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Abstract

Background

Numerous efforts have been made to identify biomarkers for predicting the progression of

dementia in patients with mild cognitive impairment (MCI), and recently, a comprehensive

visual rating scale (CVRS) based on magnetic resonance imaging (MRI) has been validated

to assess structural changes in the brain of elderly patients. Based on this, the present study

investigated the use of CVRS for predicting dementia and elucidated its association with

cognitive change in patients with MCI over a three-year follow-up.

Methods

We included 340 patients with MCI with more than one follow-up visit. Data were obtained

from the Alzheimer’s disease Neuroimaging Initiative study. We assessed all the patients

using CVRS and determined their progression to dementia during a follow-up period of over

3 years. The cox proportional hazards model was used to analyze hazard ratios (HRs) of

CVRS for disease progression. Further, multiple cognitive measures of the patients over

time were fitted using the random effect model to assess the effect of initial CVRS score on

subsequent cognitive changes.

Results

Of 340 patients, 69 (20.2%) progressed to dementia and the median baseline score (inter-

quartile range) of CVRS significantly differed between stable MCI and progressive MCI (9

(5–13) vs 13 (8–17), p<0.001). The initial CVRS score was independently associated with

an increased risk of progression to dementia (HR 1.123, 95% confidence interval [CI]
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1.059–1.192). From 12 to 24 months, the effect of the interaction between CVRS and inter-

val of follow-up visit on cognitive performance achieved significance (p<0.001).

Conclusions

Baseline CVRS predicted the progression to dementia in patients with MCI, and was inde-

pendently associated with longitudinal cognitive decline.

Introduction

Mild cognitive impairment (MCI), a long predementia stage, is known to progress to dementia

in approximately 15% of the patients annually[1]. This finding concurrently implies that

approximately 85% of the patients with MCI remain clinically stable. Therefore, the need for

risk assessment using biomarkers is imperative in patients with MCI to identify those with a

high risk of progression to dementia [2].

Brain magnetic resonance imaging (MRI) is commonly used to assess individuals with cog-

nitive decline and detect structural changes. The National Institute on Aging-Alzheimer’s

Association (NIA-AA) adopted atrophy observed on structural MRI as neurodegenerative

marker of Alzheimer’s disease (AD) in addition to increased CSF tau, hypometabolism on

[18F]-fluorodeoxyglucose-PET, or positive tau PET[3–5]. However, AD-like atrophy primarily

observed in temporal lobe occurs in a variety disorders, such as cerebrovascular disease, hippo-

campal sclerosis, TDP-43-opathy or primary age-related tauopathy[6,7]. Among these non-

AD conditions that have been labeled as suspected non-Alzheimer pathophysiology (SNAP)

[8], cerebrovascular lesion is one of the most common pathologic finding [9,10]. Considering

that MCI is also frequently associated with multiple pathologies[11], it is necessary to develop

neuroimaging markers that simultaneously reflect neurodegeneration and vascular injury.

To obtain a complete understanding of the structural changes due to atrophy and cerebro-

vascular lesions, a quantified comprehensive visual rating scale (CVRS) based on brain MRI

has been developed[12]. The CVRS integrated the preexisting visual rating scales (hippocam-

pal atrophy, cortical atrophy, ventricular enlargement, and small vessel disease) without losing

the value of subscales[12]. Previously, CVRS was validated for individuals with normal cogni-

tion, MCI and, AD, and was found to reflect the structural changes observed in the brain of

patients with MCI and AD, and significantly correlate with neuropsychological tests[12].

However, whether this scale can be used for predicting disease progression and its relationship

with cognitive changes in longitudinal follow-ups is unclear. Hence, the current study aimed

to investigate the use of CVRS for predicting progression to dementia over a 3-year follow-up

period in the patients with MCI.

Materials and methods

Ethics statement

The institutional review board of Kangwon National University Hospital approved this study.

The approval number is “KNUH-2017-04-012” and we did not have access to any identifying

participant data. The study procedures were approved by the institutional review board of all

participating centers (http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_

Acknowledgement_List.pdf) and written informed consent was obtained from all participants

or authorized representatives. Detailed protocols for informed consent of Alzheimer’s Disease
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Neuroimaging Initiative (ADNI) subjects can be referenced in ADNI information pages

(www.adni-info.org.).

Subjects

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuro-

imaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a

public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The pri-

mary goal of ADNI has been to test whether serial MRI, PET, other biological markers, and

clinical and neuropsychological assessments can be combined to measure the progression of

MCI and early AD. For up-to-date information, see www.adni-info.org.

Data used in this study were downloaded from the ADNI database on the 21th December,

2017. We included patients with MCI who had a baseline MRI scan as well as amyloid PET

study, and at least one or more follow-up visits after initial assessment. The primary outcome

of this study was progression to dementia during the follow-up period of up to 3 years. A final

total of 340 patients from the ADNI-GO/ADNI2 cohort were included in this study.

Diagnosis of MCI was made according to the presence of objective memory impairment

but without meeting the criteria for dementia. Namely, all subjects had a Mini Mental State

Examination (MMSE) score of 24 or higher, a global Clinical Dementia Rating (CDR) score of

0.5, a CDR memory score of 0.5 or higher, and a score indicating impairment on the delayed

recall of Story A of the Wechsler Memory Scale-Revised (�16 years of education:�8; 8–15

years of education:�4; 0–7 years of education:�2)[13]. Diagnosis of dementia at follow-up

was made according to the presence of memory complaints, a CDR score�0.5, and significant

impairments on objective cognitive measures and in ADL. Individuals with AD met the

National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer’s Dis-

ease and Related Disorders Association criteria for probable AD[14].

MRI

All subjects were imaged using a 3-T MRI scanner (GE, Siemens, or Philips). Data were col-

lected at multiple ADNI sites in accordance with a standardized MRI protocol (http://adni.

loni.usc.edu/methods/documents/mri-protocols/) that was developed by comparing and eval-

uating 3D T1-weighted sequences for morphometric analyses. MRI acquisition and processing

were performed as per standard protocol[15]. Preprocessed T1-weighted MPRAGE MR

images (T1-W MRI), a fluid-attenuated inversion recovery image (FLAIR), a T2 star weighted

image were downloaded from the ADNI database.

Comprehensive visual rating scale (CVRS)

The CVRS includes the scales of hippocampal atrophy, cortical atrophy, ventricular enlarge-

ment (subcortical atrophy), and small vessel disease, which summarize degenerative or vascu-

lar injury of the aged brain (Fig 1, S1 Fig). The details of each scale are described elsewhere[12]

and S1 File. The CVRS has adopted these existing scales that have been validated, and com-

bined them to quantify the effects of multiple brain deficits, thus yielding a scale with scores

ranging from 0 to 30 (a higher score represents more deficits).

The visual rating was performed by three raters (Jae-Won Jang, Jeong Hoon Park, Seon-

gheon Kim), who were blind to demographic and clinical information. The rater used a tem-

plate-based scoring program on a tablet computer that calculated the total score automatically

by matching the closest template image to MRI findings of the patient (S2 File). The inter-rater

and intra-rater reliability with 34 randomly selected MRI scans were 0.941 and 0.936

Comprehensive visual rating scale for mild cognitive impairment
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respectively (S1 Table). Cross-sectional validation of a clinical group including individuals

with normal cognition, MCI, and dementia was performed in previous study[12].

[18F]AV45 PET

The [18F]AV45 PET mean standard uptake value ratio (SUVR) was determined for each sub-

ject. Aβ-positive (Aβ+) and Aβ-negative (Aβ-) status were defined according to a SUVR

threshold of�1.10. This threshold was taken from the ADNI database as the composite vol-

ume of interest (VOI) standardized uptake value ratio (SUVR) with the highest accuracy for

discriminating between cognitively normal subjects and patients with AD[16].

Neuropsychological data

Longitudinal neuropsychological markers such as MMSE score, Alzheimer’s Disease Scale

Cognitive Subscale (ADAS-cog) [17] score, and Clinical Dementia Rating-Sum of Boxes

(CDR-SOB) score were evaluated at baseline up to 3-years by one-year intervals.

Statistical analysis

Independent t-tests and chi-square tests were used to examine between-group differences in

continuous variables and categorical variables, respectively. Mann-Whitney U test was used

for continuous variables that are not normally distributed. We assessed the hazard ratio (HR)

of the CVRS, baseline demographics, and neuropsychological profiles using univariate Cox

regression analysis with follow-up time as the time variable and progression to dementia as the

Fig 1. Construction of comprehensive visual rating scale(CVRS).

https://doi.org/10.1371/journal.pone.0201852.g001
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status variable. Kaplan-Meier plots were used to determine whether CVRS was associated with

progression to dementia with dichotomization as “high CVRS” and “low CVRS” using the

maximally selected rank statistics[18]. Multivariate Cox analysis was performed to identify

independent determinants of dementia progression with relevant covariates. The retention

threshold was set to p<0.2 in univariate Cox regression analysis and clinically important mea-

sures were also included such as age, sex, educational level, MMSE score, CDR-SOB score,

amyloid PET abnormality, ApoEε4 status, and CVRS. Multicollinearity among the covariates

was tested by calculating the variance inflation factor[19].

To assess the effect of initial CVRS score on cognitive performance presented by ADAS-cog

over time, we fitted the random effect model (with random intercept and slope functions). The

random effects model was used because this can account for the correlation that may exist

across multiple measurements in the same individual over time[20]. The fixed effects in the

model included CVRS, age, educational level, and follow-up time (expressed in months from

baseline MRI acquisition). This also included the interaction terms between each variable mea-

sured at follow-up visit and CVRS, which was modeled as fixed effects. The intercept and the

follow-up time (in months) were included as random effects in the model. All the subjects

were assumed to be independent.

The level of statistical significance was set at p<0.05. Statistical analyses were performed

using R (Version 3.4.3, The R Foundation for Statistical Computing, 64-bit platform). Cox

regression analysis was performed with survival package[21], the optimal cutpoints of continu-

ous variables in the survival analysis was obtained using the maxstat package[18] and panel

analysis with the random effect model was performed using the nlme package[22].The graph-

ics were generated using the ggplot2 package[23].

Results

A total of 340 patients were included in the study. The median age of the patients was 71.3

years, and 159 (46.6%) were female. A total of 156 patients (45.8%) had at least one APOE ε4

allele. During the follow-up period (median, 36 months), we observed that 69 patients (20.2%)

progressed to dementia, while 271 patients did not. Classification of the demographic, cogni-

tive, and biomarker characteristics based on the progression to dementia as stable MCI and

progressive MCI are represented in Table 1. Patients with MCI that progression to dementia

had poorer cognitive performances at baseline, higher amyloid PET abnormalities and CVRS

scores, and were more likely to be APOE4 carriers than those without progression.

In the univariate Cox regression analysis, patients with higher CVRS scores (>12 points)

showed a significantly increased HR (95% CI) of 1.120 (1.070–1.170) for progression to

dementia (Fig 2, Table 2). The rate of progression to dementia was significantly higher for

APOE ε4 carriers or subjects with amyloid positivity. Baseline cognitive performances with

lower MMSE scores, higher CDR Sum of Boxes (CDR-SOB), and higher Alzheimer’s Disease

Assessment Scale-cognitive subscale 11 (ADAS-cog 11) scores were also associated with pro-

gression to dementia.

Multivariate Cox analysis included clinically (age, sex, level of education) and statistically

relevant variables (APOE ε4 allele, MMSE, CDR-SOB, amyloid PET positivity, and CVRS)

(Table 2). Although ADAS-cog was statistically relevant and variance inflation factors were

<1.550 for all variables, indicating a low degree of collinearity, we excluded ADAS-cog from

the multivariate Cox analysis, because ADAS-cog score was clinically highly correlated with

MMSE. The adjusted covariates did not alter the significance of the HRs (95% CI) of CVRS

[1.123 (1.059–1.192)]. On the contrary, the significant relationships between APOE ε4, initial

MMSE, and disease progression were not observed after adjustment with other covariates.

Comprehensive visual rating scale for mild cognitive impairment
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We performed a ROC analysis and estimated area under the curve to assess the diagnostic

utility of the CVRS between stable MCI and progressive MCI compared to subscales (Table 3).

As described in Table 3, the AUC of the CVRS was greater than that of any other single sub-

scale and volumetric measurement.

Fig 3 summarizes the change in the ADAS-cog11 scores over time according to dichoto-

mized CVRS status. Table 4 represents the parameter estimates, standard error, and p value for

change in ADAS-cog estimated by the random effects model. Effects on CVRS in terms of

annual follow-up visits from the baseline were significant in trajectory of cognitive perfor-

mance. The effect of interaction between CVRS and the follow-up visit interval on cognitive

performance was marginal at 12 months (β estimate = 0.065 units; p<0.075) but became sig-

nificant after 24 months (β estimate = 0.166 units; p<0.001) and 36 months (β estimate = 0.274

units; p<0.001)

Discussion

We investigated the effects of baseline cerebral structural changes determined by CVRS on the

progression to dementia and on longitudinal cognitive decline among elderly patients with

MCI. The key finding of the study is that MCI patients with higher CVRS at baseline were

more likely to progress to dementia during the 3-year follow-up. Additionally, cognitive

decline was accelerated by the synergic interaction between the CVRS and follow-up visits.

Although not all individuals with MCI progress to dementia, they are at a higher risk than

cognitively normal individuals[24]. If individuals with a high risk of progression to dementia

are identified early, preventive intervention can be administered [25]. The CVRS scores for

MCI could help identify individuals that are most likely to be referred for additional biomarker

studies that are more expensive or invasive, such as PET scanning or CSF analyses. The CVRS

scores could also be used in clinical settings without the need for additional high-end biomark-

ers except for brain MRI.

Longitudinal studies provide important insights into the synergistic interaction between

the CVRS and follow-up visits in cognitive decline (Table 4). Although CVRS affected

Table 1. Baseline characteristics of the patients with MCI.

Stable MCI (n = 271) Progressive MCI (n = 69) Total

(n = 340)

p value

Age, years (mean ± SD) 71.1 ± 7.5 72.1 ± 7.2 71.3 ± 7.4 0.312

Female, n 127 (46.9%) 32 (46.4%) 159 (46.6%) 1.000

Education, years 16 (14–18) 16 (14–18) 16 (14–18) 0.655

APOE ε4 carriers, n 109 (40.2%) 47 (68.1%) 156 (45.8%) < 0.001

CDR-SOB 1 (0.5–1.5) 2 (1.5–3.0) 1.5 (0.8–2.0) < 0.001

ADAS-cog 11 7 (5–10) 12 (9.0–16.0) 9 (6–11) < 0.001

MMSE 29 (28–30) 28 (26–29) 29 (27–29) <0.001

Positive amyloid PET, n 128 (47.2%) 61 (88.4%) 189 (55.4%) < 0.001

CVRS 9 (5–13) 13 (8–17) 10 (6–14) < 0.001

Hippocampal atrophy 3 (1–4) 4 (3–6) 3 (2–4) < 0.001

Cortical atrophy 3 (2–5) 5 (3–7) 4 (2–5) < 0.001

Subcortical atrophy 2 (1–3) 3 (2–4) 2 (1–3) 0.001

Small vessel disease 1 (0–2) 1 (0–2) 1(0–2) 0.729

Values are presented as median ± interquartile range unless otherwise stated. SD, Standard deviation, CDR-SOB Clinical Dementia Rating Sum of Boxes, ADAS-cog
Alzheimer’s disease assessment scale-cognitive subscale, MMSE Mini-Mental State Examination, CVRS Comprehensive Visual Rating Scale.

https://doi.org/10.1371/journal.pone.0201852.t001
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cognitive decline, the effects of synergic interaction increased with each follow-up visit and

attained statistical significance after 24 months. The subtotal scores of the cerebral atrophy

scales were 23 points and those of small vessel disease were 7 points, which totaled 30 points

for the CVRS. As approximately three-quarters of the CVRS consist of atrophy scores, it

mainly reflects cerebral atrophy on MRI, which is a biomarker of neurodegeneration or neuro-

nal injury. This is classified as ‘N group’ according to new A/T/N classification[26] and it is

regarded as a non-specific marker that can be observed in wide variety of pathologic condi-

tions including AD, cerebrovascular disease, epilepsy, anoxia, hippocampal sclerosis, TDP-

43-opathy, primary age-related tauopathy, chronic traumatic encephalopathy, argyrophilic

grain disease, and non-AD primary tauopathies [6,7,26–28]. As for AD, neurodegeneration

might be the final result of the β-amyloid plaque or associated pathologic state (labeled as ‘A’)

Fig 2. Cox proportional hazards model for progression to dementia in mild cognitive impairment patients according to the CVRS score (‘Low’ indicates�12

points, ‘High’ indicates>12 points).

https://doi.org/10.1371/journal.pone.0201852.g002
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and subsequent aggregated pathologic tau (labeled as ‘T’). Therefore, our findings of increased

slope of cognitive decline between 12 months and 24 months according to CVRS status (Fig 2)

and increasing effects with follow-up visit after 24 months might be explained by the temporal

evolution of biomarkers implying that marker ‘N’ represents disease progression, which is

altered at a relatively later stage of the biomarker cascade[29–31].

About a quarter of the total scores of the CVRS consists of scores for small vessel disease (7/

30 points), which includes vascular injury markers, such as white matter hyperintensities, lacu-

nar infarcts, and microbleeds. Mixed pathologies, such as the coexistence of neurodegenerative

and cerebrovascular disease are increasingly recognized as important for AD and other forms

of dementia by longitudinal clinical-pathological studies[10]. Updated data from the religious

orders study and rush memory and aging project showed almost 75% of individuals with a

pathologic diagnosis have one or more of the vascular pathologies[32,33]. Vascular pathology

is present in about 90% of individuals with probable AD and mixed AD pathology, and other

degenerative diseases in approximately 65%. In over 58% of individuals, MCI has been

observed in combination with vascular pathologies such as microinfarcts, atherosclerosis,

arteriolosclerosis and cerebral amyloid angiopathy. While some studies suggest that vascular

pathologies directly increase the likelihood of clinical AD, others suggest that there is a syner-

gistic interaction between AD and vascular pathologies[34]. The contribution of vascular

pathologies to other pathologies and exact mechanism of vascular cognitive impairment

remains an area that requires to be studied.

Table 2. Univariate and multivariate Cox regression analysis.

Univariate analysis Multivariate analysis

HR(95% Cl) P-value HR(95% Cl) P-value

Age 1.020 (0.990–1.050) 0.226 0.968 (0.926–1.012) 0.152

Male 0.990 (0.620–1.590) 0.970 0.771 (0.448–1.326) 0.347

Education 0.990 (0.900–1.080) 0.821 1.055 (0.956–1.164) 0.286

APOE ε4 carrier 2.010 (1.470–2.750) <0.0001 1.391 (0.930–2.080) 0.108

Cognition

MMSE 0.770 (0.680–0.870) <0.0001 0.894 (0.771–1.035) 0.134

CDR-SOB 2.380 (1.980–2.870) <0.0001 2.218 (1.780–2.764) <0.0001

ADAS-cog 11 1.270 (1.210–1.330) <0.0001 NI NI

Brain imaging

Positive amyloid PET 7.140 (3.420–14.930) <0.0001 4.428 (1.966–9.976) 0.0003

CVRS 1.120 (1.070–1.170) <0.0001 1.123 (1.059–1.192) 0.0001

ADAS-cog Alzheimer’s disease assessment scale-cognitive subscale, CDR-SOB Clinical Dementia Rating Sum of Boxes, CI confidence interval, HR hazard ratio, MMSE
Mini-Mental State Examination, CVRS Comprehensive Visual Rating Scale, NI not included

https://doi.org/10.1371/journal.pone.0201852.t002

Table 3. Comparison of area under the curve (AUC) of the CVRS and subscales between stable MCI and progressive MCI.

Sensitivity, % Specificity, % Positive predictive value, % Negative predictive value, % AUC 95% CI

CVRS 63.8 65.7 12.3 67.9 0.677 0.605–0.749

Hippocampal atrophy 76.8 49.1 10.7 72.3 0.671 0.601–0.741

Cortical atrophy 58.0 67.9 13.6 68.5 0.662 0.590–0.734

Subcortical atrophy 63.8 59.4 13.4 71.4 0.631 0.558–0.705

Small vessel disease 11.6 92.3 19.8 72.4 0.513 0.440–0.586

AUC, area under the curve; CI, confidence interval; CVRS, Comprehensive Visual Rating Scale; MCI, mild cognitive impairment

https://doi.org/10.1371/journal.pone.0201852.t003
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Although automated analyses of cerebral structural change or vascular injury have already

been developed and are being used widely in research field, visual rating involving scales such

as the CVRS is easier and quicker, and does not generally require specific MRI or software; it is

more suitable for individual assessment in a clinical setting[12,35–37]. However, this does not

imply that the CVRS is generally better than automated measurement because atrophy mea-

sured by the CVRS was not adjusted for total intracranial volume; hence, the objectivity is rela-

tively poorer. Nevertheless, it is a cost-effective diagnostic tool that is ideally suited for

implementation in clinical practice[38]. A visual rating scale, such as CVRS better reflects the

observations of a clinician on brain MRI and is a simple score that might be useful for assessing

an individual in a primary clinical setting. In contrast, automated imaging analysis tools are

more appropriate for detailed research with group analyses in a longitudinal follow-up [39].

Several MRI visual rating scales have already been developed to assess a variety of brain

lesions[37,40–43]. Some of them, such as Scheltens’ medial temporal atrophy scale[44] are the

Fig 3. Plot of means with 95% confidence interval of ADAS-cog score (A) and CDR-SOB (B) by CVRS status over time.

https://doi.org/10.1371/journal.pone.0201852.g003

Table 4. Results from random effects model: A change in ADAS-cog is associated with variables in MCI patients

for 36 months.

Variable (model term) Estimate (SE) P Value

Intercept 7.288 (2.737) 0.007

Age at baseline -0.027 (0.33) 0.416

Education -0.008 (0.072) 0.897

CVRS 0.359 (0.053) <0.001

Visit 2 (12 month) -0.542 (0.406) 0.182

Visit 3 (24 month) -0.780 (0.541) 0.149

Visit 4 (36 month) -0.456 (0.834) 0.585

Visit 2 (12 month) x CVRS 0.065 (0.037) 0.075

Visit 3 (24 month) x CVRS 0.166 (0.049) <0.001

Visit 4 (36 month) x CVRS 0.274 (0.076) <0.001

ADAS-cog Alzheimer’s disease assessment scale-cognitive subscale, CVRS Comprehensive Visual Rating Scale.

https://doi.org/10.1371/journal.pone.0201852.t004
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most successful as it was used extensively studies, clinical trials, and has been recommended in

the diagnostic guidelines of AD[45], while other scales have little or no impact without subse-

quent replication[38]. Our study was in line with previous studies, in which visual rating scales

that focused on validation, correlated with clinical measures of cognition in a clinically rele-

vant population[12]. However, CVRS has its own strengths and novelty as it suggests unified

integration of other validated scales based on neurodegeneration and vascular injury while

others have only investigated a single scale dependent on a specific diagnosis such as AD, fron-

totemporal dementia or vascular dementia[38]. Furthermore, we provided an intuitive tem-

plate for visual rating either using a tablet-computer or a table demarcated with a bounding

box for region of interest to be clear at rating procedure (S1 Fig and S2 File).

Our study has several limitations. First, the score of small vessel disease revealed no differ-

ence between stable MCI and progressive MCI (Table 2) and the prevalence of lacunes and

microbleeds in our patients was low (lacunes, 7.9%; microbleeds, 5.3%), compared with the

findings of previous studies[46–48]. ADNI included individuals with Hachinski scores� 4

and excluded those with multiple lacunes; hence, the effects of small vessel disease might be

underestimated in the current study. Considering that vascular damage with a white matter

hyperintensity or lacune is known to be associated with increased brain atrophy in the context

of AD pathology in the pre-dementia stage[49,50] or worse cognitive outcome [51], the effects

of the subscales of small vessel disease in CVRS could be the target of validation in the future

research. Second, although a change in slope, which indicates the rate of deterioration of

ADAS-cog and CDR-SOB, was observed between 12 months and 24 months, cognition was

not measured intermediately; hence, impossible to indicate the important inflection points

(Fig 3). Third, we included MCI subjects who performed both MRI and amyloid PET at base-

line, that might result in selection bias. Although, amyloid PET is not part of the current stan-

dard care, a meta-analysis of studies evaluating amyloid PET’s ability to predict MCI

conversion to AD demonstrate a sensitivity of 93% and a specificity of 56%[52]. Considering

growing importance of amyloid PET in clinical practice, we included it as one of the selection

criteria to confirm CVRS as independent predictor. Lastly, it is probable that the weighed sub-

scale value will better reflect the influence of the effects of each subscale on global cognition.

However, this weighted method has not been adopted, because it can ruin the simplicity of the

CVRS by converting the output of the scores from integers to real numbers. Furthermore, it

did not have significant superiority over the non-weighted method for group discrimination

and correlation with cognitive function[12].

In conclusion, this study showed that initial CVRS scoring in an individual with MCI is

independently associated with disease progression to dementia over a 3-year follow-up period.

Moreover, cognitive decline was accelerated by the synergic interaction between the CVRS

and follow-up visits. This indicates that CVRS can be used to predict disease progression in

patients with MCI.

Supporting information

S1 Fig. Flowchart of the scoring of the comprehensive visual rating scale (CVRS).

(TIF)

S1 File. The full description of how the comprehensive visual rating scale (CVRS) score is

calculated.

(DOCX)

S2 File. The comprehensive visual rating scale (CVRS) on a tablet computer.

(DOCX)
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S1 Table. Values for inter-rater and intra-rater reliability of CVRS and subscales.
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