.e., j = 1 − baseline and j = 2 − follow-up).

For each voxel v, the subject-specific quantities Yig(v) are assumed to vary randomly about a

mean determined by a population-level mean parameter βg(v) = (βg(v)(1),βg(v)(2))T, a
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population-level spatial dependence parameter ϕg(v) = (ϕg(v)(1), ϕg(v)(2))T, an individualized

random effect component  and the covariates’ parameters

.  is a 2 × 2Q

matrix containing the mean-centered subject-specific covariates, where Q is the number of

covariates in the model. We express vectors of random effects across the entire brain as

, where j denotes the baseline and follow-up sessions, and

. Given {βg}, {ϕg}, {αig}, {γgv} and Zg, the {Yig} are conditionally

independent.

At the second level, the model expresses a prior belief that each voxel’s population mean

(for the j-th session) arises from a normal distribution with a mean given by the overall

region mean β0gj and variance . It represents a reasonable starting point to assume that

voxels within anatomically defined regions exhibit brain activity that deviates around an

overall mean for that region.

Spatial associations are introduced through random effects in the mean structure of the data.

Bivariate spatial random effects at the voxel level call for a multivariate CAR (MCAR)

specification, where ρ is a scalar parameter representing the overall degree of spatial

dependence and Σ is the covariance matrix between ϕv and ϕv′. The connectivity (proximity)

matrix W used in the MCAR prior for the spatial random effects ϕ is based on the 3D

neighbourhood structure described above.

The parameter ρ determines the magnitude of the spatial neighbourhood effect. Following

[8], we specify a discrete uniform prior for the spatial autoregression parameter ρ. We

assume ρ < 1 to ensure propriety, we do not allow ρ < 0 since this would violate the

similarity of spatial neighbours which we seek, and we place prior mass which favors the

upper range of ρ. In particular, we put equal mass on the following 36 values: 0, 0.05, 0.1,

…, 0.8, 0.81 0.82, …, 0.90, 0.91, 0.92, …, 0.99. In addition to the local MCAR correlations,

we also have exchangeable within-region correlations introduced by the random effects

structure.

The model also captures potential functional connections between anatomical brain regions

through the covariance matrix Γj. We specify a conjugate inverse-Wishart prior for Γj,

allowing a flexible unstructured covariance matrix. The multivariate structure enables us to

compute the between-region connectivity matrix, separately for each session. Finally,

hyperpriors on the MCAR parameters and other hyperparameters complete the model.

Estimation—Estimation is performed using Markov Chain Monte Carlo (MCMC)

techniques implemented via Gibbs sampling. Applying MCMC methods in our context is

complicated by the massive amount of data, the large number of spatial locations, and the

large number of parameters that need to be estimated. The Gibbs-friendly model

specification facilitates estimation by providing substantial reductions in computing time
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and memory. We present the full conditionals required to run the Gibbs sampler in the

Appendix.

3.2 Prediction

We use the summary statistics (e.g. mean) from the posterior samples to predict the session

2 (month 6) scans for future patients, based on their baseline scans. The prediction proceeds

as follows. We first draw the covariance matrix Γ from its full conditional distribution. We

then draw αi’s, given Γ, from the prior distribution for α. Letting Yi*1 denote the baseline

scan and Yi*2 the month 6 scan for a future subject, we have the necessary information

(parameter estimates for β, ϕ, Γ, γ, Z, α and the covariate matrix X) to estimate Yi*2|Yi*1.

At the region level, let , where Y1 contains all the session 1 voxel values,

and Y2 all the session 2 voxel values. For region g, then

, where Σg =Zg ⊗ Ivg.

From model (1), it follows that Yi*,2|Yi*,1 ~ N(bi*g, Ai*g). For region g,

, and μi*g = βg + ϕg + 1Vg ⊗ αi*g + 1Vg ⊗ Xi*gv

γgv.. μi*g,2 is a vector consisting of even elements of μi*g. Writing , we see

that .

By inputting the posterior mean of the parameters obtained from the MCMC estimation, we

obtain the estimated conditional mean b̂
i*g and covariance matrix Âi*g. The follow-up

regional glucose uptake Yg,2 is predicted using the mean of the estimated conditional

distribution, i.e. b̂
i*g. Also, a 100(1−α)% prediction interval for Yg,2 can be constructed

based on the estimated conditional variance.

3.3 Model Validation: Estimation of the prediction error

For each of the two groups (AD and HC) in the ADNI data, we applied our algorithm to

predict the follow-up regional glucose uptake for 33 new (test) subjects using the estimated

parameters from the training data. We quantify the prediction error by comparing the

observed and predicted follow-up (month 6) brain activity. In neuroimaging, prediction of

the brain activity is performed on each voxel, and the prediction error is evaluated across all

voxels. Typical squared or absolute error functions are inappropriate since the brain activity

measurement (such as regional glucose uptake, or BOLD signal) has different baseline

values across the brain. We propose the use of a scale-free loss function so that the

prediction error is comparable across all brain voxels. The proposed function is the ratio of

the square root of the PMSE and the average effects at voxel v. Specifically, this function

(we will refer to it as the “standardized square root of the prediction mean squared error –

stPMSE”) is defined as
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(2)

This measure of prediction error is similar to one proposed by [1]. We scale by an average

of the observed, not the predicted values at voxel v, therefore, our measure will be more

stable, e.g., against overestimated predicted values.

4. Results

We apply our Bayesian spatial hierarchical model to PET data from the study of

Alzheimer’s disease (ADNI). We considered 39 regions relevant to AD in our analysis,

which were selected from a set of 46 regions of interest considered in the Alzheimer’s

disease study in [4]. The complete list of the regions with region sizes is given in Table A1,

Supplementary Material, section 3. Areas of the temporal and limbic lobes are of particular

interest, having been indicated as having either increased or decreased encoding activity

between at-risk subjects and controls in the first wave of the Alzheimer’s data or being

thought to be involved with the (verbal memory) paradigm ([10]). We limit the number of

regions in the analysis to be smaller than the number of subjects in the smallest group (in our

case, 40) in order to reliably estimate the between-region covariance parameters.

Our model captures spatial correlations at three levels: a) the short-range spatial correlation

between voxels within a defined anatomic region, b) exchangeable within-region

correlations introduced by the random effects structure and c) the (potentially) long-range

inter-regional connectivity, stemming from the covariance matrix Γj, of the random effect

parameters αij. We specify a Wishart prior for .

For the inverse-Wishart prior, the degrees of freedom must satisfy hj ≥ G to yield a proper

prior distribution. This prior becomes more diffuse as hj gets smaller [11]; hence, we set hj =

G to reflect the most diffuse proper prior that our data can support. A seemingly natural

choice for Hj is a point estimate of Γj. We use the sample covariance matrix to obtain Hj,

calculated from the subject-specific mean activity levels in each of the anatomical regions.

In addition, we examine the sensitivity of our results to the sample covariance matrix by

artificially reducing the correlations (covariances) using . We

also use inverse-Wishart priors for Σ and Zg, i.e.Σ−1 ~ Wishart ((c2Ω2)−1, c2),

, where Ω1 and Ω2 are 2 × 2 matrices and c1 and c2 are shape

parameters. Since we have no prior knowledge regarding the nature and extent of

dependence, we choose Ω1 and Ω2 to be diagonal. The data will inform about dependence a

posteriori. We set c1 = c2 = 4 to provide low precision for these priors.

To complete our Bayesian hierarchical model, we set a1 = a2 = 0.1, b1 = 0.005, b2 = 0.001,

and hj = G, resulting in vague or weakly informative priors, to ensure that the information in

the data primarily governs the results. However, more informative priors may be employed

when fairly precise information is available.
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To estimate the model parameters, we performed 3,000 iterations with burn-in of 2,000

iterations (5,000 iterations in total) and thinning of 5 iterations (for storage and computation

time). The programming was done in Matlab. The estimation was performed on a Linux

cluster. The test/experiment environment consisted of an 8-core system with 16GB of RAM.

Each Matlab job was given a dedicated CPU and ran for approximately 26 hours. Future

optimizations include taking advantage of the multi-threaded nature of several Matlab image

analysis functions or using the Matlab Distributed Computing Environment to use multiple

cores per job for speed improvements.

Due to a large number of parameters in our model, it is impractical to monitor the trace plots

for each of the parameters. Also, running parallel chains is recommended to monitor how

the chains mix. We obtained trace plots for a number of randomly selected voxels in several

regions, for each of the voxel-level parameters. Several plots and histograms are given in

Supplementary Material, section 3. The chains obtained from the Gibbs sampler (trace plots)

are satisfactory, i.e., the generated Markov chains seem to converge, after the burn-in period,

to our distributions of interest. We also monitored the trace plots for other (region-specific

and scalar) parameters and found them to be satisfactory.

4.1 Prediction of brain activity for PET data from a study of Alzheimer’s disease (ADNI)

We apply the proposed prediction algorithm to forecast the follow-up regional glucose

uptake for each of the subjects in the test data set, which consists of 33 subjects in each

group. Our algorithm provides individualized predictions of the regional glucose uptake,

based on the unique information in each subject’s baseline scan and relevant personal

characteristics (e.g., ADAS-cog score). For prediction, we estimate the covariate effect at

the second scanning session by the mean of the second session in the training data. For both

groups (AD and HC), the posterior mean of the spatial effect ρ was 0.99, for both scanning

sessions, indicating very strong spatial dependence. Also, estimated covariance matrices

between the baseline and follow-up regional glucose uptake at a region level, Zg, yield high

between-session correlations (> 0.7 for almost all regions) at a region level.

4.1.1 Individualized prediction maps—Figure 1 shows the individual prediction maps

of the regional glucose uptake at 6 month follow-up for four selected AD patients. The

prediction maps for several other subjects are given in Supplementary Material, section 3.

We see that there are notable differences between subjects in the predicted follow-up

activity, indicating that possibly different stages of the disease are present in those

individuals. We compare the individual predicted maps (Figure 1 (a)) to the observed maps

(Figure 1 (b)) and notice strong agreement between the observed and predicted brain

activity. Similar correspondence is observed for most of the subjects. The individual

prediction maps, such as those in Figure 1 (a), highlight possible individual differences in

the progression of the disease.

We also predict the follow-up brain activity for the healthy controls test data set, which

consisted of 33 subjects. The results for four selected subjects are given in Figure 2. Similar

satisfactory agreement is observed between the predicted and observed maps. We also notice

that this group exhibits smaller between-subject differences than the AD group.
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4.2 Comparisons with competing prediction models

We compare our prediction results with the results obtained using three proposed competing

methods: the General Linear Model (GLM) [12] based method, the method based on the

Bayesian hierarchical model (BHM) proposed in [1], and the method based on the Bayesian

spatial hierarchical model for activation and connectivity analysis (BSMac) proposed in [4]

and [5].

Comparison with predictions based on the GLM: The GLM models the brain activity for

all subjects using common population parameters. Independence and sphericity between

scans at baseline and at follow-up scans are assumed. Estimates from the GLM are obtained

using OLS. The predicted follow-up brain activity reflects only the population-level

expectation and does not take into account the information from the subject’s pretreatment

scans. That is, , where subscript 2 denotes session 2 (follow-up) brain

activity at region g, superscript * denotes the new subject, and β̂
g denotes the estimate of the

session 2 mean parameter obtained from the training data set. Figure 3(d) displays the square

root of the PMSE, relative to the average brain activity, based on the GLM.

Comparison with prediction based on BSMac: The prediction algorithm based on the

BSMac is defined in a similar way to the algorithm based on our proposed BSPM. Since

BSMac does not estimate the correlations between baseline and follow-up brain activity

scans (Yi’s ), i.e., temporal correlations, we estimate those by the sample covariances, at a

voxel level. The local spatial parameters are also not estimated, and are dropped from the

estimated conditional mean. Figure 3(c) displays the square root of the PMSE, relative to the

average brain activity, based on the BSMac.

Comparison with predictions based on the BHM: The prediction based on the Bayesian

hierarchical model proposed in [1] enables individualized follow-up predictions of brain

response by incorporating the unique information in each subject’s baseline functional brain

scans and other relevant personal characteristics (covariates). The model also captures the

correlations between baseline and follow-up brain activity scans, which enables a similar

prediction algorithm to ours. Figure 3(b) displays the square root of the PMSE, relative to

the average brain activity, based on the BHM.

A comparison between Figure 3(a) and Figure 3(d) indicates that prediction errors based on

our proposed model are lower than those from the GLM, on average. The average error

(total sum over all voxels, divided by the number of voxels included in the analysis), for the

model based on the GLM is 0.156. Also, the superiority of our prediction model is

consistently observed across the brain. A comparison between Figure 3(a) and Figure 3(c)

indicates that the prediction errors based on our proposed model are also lower than those

from the BSMac, on average. We also notice improvement over the GLM model. The

average errors are 0.083 for the BSPM, 0.080 for BHM, 0.104 for the BSMac, and 0.156 for

the GLM based prediction method.

Although, for some subjects in this study, there is a strong similarity between the baseline

and the month 6 scans, our model draws more predictive power than the prediction based on
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the baseline data only. The average error (the whole-brain accuracy) for the ‘baseline only

prediction’ (calculated using the stPMSE (2)) is 0.085, compared to 0.083 for our method.

Likely, larger differences would occur for the month 24 follow-up images when compared

to baseline. We give more details and show figures with the baseline, the observed and the

predicted follow-up (month 6) images, for some selected subjects, in the Supplementary

Material.

A comparison between Figure 3(a) and Figure 3(b) indicates that, for these experimental

data, the prediction errors based on our proposed model and the model proposed in [1] are

very comparable (the difference in average errors is in the third decimal place). However, an

additional advantage of our approach is that using our model, for example, inter-regional

functional correlations can be estimated through the covariance matrix Γj. The functional

connectivity maps in Figure 4 display selected regions in a brain, with lines connecting

regions that have (posterior median) correlations exceeding 0.75. The line thicknesses

depends on the strengths of the inter-regional correlations.

5. Simulation

We performed a small simulation study to evaluate the accuracy of our estimation

procedure. To generate data for the simulations, we selected 5 regions from the Automated

Anatomical Labeling (AAL) map [7] (regions 79, 73, 15, 13, and 85) with sizes ranging

from 234 to 4,655 voxels and simulated data for 15 subjects. We used our experimental data

described in Section 2 to specify the true values for βg, spatial parameters ϕg, random effects

parameters αi, and the covariate parameters γg. The rest of the (hyper)parameters were

drawn from the prior distributions specified in the model. After all the parameters that define

the mean and the covariance parameters in model (1) were specified, 200 simulated data sets

were drawn, with the specified mean parameters and the variance-covariance matrix. We

then applied our estimation procedure to each of the data sets and analyzed the posterior

distributions of the parameters. Table 5 summarizes the results for the parameters of the

covariance matrix Zg, for each of the 5 selected regions. We see that the biases for the

covariance matrix parameters Zg are small, for each of the regions. Also, the spatial

parameter ρ has only a small bias: we set the true value in the simulated data sets to 0.9 and

the mean of the estimated ρ, across 200 data sets, was found to be 0.9134 (for each data set,

we first find a median of the parameter’s posterior distribution, then average those medians).

Posterior means of the estimated voxel-level parameters (for randomly selected 25 voxels in

each region), as well as the posterior means of the random effects αij are presented in the

Supplementary Material, section 4.

Parameters that are most relevant to the prediction (β’s, ϕ’s, α’s, Zg) have small or relatively

small biases, while the parameters that contribute to the prediction less directly, have larger

biases.

6. Discussion

In this paper we describe a framework for spatiotemporal modeling of functional

neuroimaging data that provides important advantages over some other methods. We

propose a novel method for predicting post-baseline (or follow-up) brain scans, based on the
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baseline scans. The prediction algorithm is based on a novel Bayesian spatial hierarchical

model. Our method is applicable in many clinical situations (e.g., for predicting the

progression of a disease, or to predict after treatment brain activity, based on the baseline

(pre-treatment) activity). The proposed method may be useful in clinical situations where it

is too costly to acquire multiple (repeated) scans on the same subjects.

Our model builds on the predictive model proposed by [1], and a spatial Bayesian

hierarchical model proposed by [4], by incorporating a proper multivariate CAR prior for

the spatial effect. The proposed model captures the short-range correlations between voxels

within a defined anatomical region as well as the (potentially) long-range inter-regional

correlations, which provide information about functional connectivity between the brain

regions. We consider a 3D neighbourhood structure for estimation of the local spatial

associations.

Based on the proposed model, we formulate a prediction algorithm for the follow-up brain

activity, based on an individual’s baseline functional neuroimaging data and relevant subject

characteristics. By borrowing strength from the spatial information, we achieved improved

prediction as compared to a couple of competitive prediction models (GLM and BSMac).

Our prediction method is comparable to the method by [1], but it offers some additional

advantages, e.g., estimation of long-range inter-regional spatial correlations through the

covariance matrix Γj (Figure 4).

We apply our Bayesian spatial hierarchical model to the PET data from the study of

Alzheimer’s disease, but the same methodology can easily be applied to data from an fMRI

study. In that case, individual summary statistics (i.e., regression coefficients) from a typical

first stage GLM based fMRI data analysis would first be obtained (in practice often obtained

using software packages such as SPM or FSL), and then used as Y’s in our model (1).

One of the limitations of our proposed method is that the computing time is very long (even

for relatively small number of iterations of 3,000) for the estimation part of the algorithm.

However, this step is done one time, and the prediction step is very fast (it is in order of

seconds per one individual). Computing time can be improved by implementing some

parallel computing steps (as described in Section 4). Another limitation is that we consider

only within-region local 3D neighbourhood in our model, which results in some region

border effects in the prediction maps. We will consider across-region local 3D

neighbourhood in our future work. Also, we propose a separable bivariate spatial model for

computational reasons and simplicity. Using two separate spatial effect parameters could be

considered in future analyzes to see whether these differ for different scanning sessions.

Some recent studies ([13], [14], [15]) found that the β-amyloid protein 1–42, total tau

protein, and phosphorylated tau181P protein concentrations, each derived from cerebral

spinal fluid in the brain, may be clinically relevant biological markers for the differential

diagnosis of AD. These biological measures may, therefore, serve as potentially useful

covariates (predictors) in our model. Some of these proteins were collected in the ADNI

study, but the rate of missing data (among subjects with FDG-PET scans) was too

substantial for inclusion in our analysis.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

We give the full conditional distributions of the parameters in the model. We note that the

expressions are written at a region level (i.e. for βg, instead of βg(v)). The details on how the

formulas for the full conditionals are derived are given in Supplementary Material, section 2.

The full conditionals are given by the following (we omit notation for conditioned variables

for simplicity):

1. βg ~ N(ΩgTg, Ωg), where

, and rig = Yig − ϕg −1 ⊗ αig − 1 ⊗ Xig γg

2. The full conditional distribution for ϕv is a likelihood adjusted version of the

conditional distribution for MCAR(ρ, Σ).

ϕv ~ N(HvPv, Hv), where

, and .

3. αi ~ N(ΨP, Ψ), where ,

, and

, while .

4.
.

5.
, where uigv = Yig(v) −

βg(v) − ϕg(v) − αig − Xigγg.

6.

, where V is the total number of voxels included in the analysis (with at least one

within-region neighbour).

7.

, where 

and , for j = 1,2.

8. For the spatial parameter ρ, we set an array of values and take a uniform prior on

that set. The full conditional distribution of the spatial parameter ρ is just the
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corresponding set of normalized likelihood weights. More details are given in

Supplementary Material, part 2.

9. γg ~ N(Ωγg Tγg, Ωγg) where

, uig

= Yig − βg − ϕg − 1Vg ⊗ αig and .

10.
.

Derado et al. Page 14

Stat Methods Med Res. Author manuscript; available in PMC 2014 September 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Individualized predicted and observed month 6 follow-up regional glucose uptake

measurements for 4 AD patients from the test data set. Axial slice 40 is shown in

radiological view. There is a satisfactory agreement between the observed and predicted

post-treatment regional glucose uptake.
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Figure 2.
Individualized predicted and observed month 6 follow-up regional glucose uptake

measurements for 4 HC subjects from the test data set; axial slice 40 is shown in

radiological view. There is a satisfactory agreement between the observed and predicted

post-treatment regional glucose uptake.
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Figure 3.
The images depict the square root of the prediction mean square error, divided by the

average observed brain activity (stPMSE, (2)) at each voxel for prediction of the follow-up

activity for 33 test subject in the AD group. Axial slices 35, 40 and 45 are shown (in

radiological view) of the stPMSE map based on (a) our proposed model, (b) BHM proposed

in [1], (c) BSMac proposed in [4], and (c) GLM. Average errors: 0.083 for the BSPM (a),

0.080 for the BHM (b) 0.104 for the BSMac (c), and 0.156 for the GLM (d).
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Figure 4.
Region functional connectivity for AD (top) and HC (bottom) subjects. The regions that

have (posterior median) correlations exceeding 0.75 are shown. The connecting lines have

different thicknesses, corresponding to the strength of the inter-regional correlations.
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