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Abstract

Both genetic variants and brain region abnormalities are recognized to play a role in cognitive
decline. We explore the association between single-nucleotide polymorphisms (SNPs) in
linkage regions for Alzheimer’s disease and rates of decline in brain structure using data
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).

In an initial discovery stage, we assessed the presence of linear association between the
minor allele counts of 75,845 SNPs in the Alzgene linkage regions and estimated rates of
change in structural MRI measurements for 56 brain regions using an RV test. In a second,
refinement stage, we reduced the number of SNPs using a bootstrap-enhanced sparse canon-
ical correlation analysis (SCCA) with a fixed tuning parameter. Each SNP was assigned an
importance measure proportional to the number of times it was estimated to have a nonzero
coefficient in repeated re-sampling from the ADNI-1 sample. We created refined lists of
SNPs based on importance probabilities greater than 50% and 90%, respectively. In a third,
validation stage, we assessed the multivariate association between these refined lists of SNPs
and the rates of structural change in an independent dataset comprised of the ADNIGO and
ADNI-2 study samples.

There was strong statistical evidence for linear association between the SNPs in the
Alzgene linkage regions and the 56 imaging phenotypes in both the ADNI-1 and ADNIGO/2
samples (p < 0.0001). The bootstrap-enhanced SCCA identified 1,694 priority SNPs with
importance probabilities > 50% and 22 SNPs with importance probabilities > 90%. The
1,694 prioritized SNPs were associated with imaging phenotypes in the ADNI-1 data (p <
0.001) and this association was replicated in the ADNIGO/2 data (p = 0.0021).

This manuscript presents an analysis that addresses challenges in current imaging ge-
netics studies such as biased sampling designs, high-dimensional data with low-signal, and
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discovery and validation of association in multivariate analysis. Genes corresponding to
priority SNPs having the highest contribution to the RV coefficient test statistic in the
validation data have previously been implicated or hypothesized to be implicated in AD,
including GCLC, IDE, and STAMBPlandFAS. We hypothesize that the effect sizes of the
1,694 SNPs in the priority set are likely small, but further investigation within this set may
advance understanding of the missing heritability in late-onset Alzheimer’s disease.

Keywords: Alzheimer’s Disease Neuroimaging Initiative; Multivariate analysis; Linkage
regions; Imaging genetics; Endophenotypes; Inverse probability weighting; Variable impor-
tance probabilities

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder causing cognitive impairment
and memory loss. The estimated heritability of late-onset AD is 60%-80% (Gatz et al.
2006), and the largest susceptibility allele is the €4 allele of APOE (Corder et al. 1993),
which may play a role in 20% to 25% of AD cases. Numerous studies have identified
susceptibility genes which account for some of the missing heritability of AD, with many
associated variants having been identified through genome-wide association studies (GWAS)
(Beecham et al. 2009) (Kamboh et al. 2012) (Bertram et al. 2008). Apart from APOE,
the associated variants have mostly had moderate or small effect sizes, suggesting that the
remaining heritability of AD may be explained by many additional genetic variants of small
effect.

Identifying susceptibility variants with small effect sizes in GWAS is challenging since
strict multiple testing corrections are required to maintain a reasonable family-wise error
rate. This analysis focuses on leveraging information from prior family of studies of AD
(Hamshere et al. 2007) (Butler et al. 2009), by looking for association in previously iden-
tified linkage regions reported on the Alzgene website (Biomedical Research Forum 2013).
Linkage regions for AD are genomic regions that tend to be co-inherited with AD in families.
By definition, linkage regions include susceptibility genes that are co-transmitted with the
disease. The regions currently identified from family studies of AD are large, however, since
families contain relatively few transmissions. Further transmissions over multiple genera-
tions would provide more fine-grain information about the location of susceptibility genes.
Previous studies have fine-mapped a single linkage region through association of AD with
genetic variants in densely genotyped or sequenced regions ((Fallin et al. 2010) (Ertekin-
Taner 2003) (Scott et al. 2000) (Ziichner et al. 2008)), or have confirmed linkage to AD
in genomic regions identified from GWAS (Anna et al. 2011) . In this report, we aim to
fine-map multiple linkage regions for AD through multivariate association of their SNPs to
the rates of atrophy in brain regions affected by AD.

We analyze data from the Alzheimer’s Disease Neuroimaging Initiative (Mueller et al.
2005), a case-control study of AD and mild-cognitive impairment. The rates of atrophy
in brain regions affected by AD are so-called endophenotypes: observable traits that reflect
disease progression. By investigating the joint association between the genomic variants and
the neuroimaging endophenotypes, higher-resolution information about disease progression
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is used to supervise the selection of genomic variants such as single-nucleotide polymorphisms
(SNPs). This multivariate approach to analysis stands in contrast to the commonly-used
mass-univariate approach in which separate regressions are fit for each SNP, and the disease
outcome is predicted by the minor allele counts. Simultaneous analysis of association is
preferred because the reduced residual variation leads to (i) a clearer assessment of the signal
from each SNP, (ii) increased power to detect signal, and (iii) a decreased false-positive rate
(Hoggart et al. 2008). We also employ inverse probability weighting to account for the
biased sampling design of the ADNI-1 and ADNIGO/2 studies, an aspect of analysis that
has not been accounted for in many previous imaging genetics studies (Zhu et al. 2016).

Methods that explicitly account for gene structure have been proposed for analyzing
the association between multiple imaging phenotypes and SNPs in candidate genes (e.g.,
(Wang et al. 2011) (Greenlaw et al. 2016)). However, these methods become computa-
tionally intractable when analyzing data with tens of thousands of genotyped variants. To
select SNPs associated with disease progression, we instead use sparse canonical correlation
analysis (SCCA) to find a sparse linear combinations of SNPs having maximal correlation
with the imaging endophenotypes. Multiple penalty schemes have been proposed to im-
plement the sparse estimation in SCCA (Parkhomenko et al. 2009) (Witten et al. 2009)
(Lykou and Whittaker 2010). We employ an SCCA implementation that estimates the
sparse linear combinations by computing sparse approximations to the left singular vec-
tors of the cross-correlation matrix of the SNP data and the neuroimaging endophenotype
data (Parkhomenko et al. 2009). Sparsity is introduced through soft-thresholding of the
coefficient estimates (Donoho and Johnstone 1994), which has been noted (Chalise and Fri-
dley 2012) to be similar in implementation to a limiting form of the elastic-net (Zou and
Hastie 2005). We prefer an elastic-net-like penalty over alternative implementations with
/1 penalties because it allows selection of all potentially associated SNPs regardless of the
linkage-disequilibrium (LD) structure in the data. A drawback of ¢;-type penalties is that
not all SNPs from an LD block of highly-correlated SNPs that are associated with the
outcome will be selected into the model (Zou and Hastie 2005).

We may think of SNP genotypes as a matrix X and imaging phenotypes as a matrix Y
measured on the same n subjects. (Robert and Escoufier 1976) showed that estimating the
maximum correlation between linear combinations of X and Y in canonical correlation anal-
ysis is equivalent to estimating the linear combinations having the maximum RV coefficient,
a measure of linear association between the multivariate datasets (Escoufier 1973). The RV
coefficient is therefore well-suited for testing linear association in our context. We use a
permutation test based on the RV coefficient to assess the association between the initial
list of SNPs in X and the phenotypes in Y. Although the RV coefficient may overestimate
association when n < p (Smilde et al. 2008), a permutation test with the RV coefficient
is preferred over a parametric hypothesis test since the permutation null distribution is
computed under the same conditions as the observed RV coefficient, resulting in a valid
hypothesis test. The outcome of this test is used to determine whether or not to proceed
with a second refinement stage that reduces the number of SNPs by applying SCCA.

Selection of the soft-thresholding parameter in SCCA is challenging in our context. Since
the number of SNPs exceeds the sample size and many of the SNPs are expected to be unas-
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sociated with the phenotypes, large sample correlations can arise by chance (Fan et al. 2011).
Indeed, the prescribed procedure of selecting the penalty parameter with highest predicted
correlation across cross-validation test sets (Parkhomenko et al. 2009) results in more than
98% of the SNPs remaining in the model. A prediction criterion for choosing the penalty
term may contribute to the lack of variable selection, allowing redundant variables into the
model (Leng et al. 2006). When the same tuning parameter is used for variable selection
and shrinkage, redundant variables tend to be selected to compensate for overshrinkage of
coefficient estimates and losses in predictive ability (Radchenko and James 2008). In our
case, there is effectively no variable selection and little insight is gained by allowing for
sparsity in the solution. To circumvent the lack of variable selection from SCCA, we fix the
tuning parameter to select about 10% of the SNPs (Wu et al. 2009) and then use resam-
pling to determine the relative importance of each SNP to the association with neuroimaging
endophenotypes.

The organization of the manuscript is as follows. The Materials and Methods section
describes the ADNI data, the data processing procedures, and the methods applied for dis-
covery, refinement, and validation. The Results section presents the results of the analyses.
The Discussion section notes challenges and successes of the analysis, including considera-
tions for modelling continuous phenotype data under a case-control sampling design, and
provides interpretation of the results.

2. Materials and Methods

2.1. Data

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD).

Imaging data. The neuroimaging phenotypes analyzed are estimates of the rates of change
in cortical thickness and volumetric measurements in brain regions obtained from magnetic
resonance imaging (MRI) scans. ADNI subjects had 1.5 T MRI scans at either 6 or 12
month intervals during the two- to three-year follow-up period of the study and we chose to
analyse the longitudinal information on cortical thickness and regional volumes. While other
studies have compared the different study groups using imaging information from baseline
(Shen et al. 2010)(Meda et al. 2012), the longitudinal information provides insight into
the different rates of brain deterioration experienced by people with negligible memory loss
compared to those with more acute memory difficulties and Alzheimer’s disease.

The MRIs were segmented using Freesurfer (Fischl 2012). For each hemisphere, the 28
volumetric and cortical thickness measurements used for analysis by Shen (Shen et al. 2010)
were obtained via automated parcellation of the segmented images in Freesurfer.
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Genomic data. The ADNI-1 subjects were genotyped with the Illumina Human610-Quad
BeadChip and the ADNIGO/2 subjects were genotyped with the Illumina HumanOmniEx-
press BeadChip, both of which interrogate SNPs. All genotyping information was down-
loaded from the LONI Image Data Archive (missing citation). Pre-packaged PLINK (Pur-
cell et al. 2007) files included genotyping information for 757 of the 818 ADNI-1 sub-
jects. Genotyping information for 793 of the ADNIGO/2 subjects were converted from CSV
files to PLINK binary files using a publicly-available conversion script (Hibar 2014). The
Human610-Quad BeadChip and HumanOmniExpress BeadChip interrogated 620,901 and
730,525 SNPs respectively. APOE was genotyped separately at study screening from DNA
extracted from a blood sample.

Inclusion criteria. Subjects were included if their genotyping data was available, if they had
a baseline MRI scan, and they had at least one additional follow-up baseline scan. Of the
757 ADNI-1 subjects and 793 ADNIGO/2 subjects with SNP data available, 696 and 583
had both a baseline scan and at least one additional follow-up scan, respectively. Genomic
quality control outlined in the Data Processing section was also employed, widening the
exclusion criteria, to obtain a more homogeneous sample.

Genomic imputation. Imputation serves two key roles in the analysis: to preserve the sample
size for the multivariate analysis by replacing sporadically missing genotypes with imputed
ones, and to impute SNPs not interrogated on the ADNIGO/2 chip that are interrogated
on the ADNI-1 chip. SNPs were imputed in the ADNI-1 and ADNIGO/2 sample using the
HapMap3 panel with NCBI build 36/hgl8 using IMPUTE2 (Marchini and Howie 2010),
based on the imputation protocol in the IMPUTE2: 1000 Genomes Imputation Cookbook
(Luan et al.). Haplotypes were phased with SHAPEIT (Delaneau et al. 2013), and file con-
versions between PLINK file formats and SHAPEIT/IMPUTE2 formats was accomplished
with GTOOL (Freeman 2007-2012). Of the 503,450 SNPs that passed quality control in
the ADNI-1 sample, 459,517 were also in the reference panel and had sporadically missing
genotypes imputed. Out of the 574,730 SNPs that passed quality control in the ADNIGO /2
sample, sporadically missing genotypes were imputed at the 270,074 SNPs that were also
on the ADNI-1 chip and in the reference panel. The remaining 189,443 SNPs that were
not genotyped in the ADNIGO/2 sample, but were in both the ADNI-1 sample and the
reference panel, were imputed into the sample. The genotyping rate in the imputed data
for the ADNIGO/2 sample was 98.2%, prior to filtering out SNPs that have an IMPUTE2
info metric less than 0.5.

Alzgene linkage regions. To focus the analysis on regions that are likely to contain causal
genetic variation, SNPs were included in the analysis if they fell in the linkage regions
reported by approximate physical position on the Alzgene website (Bertram et al. 2007)
(Biomedical Research Forum 2013). These linkage regions have been identified in meta-
analyses of family-based studies of Alzheimer’s disease (Hamshere et al. 2007) (Butler et al.
2009). A total of 75,845 SNPs from nine chromosomes were included in the analysis from
the ADNI-1 sample. Table 2.1 shows the number of SNPs in the ADNI-1 sample that fall
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Chromosome Band Mb N
1 p3l.1-g31.1  83-185 12005
3 ql2.3-g25.31 103-173 10689
6 p2l.1-q15 43-91 6785
7 pter-q21.11  0-78 13292
8 p22-p2l1.1 13-28 4149
9 p22.3-pl3.3 20-35 2868
9 21.31-g32 80-100 3483

10 pl4-q24 10-100 15274
17 q24.3-qter 67-79 2319
19 pl3.3-qter 8-H4 4981

Table 1: The chromosome, band, and location on the Mb scale of the linkage regions of interest. N denotes
the number of SNPs in the ADNI-1 data that fall in each linkage region.

in each linkage region. After filtering SNPs that had an IMPUTE2 info metric less than or
equal to 0.5, 75,818 SNPs remained in the ADNIGO/2 sample.

Estimating rates of change. Linear mixed effect models, given in Equation 1, were used
to estimate the rates of change in each brain region of interest (ROI). A separate mixed
model was fit for each ROI, with random effects for subject-specific rates of change and
fixed effects for average rates of change within diagnostic subgroups. In the specification of
the model, fixed-effects terms are denoted by 3, while random-effect terms are denoted by
7. The predictors are (i) ¢, the time of the follow-up visit at which the scan was conducted,
with ¢ € 0,6, 12, 18,24 months; (ii) MC1, a dummy variable equal to 1 if subject i has late
mild cognitive impairment, and equal to 0 otherwise; and (iii) AD, a dummy variable equal
to 1 if subject 7 has Alzheimer’s disease, and equal to 1 otherwise. The ROI’s are indexed

by j:
Yiit = Boj + BiyMCI + B2jAD + B35t + By, MCI x t + B5; AD X t + 145 + a5t +€ije (1)

The estimated rate of change over the study period for subject ¢ at ROI j is the sum
of the disease-specific estimated rate of change and the subject-specific estimated rate of
change ng + B4jMCI + B5jAD + 492i5. Figure 1 is a heatmap of the estimated rates of
change, adjusted for confounding variables as discussed next, in the sample. The heatmap
illustrates how decreases in cortical thickness are more pronounced for subjects with AD,
and similarly that the ventricles, cavities in the brain filled with cerebrospinal fluid, expand
more for subjects with more advanced disease.

Adjustments for confounding. Covariate information cannot be explicitly included in SCCA,
so both the imaging and genomic data are adjusted for confounding variables in advance.
Potential confounders in the analysis are population stratification and APOE genotype.
Population stratification is the phenomenon of systematic differences in allele frequencies in
a subpopulation arising because of differences in ancestry, while the €4 allele of APOE is
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the largest known genetic risk factor for Alzheimer’s disease (Corder et al. 1993). Since true
population structure is not observed, a set of principal coordinates from multidimensional
scaling are used to derive proxy variables for population stratification in the data. We
also adjust for APOE genotype as a precautionary measure, since it can account for the
population stratification in the data, over and above the principal components or principal
coordinates (Lucotte et al. 1997).

Ten principal coordinates for each of the ADNI-1 and ADNIGO/2 datasets were obtained
using ten-dimensional multi-dimensional scaling on the pairwise IBS distance matrix, com-
puted with PLINK from 121,795 and 118,012 approximately uncorrelated SNPs from the
SNPs that passed quality control filters. The SNP genotypes used to estimate the principal
coordinates were from the complete imputed data. The number of principal coordinate di-
mensions was chosen to follow a similar protocol for adjustment for population stratification
using principal components, in which ten axes of variation are suggested (Price et al. 2006).

The data for analysis were obtained by adjusting the minor allele counts and estimated
rates of change of the brain ROIs for the ten principal coordinates, as well as for dummy
variables for APOE genotype, using weighted ordinary least squares regression. The weights
account for certain diagnostic subgroups being over-represented in the sample relative to
their population frequency. The residuals from each regression comprised the genomic (X)
and neuroimaging (Y') features analyzed.

2.2. Methods

2.2.1. Discovery

Weighted RV test. We tested the analysis dataset, ADNI-1, for linear association between
the genomic data and the neuroimaging data. The RV coefficient (Escoufier 1973) is a mul-
tivariate generalization of Pearson’s r? and quantifies the association between the columns
of X, or the genotypes, and the columns of Y, the imaging endophenotypes. As the test
statistic, we used a weighted version (Omelka and Sarka Hudecové 2013), in which individ-
ual contributions are proportional to their inverse probability weight. A permutation test

with P=10,000 permutations was used to assess the evidence for association between X and
Y.

2.2.2. Refinement

SCCA and resampling. To obtain a sparse linear combination of the SNP genotypes that is
most associated with a non-sparse linear combination of the imaging phenotypes, we used
sparse canonical correlation analysis (SCCA; (Parkhomenko et al. 2009)), a penalized ver-
sion of canonical correlation analysis. Sparse linear combinations contain some coefficients
which are zero; e.g., in penalized regression analysis, the predicted value is potentially a
sparse linear combination of the predictors. SCCA is a multivariate method for estimating
maximally correlated sparse linear combinations of the columns of two multivariate datasets
collected on the same n subjects, X and Y. We initially applied SCCA to identify a sparse
set of SNPs associated with the imaging endophenotypes. Ten-fold cross validation was
used to select the penalty parameter for the SNPs, \,, to use in SCCA. A search grid for
A, was defined as {0,107%,...,107!} with the values in the search grid being incremented
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Figure 1: Heatmap of the neuroimaging phenotypes, clustered by similarity among ROIs and subjects. Each
row corresponds to a subject in the sample and each column corresponds to one of the 56 ROIs. The rows
are annotated by the disease group of the subject. The adjusted, estimated rates of change are shown for
each region, where blue values indicate decreases in the volume of thickness in the brain region, and orange
values indicate increases in the volume of the brain region. Values for the ventricles clustered on the far
right, have an inverted relationships compared to the other ROIs since the ventricles are cavities in the
brain which expand as brain atrophy progresses. The thickness of grey matter, by contrast, decreases with
atrophy.

by 0.0005. At the i element in the search grid, \,;, the sparse canonical correlation coef-
ficients were computed in training set j, where the sparse canonical correlation coefficients
at grid point ¢ in cross-validation fold j for the SNPs are denoted by a; ;, and the coeffi-
cients for the endophenotypes are denoted by b; ;. The fitted coefficients from the training
sets were then used to compute the predicted sample correlation coefficient in each test set:
Tij = Corr(ai’thestj, me;estj). The SNP penalty parameter A\, was chosen as the element
in the search grid that maximized the sum of the predicted sample correlation coefficients
over the ten test sets. Under this cross-validation scheme, variable selection of the SNPs was
minimal with more than 98% of the SNPs remaining in the active set. Ruling out fewer than
2% of the SNPs in the Alzgene linkage regions is insufficient refinement for our analysis.
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Instead, we chose to incorporate bootstrap resampling to estimate the relative importance
of each SNP in the multivariate association. This approach of “bootstrap enhancement” has
been applied previously in neuro-imaging studies (Bunea et al. 2011), to guide variable
selection with the elastic-net and the lasso. We obtained B=100,000 bootstrap samples by
sampling with replacement within each disease category. The weighted cross-correlation
matrix S%//) was computed for each bootstrap sample b, and a sparse linear combination of
the genomic markers was estimated, using the SCCA penalty parameter A} = 0.012 for soft-
thresholding the SNP coefficients. A value of A} = 0.012 was chosen so that approximately
10% of the SNPs had non-zero estimated coefficients. If 8, = (B, Bap, - - -, Bpp) denotes the
coefficient vector of the sparse linear combination of the p SNPs, from bootstrap sample
b, then the importance probability for SNP £ is defined in equation 2 as the proportion of
bootstrap samples in which SNP k (k= 1,...,p) has a nonzero coefficient, or is “selected”:

B
1 .
VIP, = B E (B, # 0), where I(A) = 1 if condition A holds and 0 otherwise  (2)
b=1

Gene-Set Analysis. To reduce the initial list of 75,845 SNPs to a shorter list for validation
and to gain insight into the biologically related sets of genes associated with cognitive decline,
we applied a gene-set analysis, as implemented in GSA-SNP (Nam et al. 2010). GSA-SNP
combines the evidence for SNP-specific associations into gene-level summaries and assesses
the pattern of association for genes in a given set, such as a functional pathway, relative
to genes outside the set. We used variable exclusion probabilities, VEP =1 — VIP, to
quantify the SNP-specific evidence of association, and the second smallest VEP for SNPs
in a gene as the gene-level summary statistic. The re-standardized version of GSA-SNP
with the maxmean statistic (Efron and Tibshirani 2007) was applied, with default gene
padding of 20000 base pairs and Gene Ontology gene sets. We took P = 100 samples
under the permutation null hypothesis of no association to serve as the empirical reference
distribution for V EPs from ADNI-1. To ensure inclusive selection of SNPs, candidate gene
sets were identified by Benjamini-Hochberg corrected p-values with a liberal false discovery
rate threshold of 0.8.

2.2.3. Validation

Validation. Two subsets of the SNPs in the Alzgene linkage regions, with estimated impor-
tance probabilities > 50% and 90%, were used for validation in the ADNIGO/2 sample.
The cut-off values were chosen to reflect a relatively liberal and stringent criterion, respec-
tively. We first assessed the evidence for linear association between the top SNPs and all the
imaging phenotypes in the ADNIGO/2 validation sample. We then returned to the original
ADNI-1 training sample and checked the evidence for association of the reduced list of SNPs
there as well. The RV-test with 1,000 permutation replicates was applied in all cases.

Inverse probability weights. To account for the biased sampling in the ADNI-1 and AD-
NIGO/2 case-control studies, we estimated inverse probability weights for each subject(Horvitz
and Thompson 1952). As subjects with early MCI were excluded from ADNI-1, we defined
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Sample ney Npmcer MaAap N
ADNI-1 179 296 157 632
ADNIGO/2 116 104 45 265

Table 2: The number of subjects, np, from each disease group D that were analyzed in each study. The
total number of subjects analysed in each study is denoted by n.

the target population to be non-Hispanic, white Americans and Canadians aged 55-90 years
who are cognitively normal or have been diagnosed with late MCI or Alzheimer’s disease.

The Alzheimer’s Association reports that 5.2 million Americans had Alzheimer’s disease
in 2014 (Alzheimer’s Association 2014). Additionally, data from the US census in 2010 (U.S.
Census Bureau 2011) indicates that approximately 23% of the American population is over
the age of 55 and that the total population is 308 million people. Based on this information,
the approximate proportion of the American population aged 55-90 years with Alzheimer’s
disease is pap = 7.5%, rounded to the nearest half percent. This calculation assumes that
individuals aged 90 or more years and patients diagnosed with early MCI represent negligible
proportions of the population. We used a late MCI prevalence estimate of pryrcr = 5% based
on an urban study of people aged 65+ in New York (Manly et al. 2005), and assumed that
the remaining pony = 87.5% of the population of interest is cognitively normal.

A breakdown of the number of subjects used in the analysis by study is given in Table
2.2.3.

The inverse probability weights wpx sampie for each disease group and sample are com-
puted as the assumed prevalence of the disease in the target population divided by the
number of subjects sampled from the disease group; for example,

Pap <3)

WAD,ADNI-1 = ——————.
NAD,ADNI-1

The weights are standardized to sum to 1.

3. Results

3.1. Discovery
The RV-test in the ADNI-1 data rejected the null hypothesis of no linear association

between X and Y. The observed RV coefficient was RV = 0.079, and the permutation test
p-value was p < 0.001.

3.2. Refinement

The resampling procedure coupled with SCCA in the ADNI-1 data produces variable
importance probabilities (VIPs) for each SNP in the Alzgene linkage regions. Figure 2 is
a Manhattan-like plot of the variable exclusion probabilities, VEP =1 — VIP, plotted on
the —logy, scale, such that SNPs with VIP > 0.9, have values of —log,,(VEP) > 1. The
dotted reference line indicates the VIP = 0.5 cut-off used to identify the priority SNPs.
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. 1,694 SNPs had VIP > 0.5, a set of reduced SNPs we call the priority set. As expected,
the priority SNPs, X, cquced, Were associated with the endophenotypes in the ADNI-1 training
data, based on a permutation RV test (RV = 0.23, p < 0.001). Using the stringent cut-off
of VIP > 0.9 for SNP selection, 22 SNPs were included in a set of SNPs we call the set of
top-hits. As expected, the top-hit SNPs, X,,,, were also associated with the endophenotypes
in the ADNI-1 training data (p < 0.001). There was no evidence of enrichment in biological
pathways based on results from GSA-SNP.

—log(VEP)
-

Linkage region

Figure 2: Plot of the —log,,(V EP) of the SNPs in each of the Alzgene linkage regions. The dotted reference
line indicates the VIP = 0.5 cut-off used to define the priority set of SNPs X, cquced-

. Figure 2 shows that very few SNPs had VIP > 0.9, as evidenced by the sparse selection
of SNPs with —log,,(VEP) > 1 in the plot. While the linkage region on chromosome 10
is the largest, it also has the most SNPs with VIP > 0.9 and its SNPs have relatively high
inclusion probabilities across the entire linkage region, in contrast to the linkage region from
chromosome 6, for example. The smaller linkage regions p22.3-p-13.3 on chromosome 9 and
q24.3-qter on chromosome 17 have relatively low inclusion probabilities, overall.

3.3. Validation
. Let X juceq and X7, be the ADNIGO/2 validation data at the priority and top-hit sets
of SNPs, respectively, and let Y* be the validation endophenotype data. We were able to
validate our finding of association between the priority set of SNPs and the endophenotypes
in the ADNIGO/2 data. The RV test of association between X* , . and Y* had an observed
test statistic of RV, = 0.073, and a permutation p-value of p = 0.0021. However, there
was no evidence of association between the top-hit set of SNPs and the endophenotypes
(p =0.79).
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. To further understand the observed association between SNPs in the priority set and
endophenotypes in the ADNIGO/2 validation data, we decomposed the RV test statistic
into its SNP-specific components. Figure 3 depicts the contribution of each SNP as a score,
normalized to have mean 1 over all the SNPs in the priority set. Before normalization,
the contribution for SNP 7 in the priority set is a sum, > 7, Xorweeas ¥y OVEL the ¢ = 56
endophenotypes in the cross-correlation matrix, 5% .Y from the ADNIGO/2 validation
data. Each point in the plot therefore represents the relative contribution of a given SNP
to the RV coefficient, summed over the 56 endophenotypes. SNPs with higher relative
contributions can be viewed as the SNPs driving the association found in the RV test.

ADNIGO/2 score

Linkage region

Figure 3: SNP-specific scores at the priority set SNPs in the ADNIGO/2 validation data, with scores defined
as described in text. SNPs with higher score contribute relatively more to the RV coefficient between
X quceq @0d Y™, The dashed horizontal reference line corresponds to a score of 1, or the average score for
a SNP in the priority set in the ADNIGO/2 validation data.

. Table 3.3 summarizes information about the top 20 scoring SNPs in the priority set, with
gene annotations obtained from SNPNexus (Ullah et al. 2012). SNPNexus was queried
using assembly NCBI36/hgl8, the UCSC genome browser (Speir et al. 2015) and AceView
(Thierry-Mieg and Thierry-Mieg 2006). The resulting gene symbols for annotated SNPs
are reported in the Genes column of the table. We used the squared Pearson correlation
coefficient, r?, to measure the linkage disequilibrium (LD) between SNPs. Values of 72 were
computed in R (Clayton and Leung 2007) using the N = 116 cognitively normal subjects
in the ADNIGO/2 data. LD blocks within the priority set are indicated by numbers in the
first column of Table 3.3, and are defined such that all SNPs within a block have pairwise
r? greater than 0.7.
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LD block SNP score® CHR BP Band VIP Genes
rs17328231  5.96 1 95791119 p31.1-gq31.1  0.54
rs6439445 4.24 3 135119256 q12.3-g25.31 0.72
rs16856619  4.08 3 146493435 q12.3-g25.31 0.58
rs345015 5.70 3 146667792 ql12.3-g25.31 0.62
1 rs634364 4.18 6 53575551  p21.1-q15 0.57 AK126334, BC050580,
AK125128, GCLC
1 1rsh25248 4.18 6 53576038 p21.1-ql5 0.57 AK126334, BC050580,
AK125128
2 182148885 3.82 10 21413099 pld-q24 0.57 NEBL
2 1s11012530 5.06 10 21444536 pld-q24 0.58 NEBL
3 1s7897675 5.06 10 38448572  pld-q24 0.55 ZNF37A
3 rsl7588142  5.06 10 38467714 pld-q24 0.55
3 rs7080636 5.06 10 38659180 pl4-q24 0.50
3 1s34350622 5.17 10 41848403 pld-q24 0.51
rs12255371  5.15 10 41970728 pld-q24 0.51
rs7088870 3.91 10 73723319  pld-q24 0.59
4 rs7094314 3.83 10 82321942 pl4-q24 0.55 SH2D4B
4 1rs7904557 3.77 10 82326243 pld-q24 0.56 SH2D4B
rs12768174  5.82 10 84889167 pld-q24 0.74
rs10887866  4.48 10 90661730 pld-q24 0.56 STAMBPLI1, KIAA1373,
STAMBPL1andFAS
rs4646957 4.26 10 94219892 pl4-q24 0.54 IDE
rs1235382 4.13 19 49711347 pl3.3-qter 0.89 CEACAM20

* SNP-specific score indicating relative contribution to the RV statistic, as defined in text.

Table 3: The 20 SNPs with highest SNPs scores in the ADNIGO/2 dataset. Gene annotation obtained
from SNPNexus queried with the UCSC genome browser and AceView. LD blocks comprise blocks of SNPs
where all SNPs are in LD with R? > 0.7.
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4. Discussion

. In this report, we have taken a targeted approach to genetic association mapping of
Alzheimer’s disease by focusing on SNPs in Alzheimer’s disease linkage regions and on
imaging endophenotypes for brain regions affected by Alzheimer’s disease. We discovered
association between SNPs in the linkage regions and the imaging endophenotypes, refined
the set of SNPs by selecting those with high variable inclusion probabilities, and validated
the refined set in an independent dataset. Here, we discuss our observations about the ben-
efits and pitfalls of applying data-integration methods such as sparse canonical correlation
analysis and the RV test in a high-dimensional data setting with low signal. We also discuss
potential links between Alzheimer’s disease and genes in the priority set that were ranked
highly in the validation data.

. Initially, SCCA was used to find a subset of the SNPs in the linkage regions associated with
the endophenotypes, but very little variable selection was achieved. SCCA uses a predic-
tion criterion to identify the optimal soft-thresholding parameters for the sparse canonical
variables, but using prediction error to select the penalty term is well known to include
irrelevant variables in the active set (Leng et al. 2006). In addition, the prediction-optimal
value of the penalty term does not coincide with model selection consistency (Meinshausen
and Biithlmann 2006). Instead of using the prediction-optimal penalty term, we fixed the
soft-thresholding parameter for the SNPs to achieve variable selection based on the rationale
that no more than about 7,500 SNPs, or approximately (10%), are expected to be associated
with the phenotypes. This choice is guided by prior experience in genetic association studies,
where the majority of genetic variants have no effect on the phenotypes, or an effect that
is indistinguishable from zero (Carbonetto and Stephens 2012). We applied bootstrapped-
enhanced SCCA, a procedure analogous to the bootstrapped-enhanced elastic net proposed
by (Bunea et al. 2011) for imaging applications in which the number of subjects is few
relative to the number of predictor variables. To obtain a reduced set of SNPs to carry
forward for validation, we then thresholded the variable inclusion probabilities at 50%, as
suggested by these authors, and at 90%. Bootstrapping to aid variable selection has been
shown to be consistent in high-dimensional settings under some assumptions (Meinshausen
and Bithlmann 2010), and can improve recovery of the true model in regularized regression
(Bach 2008).

. We selected 22 “top-hit” SNPs by applying a stringent threshold of VIP > 90% in the
ADNI-1 training data. The post-hoc association between the “top-hit” SNPs and the neu-
roimaging endophenotypes in the training data (p < 0.001) is expected, since the variable
selection and hypothesis test are both computed in-sample. We note that, in a low sig-
nal context, the inability to replicate association of the “top-hit” SNPs in the ADNI-GO/2
validation data is not unexpected. For a fixed sample size, as the number of unassociated
SNPs increases, the probability of a truly associated SNP being within the top-ranked SNPs
decreases (Zaykin 2005). By contrast, the more liberal threshold of VIP > 50% resulted in
a larger, “priority” set of 1694 SNPs which could be validated and was substantially refined
from the initial list of 75,845. In our context of few subjects relative to SNPs, the selection
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of an appropriate threshold for SNP selection is an important open question, since analyses
involving tens of thousands of SNPs lend themselves to ranking of SNPs by some measure,
be it a p-value from a mass-univariate analysis or a variable importance probability.

. The permutation-based RV test of association proved to be a powerful tool in different
phases of the analysis. This nonparametric test was computationally tractable and allowed
us to uncover and validate linear association between the two multivariate datasets, one
of them very high-dimensional, in an analysis setting with a low signal. Despite the evi-
dence for association, the observed RV coefficient at each of the discovery, refinement and
validation stages of the analysis was not large (< 0.1), consistent with SNPs having small
association effects. The presence of SNPs with small effects is anticipated, as previous stud-
ies have found no large genetic effects apart from APOFE (Ridge et al. 2013), for which
we have already adjusted. While the RV coefficient overestimates similarity between two
data matrices when the sample size is small and the data are high-dimensional (Smilde et
al. 2008), permutation tests using the RV coefficient as a test-statistic remain valid for
detecting association because the permutation null distribution is computed under the same
sample size and data dimensions as the observed test statistic.

. While there have been many analyses of the genomic and neuroimaging variation in the
ADNI data, the analysis of (Vounou et al. 2012) is similar to our own in that SNPs were
refined into a priority subset by variable importance probability. These authors split the
ADNI data into three analysis sets: the set of the AD and LMCI subjects, the set of the
AD and CN subjects, and the set of the LMCI and CN subjects. In each analysis set, they
found neuroimaging signatures that discriminated between subjects in the two diagnosis
categories, then used the signatures to supervise selection of associated SNPs in a reduced
rank regression. They found that the APOFE genotype as well as SNPs from the TOMM/0
gene were ranked highly for association with a neuroimaging biomarker that distinguished
between subjects with AD and CN. APOF is the largest known genetic risk factor for AD,
and SNPs in TOMM40 have been found to be predictive of age of onset of AD (Roses et
al. 2009). While their highly ranked genomic variants have been previously implicated with
AD, the treatment of each of the analysis sets as representative samples in the reduced rank
regression means that the general interpretability of these rankings is lacking. The ADNI
studies use a case-control design, in which subjects are sampled conditional on meeting
diagnostic criteria for either being cognitively normal, having late MCI, or having AD.
Case-control designs do not result in a random sample from the population and they cannot
be used to make inference about the population association between SNP genotypes and
neuroimaging biomarkers without accounting for the biased sampling. To account for the
biased sampling, we have applied inverse probability weighting in our analyses.

. Investigation of the genes associated with the highest scoring SNPs in the validation data,
reported in Table 3.3, identified genes previously implicated in AD. On chromosome 6,
Glutamate-Cysteine Ligase Catalytic Subunit or GCLC, a gene annotation of the SNP
rs634364, codes the first, rate-limiting enzyme of glutathione synthesis. Glutathione is an
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important antioxidant which plays an integrated role in the regulation of cell life, cell prolifer-
ation, and cell death (Pompella et al. 2003). The brain glutathione system is hypothesized to
play a role in the breakdown of proteins in the brain, such as AS peptides (Lasierra-Cirujeda
et al. 2013), and abundance of glutathione decreases with age and in some age-related dis-
ease (Liu et al. 2004). On chromosome 10, the complex locus STAMPBL1andFAS is an
annotation of rs10887866 and codes a protein which plays a central role in programmed cell
death (Choi and Benveniste 2004). Through modulation of programmed cell death and neu-
ronal atrophy, FAS may play a role in AD (Erten-Lyons et al. 2010). Also on chromosome
10, the gene insulin degrading enzyme (IDFE) contains rs4646957 and codes the enzyme of
the same name. IDFE has previously been implicated in the progression Alzheimer’s disease
as it degrades the AfS peptides which are the main components in the amyloid plaques on
the brains of subjects with Alzheimer’s disease (Edland et al. 2003). Edland et. al. found
that three IDFE variants were associated with risk of AD in subjects without copies of the
€4 APOF risk allele, the allele which constitutes the largest genetic risk of AD.

. Gene expression from the UCSC RNA-Seq GTEx track was also explored to determine if
any of the genes reported were highly expression in the brain. On chromosome 10, Zinc Fin-
ger Protein 37A (ZNF37A), the gene containing rs7897675, is most highly expressed in the
cerebellum and cerebellar hemisphere of the brain, regions related to motor function. Neb-
ulette (NEBL), the gene annotation of rs2148885 and rs11012530, is most highly expressed
in the heart, but has next highest gene expression in the brain. In addition, association
fine-mapping under a linkage peak identified NEBL as a candidate gene for vitamin D levels
in the blood (Aslibekyan et al. 2016). Low vitamin D blood levels are associated with
accelerated decline in cognitive function in older adults (Miller et al. 2015).

. Ten of the top 20 SNPs in Table 3.3 did not have associated gene annotations in the
UCSC genome browser or AceView. For these SNPs, flanking genes were queried with
ALFRED (Rajeevan et al. 2011) and the UCSC genome browser, since SNPs may “tag”
causal variants in nearby genes. Genes were considered to be flanking if they were within 1
Mb of the SNPs in the priority set, though many of the flanking genes reported are much
closer to the priority SNPs. On chromosome 3, rs643944 is approximately 22 kb proximal
to the flanking gene RAB6B. RABG6B is the brain-specific isoform of RAB6 (Wanschers et
al. 2007), a family of proteins which impair the processing of the amyloid precursor protein
involved in the development of AD (Thyrock et al. 2013). On chromosome 10, DDIT}
is approximately 17.5 kb proximal to rs7088870. DDIT/ produces the REDDI1 protein,
which enhances stress-dependent neuronal cell death and is involved in dysregulation of the
mammalian target of rapamycin (mTOR) pathway (Maiese 2014). Dysregulation of mTOR
is a hallmark of a wide variety of brain disorders (Polman et al. 2012), and inhibition of
mTOR is associated with AS-peptide-related synaptic dysfunction in AD (Ma et al. 2010).
Another flanking gene to rs7088870 is DNA.JB12, which is appoximately 39.2 kb proximal to
rs7088870, and is involved in protein folding. The process of plaque build-up in AD involves
the accumulation of misfolded AS proteins, and DNAJB12 is highly expressed throughout
the brain (Tebbenkamp and Borchelt 2010). Finally, in addition to being the gene annotation
of 17897674, ZNF37A is also 15.4 kb proximal to the SNP rs17588142 on chromosome 10.
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. In summary, this analysis illustrates the application of novel methods for integration of
high-dimensional data with low signal. To focus on regions with increased prior probabil-
ity of containing deleterious variants, the analysis was restricted to SNPs within linkage
regions for AD. The objective was to obtain a refined list of SNPs to propose for further
investigation. Naive application of SCCA did not lead to any refinement, potentially due
to the data containing many small effects. Instead, we were able to obtain refinement
through bootstrapped-enhanced SCCA. Throughout, the analysis benefited from the RV
test to assess the evidence of linear association between two multivariate datasets: the high-
dimensional genomic data, and the multidimensional neuroimaging data. RV tests of SNPs
selected based on variable importance probabilities identified a priority set of 1,694 SNPs
in the ADNI1 data that was associated with the rates of changes in the brain regions of
interest in the ADNIGO/2 validation set. Our final results are encouraging, in that genes
corresponding to SNPs with the highest contributions to the RV coefficient in the validation
data have previously been implicated or hypothesized to be implicated in AD, including
GCLC, IDE, and STAMBP1andFAS. We hypothesize that the effect sizes of the 1,694 SNPs
in the priority set are likely small, but further investigation within this set may advance
understanding of the missing heritability in late-onset Alzheimer’s disease.
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ADNIGO/2 validation data.
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