Set up the patient according to the ADNI instruction manual. Use the 8-channel brain coil.

Use the electronic ADNI protocol that has been loaded on your scanner.

NOTE: The "adni" pulse sequence used for series 2 and 3 is a works in progress pulse sequence that ADNI sites obtain from GE Healthcare.

<table>
<thead>
<tr>
<th>SERIES</th>
<th>coil etl</th>
<th>scan time</th>
<th>IMAGING PARAMETERS</th>
<th>ACQUISITION TIMING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3 plane loc.</td>
<td>8hrbrain</td>
<td>3-plane</td>
<td>matrix/nex</td>
</tr>
<tr>
<td></td>
<td></td>
<td>:16</td>
<td>SAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>comments</td>
<td>Use 8-channel brain coil.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERIES</th>
<th>IMAGING PARAMETERS</th>
<th>ACQUISITION TIMING</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Sag MP RAGE</td>
<td>256 / 256 / 1</td>
</tr>
<tr>
<td></td>
<td>Sag 3D</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>SPGR</td>
<td>S/I</td>
</tr>
<tr>
<td>#echos</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Prep time</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>flip angle</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>etl</td>
<td>31.25</td>
<td></td>
</tr>
<tr>
<td>scan time</td>
<td>9:14</td>
<td></td>
</tr>
<tr>
<td>comments</td>
<td>Cover skin to skin. Remind the patient to hold still for this scan.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERIES</th>
<th>IMAGING PARAMETERS</th>
<th>ACQUISITION TIMING</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>MP RAGE-repeat</td>
<td>256 / 256 / 1</td>
</tr>
<tr>
<td></td>
<td>Sag 3D</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>SPGR</td>
<td>S/I</td>
</tr>
<tr>
<td>#echos</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Prep time</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>flip angle</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>etl</td>
<td>31.25</td>
<td></td>
</tr>
<tr>
<td>scan time</td>
<td>9:14</td>
<td></td>
</tr>
<tr>
<td>comments</td>
<td>Prescribe same image locations as series 2, unless adjustment is needed (e.g. to correct for wrap). Remind the patient to hold still for this scan.</td>
<td></td>
</tr>
</tbody>
</table>

(Continued on next page)
3T ADNI GE E2 M4 Software, CRM Gradient and 8-channel Brain Coil

SERIES 4. Sag B1 Cal PA
- **coil**: 8hrbrain
- **scan plane**: Sag
- **mode**: 3D
- **pulse seq**: GRE
- **image opts.**: EDR, Fast
- **psd name**: 128 / 128 / 1
- **#echos**: 1
- **tr**: min full
- **flip angle**: 2
- **bw1/bw2**: 62.5
- **scan time**: :41
- **comments**: Cover skin to skin.

ADDITIONAL PARAMETERS
- **User CVs**: Turbo Mode =1
- **Auto Shim**: On
- **Filter Choices**: none
- **fov**: 30
- **slice/space**: 2.5mm locs/slab=96

SERIES 5. Sag B1 Cal PA
- **coil**: BODY
- **scan plane**: Sag
- **mode**: 3D
- **pulse seq**: GRE
- **image opts.**: EDR, Fast
- **psd name**: 128 / 128 / 1
- **#echos**: 1
- **tr**: min full
- **flip angle**: 2
- **bw1/bw2**: 62.5
- **scan time**: :41
- **comments**: Turn Body Coil on for this scan. Leave 8hrbrain coil plugged in, but accept change to Body Coil
- **Same image locations as series 4.**

ADDITIONAL PARAMETERS
- **User CVs**: Turbo Mode =1
- **Auto Shim**: Off
- **Filter Choices**: none
- **fov**: 30
- **slice/space**: 2.5mm locs/slab=96

SERIES 6. Ax PD/T2 FSE
- **coil**: 8hrbrain
- **scan plane**: Ax
- **mode**: 2D
- **pulse seq**: FSE-XL
- **image opts.**: EDR, Fast
- **psd name**: 256 / 128 / 1
- **#echos**: 2
- **tr**: min full / TE2=98.2
- **flip angle**: 3000
- **bw1/bw2**: 16
- **scan time**: 4:49
- **comments**: Accept change back to 8-channel Brain Coil
- **Prescribe 44 slices to cover head.**

ADDITIONAL PARAMETERS
- **User CVs**: Filter Choices=none
- **blurring cancellation**: 0
- **fov**: 24
- **slice/space**: 44 loc, 3mm interleaved

IMAGING PARAMETERS
- **Acquisition Timing**
- **ACQ**: 0.9
- **A/P**: Off

Series 6 is the final patient series.

Follow the ADNI instructions to complete the phantom scans.