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Abstract

Mining discriminative features for graph data has attracted much attention in recent years due to 

its important role in constructing graph classifiers, generating graph indices, etc. Most 

measurement of interestingness of discriminative subgraph features are defined on certain graphs, 

where the structure of graph objects are certain, and the binary edges within each graph represent 

the “presence” of linkages among the nodes. In many real-world applications, however, the 

linkage structure of the graphs is inherently uncertain. Therefore, existing measurements of 

interestingness based upon certain graphs are unable to capture the structural uncertainty in these 

applications effectively. In this paper, we study the problem of discriminative subgraph feature 

selection from uncertain graphs. This problem is challenging and different from conventional 

subgraph mining problems because both the structure of the graph objects and the discrimination 

score of each subgraph feature are uncertain. To address these challenges, we propose a novel 

discriminative subgraph feature selection method, Dug, which can find discriminative subgraph 

features in uncertain graphs based upon different statistical measures including expectation, 

median, mode and φ-probability. We first compute the probability distribution of the 

discrimination scores for each subgraph feature based on dynamic programming. Then a branch-

and-bound algorithm is proposed to search for discriminative subgraphs efficiently. Extensive 

experiments on various neuroimaging applications (i.e., Alzheimers Disease, ADHD and HIV) 

have been performed to analyze the gain in performance by taking into account structural 

uncertainties in identifying discriminative subgraph features for graph classification.

1 Introduction

Graphs arise naturally in many scientific applications which involve complex structures in 

the data, e.g., chemical compounds, program flows, etc. Different from traditional data with 

flat features, these data are usually not directly represented as feature vectors, but as graphs 

with nodes and edges. Mining discriminative features for graph data has attracted much 

attention in recent years due to its important role in constructing graph classifiers, generating 
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graph indices, etc. [22, 11, 4, 14, 20]. Much of the past research in discriminative subgraph 

feature mining has focused on certain graphs, where the structure of the graph objects are 

certain, and the binary edges represent the “presence” of linkages between the nodes. 

Conventional subgraph mining methods [22] utilize the structures of the certain graphs to 

find discriminative subgraph features. However, in many real-world applications, there is 

inherent uncertainty about the graph linkage structure. Such uncertainty information will be 

lost if we directly transform uncertain graphs into certain graphs.

For example, in neuroimaging, the functional connectivities among different brain regions 

are highly uncertain [6, 8, 7, 25]. In such applications, each human brain can be represented 

as an uncertain graph as shown in Figure 1, which is also called the “brain network” [2]. In 

such brain networks, the nodes represent brain regions, and edges represent the probabilistic 

connections, e.g., resting-state functional connectivity in fMRI (functional Magnetic 

Resonance Imaging). Since these functional connectivities are derived based upon 

processing steps, such as temporal correlations in spontaneous blood oxygen level-

dependent (BOLD) signal oscillations, each edge of the brain network is associated with a 

probability to quantify the likelihood that the functional connection exists in the brain. 

Resting-state functional connectivity has shown alterations related to many neurological 

diseases, such as ADHD (Attention Deficit Hyperactivity Disorder), Alzheimer’s disease 

and virus infections that may affect the brain functioning, such as HIV [21]. Researchers are 

interested in analyzing the complex structure and uncertain connectivities of the human 

brain to find biomarkers for neurological diseases. Such biomarkers are clinically imperative 

for detecting injury to the brain in the earliest stages before it is irreversible. Valid 

biomarkers can be used to aid diagnosis, monitor disease progression and evaluate effects of 

intervention.

Motivated by these real-world neuroimaging applications, in this paper, we study the 

problem of mining discriminative subgraph features in uncertain graph datasets. 

Discriminative subgraph features are fundamental for uncertain graphs, just as they are for 

certain graphs. They serve as primitive features for the classification tasks on uncertain 

graph objects. Despite the value and significance, the discriminative subgraph mining for 

uncertain graph classification has not been studied in this context. If we consider 

discriminative subgraph mining and uncertain graph structures as a whole, the major 

research challenges are as follows:

Structural Uncertainty

In discriminative subgraph mining, we need to estimate the discrimination score of a 

subgraph feature in order to select a set of subgraphs that are most discriminative for a 

classification task. In conventional subgraph mining, the discrimination scores of subgraph 

features are defined on certain graphs, where the structure of each graph object is certain, 

and thus the containment relationships between subgraph features and graph objects are also 

certain. However, when uncertainty is presented in the structures of graphs, a subgraph 

feature only exists within a graph object with a probability. Thus the discrimination scores 

of a subgraph feature are no longer deterministic values, but random variables with 

probability distributions.
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Thus, the evaluation of discrimination scores for subgraph features in uncertain graphs is 

different from conventional subgraph mining problems. For example, in Figure 2, we show 

an uncertain graph dataset containing 4 uncertain graphs G̃
1, ⋯, G̃

4 with their class labels, + 

or −. Subgraph g1 is a frequent pattern among the uncertain graphs, but it may not relate to 

the class labels of the graphs. Subgraph g2 is a discriminative subgraph features when we 

ignore the edge uncertainties. However, if such uncertainties are considered, we will find 

that g2 can rarely be observed within the uncertain graph dataset, and thus will not be useful 

in graph classification. Accordingly, g3 is the best subgraph feature for uncertain graph 

classification.

Efficiency & Robustness

There are two additional problems that need to be considered when evaluating features for 

uncertain graphs: 1) In an uncertain graph dataset, there are an exponentially large number 

of possible instantiations of a graph dataset [26]. How can we efficiently compute the 

discrimination score of a subgraph feature without enumerating all possible implied 

datasets? 2) When evaluating the subgraph features, we should choose a statistical measure 

for the probablity disctribution of discrimination scores which is robust to extreme values. 

For example, given a subgraph feature with (score, probability) pairs as (0.01, 99.99%) and 

(+∞, 0.01%), the expected score of the subgraph is +∞, although this value is only 

associated with a very tiny probability.

In order to address the above problems, we propose a general framework for mining 

discriminative subgraph features in uncertain graph datasets, which is called Dug 

(Discriminative feature selection for Uncertain Graph classification). The Dug framework 

can effectively find a set of discriminative subgraph features by considering the relationship 

between uncertain graph structures and labels based upon various statistical measures. We 

propose an efficient method to calculate the probability distribution of the scoring function 

based on dynamic programming. Then a branch-and-bound algorithm is proposed to search 

for the discriminative subgraphs efficiently by pruning the subgraph search space. Empirical 

studies on resting-state fMRI images of different brain diseases (i.e., Alzheimer’s Disease, 

ADHD and HIV) demonstrate that the proposed method can obtain better accuracy on 

uncertain graph classification tasks than alternative approaches.

For the rest of the paper, we first introduce preliminaries in Section 2. Then we introduce 

our Dug subgraph mining framework in Section 3. Discrimination score functions based 

upon different statistic measures are discussed in Section 3.1. An efficient algorithm for 

computing the score distribution based upon dynamic programming is proposed in Section 

3.2. Experimental results are discussed in Section 4. In Section 6, we conclude the paper.

2 Problem Formulation

In this section, we formally define the model of uncertain graphs and the problem of 

discriminative subgraph mining in uncertain graph datasets. Suppose we are given an 

uncertain graph dataset 𝒟̃ = {G̃
1, ⋯, G̃

n} that consists of n uncertain graphs. G̃
i is the i-th 

uncertain graph in 𝒟̃. y = [y1, ⋯, yn]⊤ denotes the vector of class labels, where yi ∈ {+1, 

−1} is the class label of G̃
i. We also denote the subset of 𝒟̃ that contains only positive/
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negative graphs as 𝒟̃
+ = {G̃

i|G̃
i ∈ 𝒟̃ ∧ yi = +1} and 𝒟̃

− = {G̃
i|G̃

i ∈ 𝒟̃ ∧ yi = −1} 

respectively.

Definition 1. (Certain Graph)

A certain graph is an undirected and deterministic graph represented as G = (V,E). V = {υ1, 

⋯, υnv} is the set of vertices. E ⊆ V × V is the set of deterministic edges.

Definition 2. (Uncertain Graph)

An uncertain graph is an undirected and nondeterministic graph represented as G̃ = (V,E, 

p). V = {υ1, ⋯, υnv} is the set of vertices. E ⊆ V × V is the set of nondeterministic edges. p : 

E → (0, 1] is a function that assigns a probability of existence to each edge in E. p(e) 

denotes the existence probability of edge e ∈ E.

Consider an uncertain graph G̃(V,E, p) ∈ 𝒟̃, where each edge e ∈ E is associated with a 

probability p(e) of being present. As in previous works [27, 26], we assume that the 

uncertainty variables of different edges in an uncertain graph are independent from each 

other, though most of our results are still applicable to graphs with edge correlations. We 

further assume that all uncertain graphs in a dataset 𝒟̃ share a same set of nodes V and each 

node in V has a unique node label, which is reasonable in many applications like 

neuroimaging, since each human brain consists of the same number of regions. The main 

difference between different uncertain graphs is on their linkage structures, i.e., the edge sets 

E(G̃) and the edge probabilities p(e).

Possible instantiations of an uncertain graph G̃ are usually referred to as worlds of G̃, where 

each world corresponds to an implied certain graph G. Here G is implied from uncertain 

graph G̃ (denoted as G̃ ⇒ G), iff all edges in E(G) are sampled from E(G̃) according to their 

probabilities of existence in p(e) and E(G) ⊆ E(G̃). There are 2|E(G̃)| possible worlds for 

uncertain graph G̃, denoted as  (G̃) = {G|G̃ ⇒ G}. Thus, each uncertain graph G̃ 

corresponds to a probability distribution over  (G̃). We denote the probability of each 

certain graph G ∈  (G̃) being implied by the uncertain graph G̃ as Pr(G̃ ⇒ G), and we 

have

Similarly, possible instantiations of an uncertain graph dataset 𝒟̃ = {G̃
1, ⋯, G̃

n} are referred 

to as worlds of 𝒟̃, where each world corresponds to an implied certain graph dataset  = 

{G1, ⋯,Gn}. A certain graph dataset  is called as being implied from uncertain graph 

dataset 𝒟̃ (denoted as 𝒟̃ ⇒ ), iff | | = |𝒟̃| and ∀i ∈ {1, ⋯, | |}, G̃
i ⇒ Gi. There are 

 possible worlds for uncertain graph dataset 𝒟̃, denoted as  (𝒟̃) = { | 𝒟̃ ⇒ 

 }. An uncertain graph dataset 𝒟̃ corresponds to a probability distribution over (𝒟̃). We 

denote the probability of each certain graph dataset  ∈ (𝒟̃) being implied by 𝒟̃ as Pr(𝒟̃ 

⇒ ). By assuming that different uncertain graphs are independent from each other, we 

have
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The concept of subgraph is defined based upon certain graphs. Different from conventional 

subgraph mining problems where each subgraph feature can have multiple embeddings 

within one graph object, in our data model, each subgraph feature g can only have one 

unique embedding within a certain graph G.

Definition 3. (Subgraph)

Let g = (V′, E′) and G = (V,E) be two certain graphs. g is a subgraph of G (denoted as g ⊆ 

G) iff V′ ⊆ V and E′ ⊆ E. We use g ⊆ G to denote that graph g is a subgraph of G. We also 

say that G contains subgraph g.

For an uncertain graph G̃, the probability of G̃ containing a subgraph feature g is defined as 

follows:

which corresponds to the probability that a certain graph G implied by G̃ contains subgraph 

g.

We focus on mining a set of discriminative subgraph features to define the feature space of 

graph classification. It is assumed that a graph object G̃
i is represented as a feature vector 

 associated with a set of subgraph features {g1, ⋯, gm}. Here, 

 is the probability that G̃
i contains the subgraph feature gk. Now suppose 

the full set of subgraph features in the graph dataset 𝒟̃ is  = {g1, ⋯, gm}, which we use to 

predict the class labels of the graph objects. The full feature set  is very large. Only a 

subset of the subgraph features (  ⊆ ) is relevant to the graph classification task, which is 

the target feature set we want to find within uncertain graphs.

The key issues of discriminative subgraph mining for uncertain graphs can be described as 

follows:

(P1) How can one properly evaluate the discrimination scores of a subgraph feature 

considering the uncertainty of the graph structures?

(P2) How can one efficiently compute the probability distribution of a subgraph’s 

discrimination score by avoiding the exhaustive enumeration of all possible 

worlds of the uncertain graph dataset? Moreover, since the subgraph 

enumeration is NP-hard, it is also infeasible to fully enumerate all the subgraph 

features for an uncertain graph dataset.
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In the following sections, we will introduce the proposed framework for mining 

discriminative subgraphs from uncertain graphs.

3 The Proposed Framework

3.1 Discrimination Score Distribution

In this subsection, we address the problem (P1) discussed in the previous section. In 

conventional discriminative subgraph mining, the discrimination scores of subgraph features 

are usually defined for certain graph datasets, e.g., information gain and G-test score [22]. 

The score of a subgraph feature is a fixed value indicating the discriminative power of the 

subgraph feature for the graph classification task. However, such concepts don’t make sense 

to uncertain graph datasets, since an uncertain graph only contains a subgraph feature in a 

probabilistic sense. Now we extend the concept of discriminative subgraph features in 

uncertain graph datasets. Suppose we have an objective function F (g, ) which measures 

the discrimination score of a subgraph g in a certain graph dataset . The corresponding 

objective function on an uncertain graph dataset 𝒟̃ can be written as F(g, 𝒟̃) accordingly. 

Note that F (g, 𝒟̃) is no longer a deterministic function. F (g, 𝒟̃) corresponds to a random 

variable over all possible outcomes of F (g, ) (i.e., Range(F)) with probability distribution:

s1 s2 ⋯

Pr[F(g, 𝒟̃) = s1] Pr[F(g, 𝒟̃) = s2] ⋯

where si ∈ Range(F).

The probability distribution of the discrimination score values can be defined as follows:

I(π) ∈ {0, 1} is an indicator function, and I(π) = 1 iff π holds. In other words, ∀s ∈ 

Range(F), Pr[F(g, 𝒟̃) = s] is the summation over the probabilities of all worlds of 𝒟̃ in 

which the discrimination score F(g, ) is exactly s. Based on the discrimination score 

function on uncertain graphs, we define four statistical measures that evaluate the properties 

of the distribution of F(g, 𝒟̃) from different perspectives.

Definition 4. (Mean-Score)—Given an uncertain graph dataset 𝒟̃, a subgraph feature g 

and a discrimination score function F(·, ·), we define the expected discrimination score 

Exp(F(g, 𝒟̃)) as the mean score among all possible worlds of 𝒟̃:
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The mean discrimination score is the expectation of the random variable F(g, 𝒟̃). The 

expectation is usually used in conventional frequent pattern mining on uncertain datasets 

[27, 26]. However, it’s worth noting that the expectation of discrimination scores may not be 

robust to extreme values. In discriminative subgraph mining, the value of a score function 

(e.g., frequency ratio[10], G-test score[22]) can be +∞. Such cases can easily dominate the 

computation of expectation, even if the probabilities are extremely small. For example, 

suppose we have a subgraph feature with the (score, probability) pairs as (0.01, 99.99%) and 

(+∞, 0.01%). The expected score will be +∞. In order to address this problem, we either 

need to bound the maximum value of the objective function like , or we 

need to introduce other statistical measures which are robust to extreme values.

Definition 5. (Median-Score)—Given an uncertain graph dataset 𝒟̃, a subgraph feature 

g and a discrimination score function F(·, ·) on certain graphs, we define the median 

discrimination score Median(F(g, 𝒟̃)) as the median score among all possible worlds of 𝒟̃:

The median score is relatively more robust to extreme values than expectation, although in 

some cases the median score can still be infinite. The same results can also hold for any 

quantile or k-th order statistic.

Another commonly used statistic is the mode score, i.e., the score value that has the largest 

probability. The mode score of a distribution means that the score is most likely to be 

observed within all possible worlds of 𝒟̃.

Definition 6. (Mode-Score)—Given an uncertain graph dataset 𝒟̃, a subgraph feature g 

and a discrimination score function F(·, ·), we define the mode discrimination score 

Mode(F(g, 𝒟̃)) as the score that is most likely among all possible worlds of 𝒟̃:

Next we consider the probability of a subgraph feature being observed as a discriminative 

pattern within all possible worlds of 𝒟̃, i.e., Pr[F(g, 𝒟̃) ≥ φ]. It is called φ-probability. The 

higher the value, the more likely that the subgraph feature is a discriminative pattern with a 

score larger or equals to a threshold φ.

Definition 7. (φ-Probability)—Given an uncertain graph dataset 𝒟̃, a subgraph feature g 

and a discrimination score function F(·, ·), we define the φ-probability for discrimination 

score function F(g, 𝒟̃) as the sum of probabilities for all possible worlds of 𝒟̃, where the 

score is greater than or equals to φ:
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The φ-probability is robust to extreme values of the objective function. For the previous 

example, we have a subgraph feature with score distribution: (0.01, 99.99%), (+∞, 0.01%). 

The φ-probability is 0.01%, when φ = 1.

We have already introduced four statistical measures of the distribution of a discrimination 

score function. Now the central problem for calculating all these measures is how to 

calculate Pr[F(g, 𝒟̃) = s] efficiently, which we will discuss in the following section.

3.2 Efficient Computation

In this subsection, we address the problem (P2) discussed in Section 2. Given a certain graph 

dataset , we denote the subsets of all positive graphs and all negative graphs as + and −, 

respectively. Suppose the supports of subgraph feature g in + and − are  and . 

. Most of the existing discrimination score functions can be 

written as a function of , n+ and n−:

(3.1)

The definition in Eq. 3.1 covers many discrimination score functions including 

confidence[5], frequency ratio[10], information gain, G-test score[22] and HSIC[13], as 

shown in Table 2. For example, frequency ratio can be written as . The G-

test score can be written as . 

Because n+ and n− are fixed numbers for different subgraph features, we simply use 

 for .

Based on the above definitions, we find that the number of possible outcomes of F(g, 𝒟̃) is 

bounded by n+ × n−, because  and . Thus, the probabilities 

Pr[F(g, 𝒟̃) = s] can be exactly computed via dynamic programming in O(n2) time, without 

enumerating all possible worlds of 𝒟̃. Instead, we can just enumerate all possible 

combinations of  and calculate the probability for each pair , denoted as 

. Then the values of F(g, 𝒟̃) in all possible worlds 

with non-zero probabilities can be covered by the n+ × n− cases.

Moreover, because different uncertain graphs are independent from each other, we have

(3.2)
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where  denotes the probability of the cases when there are  graphs in 𝒟̃
+ that 

contain the subgraph g.  corresponds to the cases when there are  graphs in 

𝒟̃
− that contain subgraph g. Now we just need to compute the probabilities 

 and  separately.

Let 𝒟̃(k) denote the first k uncertain graphs in 𝒟̃, i.e., 𝒟̃(k) = {G̃
1, ⋯, G̃

k}. 𝒟̃
+(k) and 𝒟̃

−(k) 

denote the first k graphs in 𝒟̃
+ and 𝒟̃

− respectively. All the values of  and 

 can be calculated using the recursive equation in Figure 5. The Pr[i, 𝒟̃(k)] 

denotes the probability when there are i graphs containing g in 𝒟̃(k). And the target values 

to calculate are Pr[i, 𝒟̃
+(n+)] (∀i, 0 ≤ i ≤ n+) and Pr[i, 𝒟̃

− (n−)] (∀i, 0 ≤ i ≤ n−) by substituting 

the 𝒟̃
+ and 𝒟̃

− into the Eq. 3.3, respectively. In Figure 4, we showed the dynamic 

programing algorithm to compute the target values using Eq. 3.3. Figure 3 illustrates the 

computation process of the dynamic programing algorithm for , while the same 

process also applies for .

For details of the recursive equations in Figure 5, we have the base cases, Pr[0, 𝒟̃
0] = 1 and 

Pr[i, 𝒟̃ (k)] = 0 (if i > k or i < 0). For other cases, the probability value can be calculated 

through the recursive equation in Eq. 3.3. Then,  can be calculated via Eq. 3.2. 

Thus all the statistical measures mentioned in Section 3.1 can be calculated within O(n2) 

time as follows:

We will show later that the dynamic programming process is highly efficient in all the 

applications studied in Section 4. For dataset with even larger number of graphs, the divid-

and-conquer method in [19] could also be used here to further optimize the computational 

cost.
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3.3 Upper-Bounds for Subgraph Pruning

In order to avoid the exhaustive enumeration of subgraph features, we derive some subgraph 

pruning methods. One natural pruning bound for subgraph search is the expected frequency 

of a subgraph feature, , since it’s can be easily proved 

with anti-monotonic property. For the expectation and φ-probability, we can also derive 

additional bounds for subgraph pruning. Let  be the estimated upper-

bound function for g and its supergraphs in certain graph dataset . We can derive the 

corresponding upper-bounds as follows:

For the median and mode measures, it is difficult to derive a meaningful bound, thus we 

simply use the expected frequency to perform the subgraph pruning.

We now utilize the above bounds to prune the DFS-code tree in gSpan [23] by the branch-

and-bound pruning. The top-t best features are maintained in a candidate list. During the 

subgraph mining, we calculate the upper-bound of each subgraph feature in the search tree. 

If a subgraph feature with its children pattern cannot update the candidate feature list, we 

can prune the subtree of gSpan rooted from this node. It is guaranteed by the upper-bounds 

that we will not miss any better subgraph features. Thus, the subgraph mining process can be 

speeded up without loss of performance. The algorithm of Dug is summarized in Figure 6.

4 Experiments

In order to evaluate the performance of the proposed approach for uncertain graph 

classification, we tested our algorithm on real-world fMRI brain images as summarized in 

Table 3.

4.1 Data Collection

In order to evaluate the performance of the proposed approach for uncertain graph 

classification, we tested our algorithm on real-world fMRI brain images.

• Alzheimer’s Disease (ADNI): The first dataset is collected from the Alzheimer’s 

Disease Neuroimaging Initiative1. The dataset consists of records of patients with 

Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI). We downloaded 

all records of resting-state fMRI images and treated the normal brains as negative 

1http://adni.loni.ucla.edu/
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graphs, and AD+MCI as the positive graphs. We applyed Automated Anatomical 

Labeling (AAL2) to extract a sequence of responds from each of of the 116 

anatomical volumes of interest (AVOI), where each AVOI represents a different 

brain region. The correlations of brain activities among different brain regions are 

computed. Positive correlations are used as uncertain links among brain regions. 

For details, we used SPM8 toolbox3, and functional images were realigned to the 

first volume, slice timing corrected, and normalized to the MNI template and 

spatially smoothed with an 8-mm Gaussian kernel. Resting-State fMRI Data 

Analysis Toolkit (REST4) was then used to remove the linear trend of time series 

and temporally band-pass filtering (0.01–0.08 Hz). Before the correlation analysis, 

several sources of spurious variance were then removed from the data through 

linear regression: (i) six parameters obtained by rigid body correction of head 

motion, (ii) the whole-brain signal averaged over a fixed region in atlas space, (iii) 

signal from a ventricular region of interest, and (iv) signal from a region centered in 

the white matter. Each brain is represented as an uncertain graph with 90 nodes 

corresponding to 90 cerebral regions, excluding 26 cerebellar regions.

• Attention Deficit Hyperactivity Disorder (ADHD): The second dataset is collected 

from ADHD-200 global competition dataset5. The dataset contains records of 

resting-state fMRI images for 776 subjects, which are labeled as real patients 

(positive) and normal controls (negative). Similar to the ADNI dataset, the brain 

images are preprocessed using Athena Pipeline6. The original dataset is 

unbalanced, we randomly sampled 100 ADHD patients and 100 normal controls 

from the dataset for performance evaluation.

• Human Immunodeficiency Virus Infection (HIV): The third dataset is collected from 

the Chicago Early HIV Infection Study in Northwestern University [21]. The 

dataset contains fMRI brain images of patients with early HIV infection (positive) 

as well as normal controls (negative). The same preprocessing steps as in ADNI 

dataset were used to extract a functional connectivity network from each image.

4.2 Comparative Methods

We compared our method using different statistical measures and discrimination score 

functions summarized as follows:

• Frequent Subgraphs + Expectation (Exp+Freq): The first baseline method is 

finding frequent subgraph features within uncertain graphs. This baseline is similar 

to the method introduced in [27]. In our data model, this baseline method computes 

the exact expected frequency of each subgraph features, instead of approximated 

values. The top ranked frequent patterns are extracted as used as features for graph 

classification. •

2http://www.cyceron.fr/web/aal__anatomical_automatic_labeling.html
3http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
4http://resting-fmri.sourceforge.net
5http://neurobureau.projects.nitrc.org/ADHD200/
6http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
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• Dug with HSIC based discrimination scores: we compare with four different 

versions of our Dug method based upon HSIC criterion, which maximize the 

dependence between subgraph features and graph labels [13]. “ -HSIC” 

computes the expected HSIC value for each subgraph feature, and find the top-k 

subgraphs with the largest values. “ -HSIC” computes the median HSIC value 

for each subgraph feature, while “ -HSIC” computes the mode HSIC value. 

“ -HSIC” computes the φ-probability of HSIC value for each subgraph feature.

• Dug with Frequency Ratio based discrimination scores: we also compare our 

method based upon Frequency Ratio, i.e., “ -Ratio”, “ -Ratio”, “ -

Ratio” and “ -Ratio”.

• Dug with G-test based discrimination scores: we then compare our method based 

upon G-test criterion, i.e., “ -Gtest”, “ -Gtest”, “ -Gtest” and “ -

Gtest”.

• Dug with Confidence based discrimination scores: the 5th group of methods are 

based upon G-test criterion, i.e., “ -Conf”, “ -Conf”, “ -Conf” and 

“ -Conf”.

• Simple Thresholding: Another group methods we have compared are the feature 

selection methods for certain graphs. In order to get the certain graphs from the 

uncertain graphs in the dataset, we perform simple tresholding over the weights of 

the links to get the binary links. These baseline methods include: “ ”, “ ”, 

“ ”, “ ” and “ ”, which correspond to the discrimination scores used 

in previous 5 groups separately.

LibSVM [3] with the linear kernel is used as the base classifier for all compared methods. 

The min_sup in the gSpan for ADHD, ADNI and HIV datasets are 20%, 40% and 40% 

respectively. Since the range of different discrimination functions can be extremely 

different. We set the default φ for HSIC criterion, G-test score, frequency ratio and 

confidence as 0.03, 200, 1 and 0.5, respectively.

4.3 Performance on Uncertain Graph Classification

In our experiments, we first randomly sample 80% of the uncertain graphs as the training 

set, and the remaining graphs as the test set. This random sampling experiment was repeated 

20 times. The average performances with the rank of each method are reported. The reason 

for using classification performances to evaluate the quality of subgraph features is that 

classification methods can usually achieve higher accuracy with features of better 

discriminative powers. We measure the classification performance by error rate and F1 

score.

Table 5 and Table 4 show the evaluation results in terms of classification error rates and F1 

scores with different number of selected subgraph features (t = 100, ⋯, 500). The results of 

each method are shown with average performance values and their ranks among all the other 

methods. Values with * stand for the best performance for the corresponding evaluation 

criterion. It is worth noting that the neuroimaging tasks are generally very hard to predict 
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very accurately. According to a global competition on ADHD dataset7, the average 

performance of all winning teams is about 8% over the prediction accuracy of chance (i.e., 

randomly assigning diagnoses). Thus in neuroimaging tasks, it is very hard for classification 

algorithms to achieve even moderate error rates. And in ADHD dataset, the best 

performance that Dug can achieve is with error rate 37%, which is 13% improvement over 

the prediction error rate of chance.

We find that our discriminative subgraph mining method with different settings outperforms 

the baseline method (Exp-Freq) for frequent subgraph mining, which selects subgraph 

features based upon expected frequencies in the uncertain graph dataset. This is because that 

frequent subgraph features in uncertain graph dataset may not be relevant to the 

classification task.

Moreover, we can see that almost all the Dug methods outperform the simple thresholding 

methods which directly convert the uncertain graphs into certain graphs and then use 

different discimination functions to select subgraph features. This is because that simply 

converting uncertain graphs into certain graph can loss the uncertainty information about the 

linkage structures of the graphs, thus the classification performances on certain graphs are 

not as good as the performance of uncertain graphs.

A third observation is that the performance of each method on different dataset can be quite 

different. However, the best methods that consistently outperforms other methods in all 

datasets are Med-Conf and φ-PrRatio. They both have their advantages in different 

perspectives. Med-Conf method has one less parameter than that of φ-Pr-Ratio. φ-Pr-Ratio 

method has an additional subgraph pruning bound compared to MedConf method, which can 

be important for datasets with even larger graphs.

4.4 Influence of Parameter

In the φ-Pr based methods, there is an additional threshold parameter than the other 

methods. In Figure 7(a) and Figure 7(b), we tested the φ-Pr-HSIC with φ values among 

{0.01, 0.02, ⋯ 0.06} separately. We can see that the method is not sensitive to the 

parameter φ. Generally, the performance of φ-Pr-HSIC with default setting (φ = 0.03) is 

pretty good. If we try to optimize the selection of φ value, the accuracy can be even better.

We also compare Dug models with and without pruning in the subgraph search space as 

summarized in Figure 7(c). The CPU time with different min sup for Exp-HSIC in ADNI 

dataset is reported. Dug can improve the efficiencies by pruning the subgraph search space. 

In other datasets Dug shows similar trends. Figure 8 shows the running time for mod-HISC 

with different number of graphs in the dataset. In addition to the dynamic programming 

method we used in Dug, we also find that the brute-force searching method that enumerates 

all possible worlds of the uncertain graph dataset cannot work on small datasets with even 

40 graphs. The running time of Dug scales almost linearly with the number of graphs in the 

dataset. Althought the dynamic programming process of Dug is O(n2), which is quadratic to 

the number of graphs in the dataset. However, in the ADHD dataset, the main computational 

7http://www.childmind.org/en/posts/press-releases/2011-10-12-johns-hopkins-team-wins-adhd-200-competition
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cost of Dug algorithm is for the subgraph enumeration step, which is linear to the number of 

the graphs in the dataset. In cases of even larger datasets, the dynamic programming process 

could eventually dominant the computational cost. In these cases, the divide-and-conquer 

method in [19] could be used to further optimize the computational cost.

5 Related Work

Our work is related to subgraph mining techniques for both certain graphs and uncertain 

graphs. We briefly discuss both of them.

Mining subgraph features in graph data has been studied intensively in recent years [15]. 

Most of the previous research has been focused on certain graph datasets, where the edges of 

the graph objects are binary/certain. The aim of these subgraph mining method is to extract 

important subgraph features based on the structure of the graphs. Depending on whether the 

class labels are considered in the feature mining steps, existing methods can roughly be 

categorized into two types: frequent subgraph mining and discriminative subgraph mining. 

In frequent subgraph mining, Yan and Han proposed a depth-first search algorithm, gSpan 

[23], which maps each graph to a unique minimum DFS code and use right-most extension 

technique for subgraph extension. There are also many other frequent subgraph mining 

methods that have been proposed, e.g., AGM [9], FSG [15], MoFa [1], and Gaston [16], etc. 

Discriminative subgraph mining have also been studied intensively in the literature, such as 

LEAP [22] and LTS [10], where the task is to find discriminative subgraph for graph 

classifications.

Recently, there has been a growing interest in exploiting data uncertainty, especially 

structural uncertainty in graph data. There are some recent works on mining frequent 

subgraph features for uncertain graphs [27, 26, 28, 17]. The problem of mining frequent 

subgraph in uncertain graphs are more difficult to those of certain graphs. The authors [27] 

proposed a method to estimate approximately the expected support of a subgraph feature in 

uncertain graph datasets. In [26], the authors studies the φ-probabilities for frequent 

subgraph features within uncertain graph datasets. The difference between these works and 

our paper are as follows: 1) In this paper, we study how to find discriminative subgraph 

features for uncertain graph data. The class labels of the graph objects are considered during 

the subgraph mining. 2) The graph model in our paper is different from previous uncertain 

graph data, since we assume different graph object shares the same set of nodes as inspired 

by the neuroimaging applications. Thus, our method compute the exact discrimination 

scores of each subgraph features, instead of approximate scores. There are also many other 

works on uncertain graphs, which focus on different problems, e.g., reliable subgraph 

mining [12], k-nearest neighbor discovery [18], subgraph retrieval [24] etc.

Our work is also motivated by the recent advances in analyzing neuroimaging data using 

data mining and machine learning approaches [6, 8, 7, 25]. Huang et. al. [6] developed a 

sparse inverse covariance estimation method for analyzing brain connectivities in PET 

images of patients with Alzheimer’s disease.
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6 Conclusion

In this paper, we studied the problem of discriminative subgraph feature selection for 

uncertain graph classification. We proposed a general framework, called Dug, for finding 

discriminative subgraph feature in uncertain graphs based upon various statistical measures. 

The probability distributions of the scoring function are efficiently computed based on 

dynamic programming.
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Figure 1. 
An example of uncertain graph classification task.
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Figure 2. 
Different types of subgraph features for uncertain graph classification
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Figure 3. 

The dynamic programming process for computing . The same process applies 

for .
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Figure 4. 
The dynamic programming algorithm for probability computation.
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Figure 5. 
Recursive equation for dynamic programming.
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Figure 6. 
The Dug framework for discriminative subgraph mining.
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Figure 7. 
Parameter Studies (ADNI dataset).
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Figure 8. 
Running time on ADNI dataset.
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Table 1

Important Notations.

Symbol Definition

𝒟̃ = {G̃
1, ⋯, G̃

n} uncertain graph dataset, G̃
i denotes the i-th uncertain graph in the dataset.

y = [y1, ⋯, yn]⊤ class label vector for graphs in 𝒟̃, yi ∈ {+1,−1}.

𝒟̃
+ and 𝒟̃

− the subset of 𝒟̃ with only positive/negative graphs, 𝒟̃
+ = {G̃

i|G̃
i ∈ 𝒟̃, yi = +1}.

n+ and n− number of positive graphs and number of negative graphs in 𝒟̃, n+ = |𝒟̃
+| and n− = |𝒟̃

−|.

 = {G1, ⋯,Gn} a certain graph dataset implied from 𝒟̃, Gi denotes the certain graph implied from G̃
i.

g ⊆ G graph G contains subgraph feature g

 and number of graphs in + / − that contains subgraph g, .

G̃ ⇒ G and 𝒟̃ ⇒ certain graph G is implied from uncertain graph G̃;  is implied from 𝒟̃.

(G̃) and (𝒟̃) the possible worlds of G̃ and 𝒟̃, (G̃) = {G|G̃ ⇒ G}, (𝒟̃) = { | 𝒟̃ ⇒ }.

E(G̃
i) and E(Gi) the set of edges in G̃i and Gi

𝒟̃
+(k) and 𝒟̃

−(k) the first k graphs in 𝒟̃
+ or 𝒟̃

−
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Table 2

Summary of Discrimination Score Functions.

Name

confidence

frequency ratio

G-test

HSIC(linear)
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Table 4

Results on the ADNI (Alzheimer’s Disease) dataset with different number of features (t = 100, ⋯, 500). The 

results are reported as “average performance + (rank)”.

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2015 May 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kong et al. Page 29

Table 5

Results on the ADHD (Attention Deficit Hyperactivity Disorder) dataset with different number of features (t = 

100, ⋯, 500). The results are reported as “average performance + (rank)”.
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Table 6

Results on the HIV (Human Immunodeficiency Virus) dataset with different number of features (t = 100, ⋯, 

500). The results are reported as “average performance + (rank)”.
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