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A B S T R A C T   

Alzheimer’s disease (AD) is a severe irreversible neurodegenerative disease that has great sufferings on patients 
and eventually leads to death. Early detection of AD and its prodromal stage, mild cognitive impairment (MCI) 
which can be either stable (sMCI) or progressive (pMCI), is highly desirable for effective treatment planning and 
tailoring therapy. Recent studies recommended using multimodal data fusion of genetic (single nucleotide 
polymorphisms, SNPs) and neuroimaging data (magnetic resonance imaging (MRI) and positron emission to-
mography (PET)) to discriminate AD/MCI from normal control (NC) subjects. However, missing multimodal data 
in the cohort under study is inevitable. In addition, data heterogeneity between phenotypes and genotypes 
biomarkers makes learning capability of the models more challenging. Also, the current studies mainly focus on 
identifying brain disease classification and ignoring the regression task. Furthermore, they utilize multistage for 
predicting the brain disease progression. To address these issues, we propose a novel multimodal neuroimaging 
and genetic data fusion for joint classification and clinical score regression tasks using the maximum number of 
available samples in one unified framework using convolutional neural network (CNN). Specifically, we initially 
perform a technique based on linear interpolation to fill the missing features for each incomplete sample. Then, 
we learn the neuroimaging features from MRI, PET, and SNPs using CNN to alleviate the heterogeneity among 
genotype and phenotype data. Meanwhile, the high learned features from each modality are combined for jointly 
identifying brain diseases and predicting clinical scores. To validate the performance of the proposed method, we 
test our method on 805 subjects from Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Also, we 
verify the similarity between the synthetic and real data using statistical analysis. Moreover, the experimental 
results demonstrate that the proposed method can yield better performance in both classification and regression 
tasks. Specifically, our proposed method achieves accuracy of 98.22%, 93.11%, and 97.35% for NC vs. AD, NC 
vs. sMCI, and NC vs. pMCI, respectively. On the other hand, our method attains the lowest root mean square error 
and the highest correlation coefficient for different clinical scores regression tasks compared with the state-of- 
the-art methods.   

1. Introduction 

Alzheimer’s disease (AD) is a chronic neurodegenerative disease 
which frequently affects the people over 65 years old and it is considered 
as the one of the most frequently common cause of dementia [1–3]. In 
addition, the Alzheimer’s Association (2016) reported that, the AD is 
considered as the sixth-leading cause of death in the United States [4]. 
Furthermore, there are over 26 million people living with AD all over the 
world, and it is expected to be 114 million by 2050 [4]. 

The patients who suffer from subjective memory decline are likely 
progressed to a transitional prodromal stage which is commonly known 
as mild cognitive impairment (MCI) stage that eventually becomes AD 
[5]. Furthermore, the MCI stage can be further categorized into stable 
MCI (sMCI) and progressive MCI (pMCI). The former likely does not 
progress and patients keep good life unlike the latter that eventually 
leads to AD [6]. To date, there is no cure for AD in clinics. Thus, all 
efforts are devoted towards the early diagnosis of AD especially the 
transitional stages that are vital for both patients and their caregivers to 
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limit the progression of AD [7]. 
Recently, there are several biomarkers that can improve the under-

standing of the disease progression. Neuroimaging (e.g., magnetic 
resonance imaging (MRI) and positron emission tomography (PET)) and 
genetic (single nucleotide polymorphisms, SNPs) biomarkers are the 
most common ones that can be utilized to predict the progression of AD. 

The structured MRI is one of the common imaging techniques that is 
used to measure the brain morphometry besides its sensitivity to neu-
rons degeneration. Hence, the structured MRI can be utilized to predict 
the disease progression [8,9]. On the other hand, PET is a functional 
molecular imaging modality that is used to assess the functional changes 
in the brain and can be employed for understanding the neurophysio-
logical mechanisms of the disease [7,10]. In recent years, the imaging 
genetic has been widely used to discover the association between the 
genetic basis (e.g., SNPs) and the quantitative traits of imaging data 
[11]. 

Since the breakthrough of deep learning [12], plenty of models have 
been successfully applied in different computer vision and image pro-
cessing tasks. The most widely used model is the convolutional neural 
networks (CNNs) that are used to extract high level features of the entire 
object [13]. 

The recent work of multimodality data has attracted considerable 
attention due to its capability and efficiency in alleviating the limita-
tions of a single modality and hence improves the accuracy of prediction 
models in disease diagnosis. However, there are still several limitations 
in the current studies. First, the conventional methods that use multi-
modal data often utilize several stages for classification and regression 
tasks. For instance, Zhou et al. [14] proposed stage-wise deep neural 
network (SWDNN) to discriminate AD and MCI stages. Second, the 
existing methods do not often use the maximum samples due to 
incomplete modality. Hence, the performance of the classifier is 
degraded due to a few training samples [15,16]. Third, the existing 
methods focus on identifying brain disease classification and ignore the 
integration of identifying the brain diseases and estimating clinical 
scores [14,17,18]. 

To address the aforementioned problems, we propose a novel 
multimodal neuroimaging and genetic data fusion for joint classification 
and clinical score regression tasks using the maximum number of 
available samples in one unified framework using CNN. Specifically, we 
fill the missing features in PET and SNPs based on linear interpolation to 
further utilize the maximum number of available samples in our dataset. 
Then, we apply the CNN for the neuroimaging and genetic data to learn 
the high-level features from each modality to alleviate the heterogeneity 
among features then concatenate these features to ultimately classify the 
disease and estimate the clinical scores. The clinical scores are usually 
used by physicians to determine the level of dementia of the patients. In 
our study, the clinical scores are usually used by physicians to determine 
the level of dementia of the patients. In our study, the clinical score 
regression includes the following scores: 1) Mini-mental state exam 
(MMSE) which is used to assess the cognitive functions in areas of 
memory, attention, language, and visual construction of patient [19]. 
The MMSE score ranges between 0 and 30, the lower score indicates the 
sever level of dementia. 2) Clinical dementia rating-sum of boxes (CDR- 
SOB) is a clinician-rated staging scheme for cognitive and functional 
abilities and it ranges between 0 and 18, the lower score indicates 

greater cognitive dysfunction [20]. 3) Clinical dementia rating-global 
(CDR-GLOB) is the global version of CDR and ranges from 0 to 3 [20]. 
4) The last score is AD assessment scale-cognitive subscale (ADAS-Cog) 
which also assess the severity of AD and it ranges from 0 to 70, higher 
score suggests greater impairment [20]. 

The major contributions of this paper are as follows. First, we pro-
pose a novel framework to utilize the multimodal data including neu-
roimaging and genetic data for joint disease classification and clinical 
scores estimation in one unified framework. It is significantly different 
from previous works which learn each modality independently and then 
concatenate the learned features from each modality in independent 
stages. Second, we propose to utilize the maximum number of available 
samples in our dataset by filling the missing features for each incomplete 
sample using linear interpolation. Third, we propose to alleviate data 
heterogeneity by applying CNN to each modality and concatenate the 
final features from each modality in series for brain disease classification 
and the clinical scores regression. 

The rest of the paper is organized as follows. In Section 2, we briefly 
recall the relevant researches in literature. In Section 3, we describe the 
proposed framework and the filling mechanism, in details. We further 
describe experimental results and discussion in Section 4. Finally, we 
conclude this paper in Section 5. 

2. Related work 

2.1. Machine learning-based methods 

In recent years, various machine learning techniques exploiting 
different aspects of the disease. Zhang and Shen [21] developed a multi- 
modal multi-task sparse learning method to jointly predict multiple 
clinical variables and discover brain disease status. Liu et al. [22] 
extracted multiple sets of features from each registered MRI to multiple 
templates and then modeled the relationships among templates and 
among individual subjects using the feature selection technique fol-
lowed by a support vector machine (SVM). Lei et al. [23] introduced a 
discriminative sparse learning method with relational regularization for 
joint classification and regression using multimodal features. They 
improved the diagnosis of AD by developing a loss function that expands 
the distance to get the geometrical information and also makes use of the 
inherent information in the observations. 

2.2. Deep learning-based methods 

In recent years, deep learning methods have been widely investi-
gated for AD classification. Pan et al. [24] developed a method such that 
they combined CNN and ensemble learning to discriminate AD/MCI 
patients from normal controls (NC). Lei et al. [25] designed two sce-
narios to predict clinical scores based on longitudinal multiple time 
points data. The first scenario utilizes the baseline data to obtain the 
longitudinal scores prediction while the second scenario uses all the 
previous time points data to get the predicted scores at the next time 
point. Liu et al. [26] extracted multiple MRI patches around the 
discriminative anatomical landmarks to jointly predict the clinical 
scores and classify AD disease stages using a deep multi-task multi- 
channel CNN. Hong et al. [27] developed a deep model for predicting 

Table 1 
Characteristics of the subjects in the ADNI dataset (mean ± standard deviation (SD)).   

NC sMCI pMCI AD Total 

M/F 118/108 150/76 106/61 103/83 477/328 
Age (years) 76.15 ± 5.34 75.18 ± 7.34 74.83 ± 6.64 75.19 ± 7.47 75.38 ± 6.73 
MMSE 29.11 ± 1.00 27.28 ± 1.77 26.59 ± 1.71 23.28 ± 2.02 26.72 ± 2.67 
CDR-SOB 0.03 ± 0.12 0.88 ± 0.72 1.24 ± 0.85 3.34 ± 1.40 1.29 ± 1.49 
CDR-GLOB 0 0.50 ± 0.03 0.50 ± 0.00 0.75 ± 0.25 0.42 ± 0.30 
ADAS 6.21 ± 2.92 10.33 ± 4.30 13.30 ± 4.04 18.43 ± 6.70 11.66 ± 6.42  
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the development of AD disease using LSTM by utilizing the longitudinal 
MRI and PET images to predict the progression of the AD. However, they 
used the average of each modality for the missing samples. Zhou et al. 
[14] developed an SWDNN that utilizes neuroimaging and genetic data 
for classification. They learned neuroimaging and genetic data in three 
stages to utilize the maximum number of available samples. However, 
they used three stages for AD diagnosis only without considering clinical 
scores regression. 

3. Methodology 

3.1. Subjects 

The Alzheimer’s disease Neuroimaging Initiative (ADNI) dataset is 
used in this paper to evaluate the performance of our proposed method 
(http://adni.loni.usc.edu) [28]. The ADNI dataset contains different 
multimodal data (MRI, PET, SNPs, and clinical scores). Table 1 sum-
marizes the characteristics of 805 subjects in the ADNI dataset. In this 
dataset, the number of available samples is 805, 396, and 687 subjects 
for MRI, PET, and SNPs, respectively, while the number of subjects with 

Fig. 1. Overview of the proposed method for identifying brain disease classification and predicting clinical scores using CNN.  

Fig. 2. The proposed mechanism for filling the missing neuroimaging and genetic data.  
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complete modalities is 396. To overcome the problem of incomplete 
modalities, we propose a filling mechanism for the missing PET and 
SNPs using linear interpolation to be identical with the number of MRI 
samples. 

3.2. Data preprocessing 

The goal of the neuroimaging data preprocessing is to extract the 
regions of interest (ROIs). For ROIs extraction, we followed the same 
pipeline in [14]. “The preprocessing pipeline of the neuroimaging data is 
as shown in Fig. 1 (a). For the MR images, we first corrected the anterior 
commissure-posterior commissure using the MIPAV software [29] then 
corrected the intensity inhomogeneity using the N3 algorithm [30]. 
Afterwards, the skull-stripping method in [31] was employed to extract 
the brain and then we removed the cerebellum. To segment the brain 
tissues (white matter (WM), gray matter (GM), and cerebrospinal fluid) 
we used the FAST algorithm in the FSL package[32] . Then, we adopted 
the HAMMER algorithm [33] to register the segmented brain of each 
subject to the atlas [34] to get the corresponding ROI labels. Eventually, 
for each ROI, we computed its GM volume and normalized it with the 
intracranial volume to obtain the final feature vector of every subject. 
On the other hand, for the PET images we aligned them to their corre-
sponding T1 MR images using the affine registration. Then, the average 
PET intensity value of each ROI was calculated as a feature. Using the 
same atlas, we got the 93 ROIs of each subject. Ultimately, we totally 

Fig. 3. Normalized histograms and estimated PDFs of the real and complete PET features.  

Fig. 4. Normalized histograms and estimated PDFs of the real and complete SNPs features.  

Table 2 
Independent samples t-test results for the real and complete dataset (α = 0.05).   

PET SNPs 

Real 
dataset 

Complete 
dataset 

Real 
dataset 

Complete 
dataset 

Mean 1.043 1.043 1.817 1.818 
Variance 0.00052 0.00053 0.00025 0.00022 
Hypothesized mean 

difference 
0  0  

Degree of freedom 795  1430  
t statistic − 0.132  − 0.217  
t Critical two-tail 1.963  1.962   
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have 93 features for each neuroimaging data (MRI or PET) for every 
subject. 

For genetic data, the preprocessing of the SNPs went through the 
following steps. Firstly, the standard quality control criteria (minor 
allele frequency < 0.01, poor call rate < 95%, and Hardy-Weinberg 
equilibrium < 10–6) were initially applied to filter the genotype data 

using the PLINK software (http://zzz.bwh.harvard.edu/plink/) [35]. 
Secondly, the missing individuals’ genotypes were imputed using the 
MACH program [36]. Thirdly, we used the SnpEff software to annotate 
all the SNPs for top risk 27 genes within ± 5 k base pairs as in [11]. 
Finally, we obtained 23,523 SNPs. Compared to dimension of MRI and 
PET images (i.e., 93 ROIs), the dimension of SNPs is too high and likely 

Table 3 
Mean and SD of the real and complete PET and SNPs features.  

Features PET SNPs 

real Real and synthetic real Real and synthetic 

mean SD mean SD mean SD mean SD 

1st 1.154 0.072 1.175 0.071 1.892 0.307 1.882 0.309 
10th 1.114 0.065 1.129 0.060 1.997 0.037 1.997 0.035 
15th 1.416 0.100 1.416 0.087 1.992 0.065 1.990 0.066 
20th 1.210 0.104 1.205 0.084 1.530 0.601 1.520 0.579 
30th 0.878 0.070 0.874 0.057 1.998 0.013 1.998 0.012 
35th 0.944 0.071 0.943 0.061 1.908 0.274 1.909 0.262 
40th 1.293 0.099 1.295 0.084 1.331 0.657 1.324 0.630 
50th 1.085 0.068 1.106 0.070 1.991 0.037 1.990 0.036 
55th 1.132 0.057 1.125 0.051 1.397 0.627 1.417 0.606 
60th 1.064 0.069 1.078 0.071 1.615 0.541 1.605 0.524 
65th 1.112 0.122 1.130 0.101 1.736 0.456 1.740 0.438 
70th 1.127 0.072 1.124 0.063 1.490 0.602 1.475 0.582 
75th 1.153 0.064 1.173 0.060 1.615 0.540 1.605 0.522 
80th 1.058 0.076 1.059 0.058 1.809 0.387 1.813 0.371 
90th 1.099 0.067 1.092 0.063 1.086 0.626 1.073 0.610  

Table 4 
Brain disease classification comparisons between the proposed method and the four state-of-art methods for different classification tasks (%).  

Tasks Method ACC SEN SPEC PRE F1 

NC vs. AD MTFL 83.38 ± 10.51 87.95 ± 10.51 79.25 ± 14.31 82.19 ± 15.46 84.47 ± 11.72 
LPP 81.54 ± 10.63 82.03 ± 12.09 79.03 ± 16.53 82.58 ± 16.48 81.25 ± 11.65 
PCA 81.58 ± 9.58 84.21 ± 11.12 78.96 ± 15.02 81.84 ± 14.89 82.39 ± 11.0 
SWDNN 91.35 ± 0.98 91.75 ± 1.20 90.90 ± 1.47 91.86 ± 1.23 91.80 ± 0.93 
Ours 98.22 ± 1.26 97.78 ± 2.50 98.76 ± 1.26 98.99 ± 1.01 98.35 ± 1.22 

NC vs. sMCI MTFL 68.54 ± 10.42 62.08 ± 15.48 74.85 ± 15.33 66.66 ± 21.21 63.15 ± 16.17 
LPP 66.87 ± 7.80 62.35 ± 8.98 71.29 ± 14.66 65.0 ± 18.73 62.64 ± 11.02 
PCA 67.98 ± 9.30 60.83 ± 13.59 74.85 ± 15.33 66.48 ± 21.02 62.40 ± 15.04 
SWDNN 73.62 ± 1.51 72.0 ± 1.51 75.0 ± 2.12 71.08 ± 1.79 71.51 ± 1.78 
Ours 93.11 ± 1.64 92.65 ± 3.24 93.57 ± 2.65 93.60 ± 2.38 93.07 ± 1.42 

NC vs. pMCI MTFL 75.21 ± 16.03 79.36 ± 17.51 69.67 ± 17.30 76.97 ± 14.45 77.72 ± 15.08 
LPP 70.12 ± 18.92 76.16 ± 22.72 64.55 ± 25.29 71.19 ± 18.57 72.31 ± 19.57 
PCA 74.87 ± 17.80 81.69 ± 19.23 67.40 ± 20.06 73.82 ± 17.39 76.94 ± 17.93 
SWDNN 84.97 ± 1.32 87.09 ± 1.56 82.28 ± 2.34 86.18 ± 1.59 86.62 ± 1.55 
Ours 97.35 ± 0.99 97.82 ± 1.39 96.71 ± 1.46 97.58 ± 1.04 97.69 ± 0.87  

Fig. 5. Evaluation of the proposed method against competing methods for NC vs. AD task.  
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leads to overfitting. Therefore, we reduced the dimensionality of the 
SNPs to be compatible with the dimension of MRI features using the t- 
test as a pre-feature selection via the following Matlab code “https 
://www.mathworks.com/help/stats/selecting-features-for-classifying 

-high-dimensional-data.html”. 

Fig. 6. Evaluation of the proposed method against competing methods for NC vs. sMCI task.  

Fig. 7. Evaluation of the proposed method against competing methods for NC vs. pMCI task.  

Table 5 
Clinical scores regression comparisons between the proposed method and the four state-of-art methods for different tasks (%).  

Task Method MMSE CDR-SOB CDR-GLOB ADAS 

RMSE CC RMSE CC RMSE CC RMSE CC 

NC vs. AD MTFL 21.98 ± 4.52 63.20 ± 20.49 19.0 ± 3.10 75.78 ± 7.48 29.41 ± 4.82 75.67 ± 6.99 14.76 ± 3.50 65.64 ± 11.46 
LPP 24.10 ± 4.28 50.05 ± 18.57 23.80 ± 5.33 55.38 ± 17.17 36.10 ± 6.14 57.19 ± 14.0 13.37 ± 3.31 57.24 ± 10.83 
PCA 21.89 ± 4.39 62.92 ± 18.0 18.69 ± 3.58 75.75 ± 9.77 29.25 ± 4.80 76.08 ± 6.67 14.82 ± 3.59 65.39 ± 11.59 
SWDNN 16.64 ± 0.05 52.38 ± 9.11 18.57 ± 0.10 79.53 ± 1.96 18.27 ± 0.10 82.46 ± 1.11 17.81 ± 0.05 71.03 ± 3.70  
Ours 10.23 ± 0.15 84.49 ± 1.89 11.03 ± 0.19 89.02 ± 1.31 11.15 ± 0.16 89.87 ± 2.44 10.64 ± 0.22 81.48 ± 2.10 

NC vs. sMCI MTFL 26.14 ± 4.35 32.73 ± 21.16 20.65 ± 5.20 22.22 ± 10.19 48.36 ± 6.18 42.58 ± 13.52 16.94 ± 4.02 39.50 ± 17.84 
LPP 27.42 ± 4.18 26.89 ± 22.60 21.14 ± 5.41 16.34 ± 9.74 47.13 ± 7.36 43.73 ± 17.53 17.72 ± 5.20 40.11 ± 18.84 
PCA 27.98 ± 3.82 23.90 ± 20.69 20.77 ± 5.49 21.18 ± 12.41 49.08 ± 5.77 42.04 ± 13.34 17.24 ± 4.64 39.0 ± 23.33 
SWDNN 16.47 ± 0.04 28.75 ± 4.57 19.87 ± 18.04 44.41 ± 5.62 18.05 ± 0.20 55.90 ± 2.88 16.98 ± 0.06 36.85 ± 8.12  
Ours 9.85 ± 0.06 37.88 ± 4.35 11.62 ± 0.16 71.60 ± 3.71 10.67 ± 0.17 85.96 ± 3.03 10.10 ± 0.18 60.18 ± 4.89 

NC vs. pMCI MTFL 28.80 ± 6.58 35.83 ± 19.83 22.49 ± 3.70 38.69 ± 20.98 43.53 ± 5.91 53.95 ± 13.80 22.88 ± 3.45 25.98 ± 23.93 
LPP 31.51 ± 7.36 28.97 ± 17.22 21.55 ± 4.56 42.36 ± 23.51 42.42 ± 7.0 55.91 ± 16.94 22.77 ± 3.27 23.16 ± 19.97 
PCA 31.40 ± 6.19 29.77 ± 17.95 24.35 ± 3.66 30.71 ± 16.09 43.78 ± 5.82 53.24 ± 13.90 23.82 ± 3.77 25.07 ± 23.27 
SWDNN 18.23 ± 0.18 45.04 ± 4.28 20.85 ± 0.17 62.34 ± 2.34 19.21 ± 0.14 77.01 ± 1.36 18.66 ± 0.10 52.54 ± 3.62 
Ours 10.64 ± 0.06 46.30 ± 5.63 10.98 ± 0.22 77.65 ± 5.36 10.54 ± 0.10 94.45 ± 4.50 11.06 ± 0.16 75.19 ± 2.70  
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Fig. 8. ROC curves of the proposed method and SWDNN using different modality combinations for the three classification tasks.  

Fig. 9. Classification accuracies of the proposed method using different modality combinations for the three classification tasks.  

Table 6 
Results of the three classification tasks using different configurations (%).  

Tasks Method ACC SEN SPE PRE F1 

NC vs. AD MRI 94.79 ± 1.99 94.55 ± 3.46 95.09 ± 3.30 96.00 ± 2.51 95.20 ± 1.86 
PET 95.97 ± 2.45 94.68 ± 4.31 97.54 ± 1.88 97.92 ± 1.51 96.21 ± 2.41 
SNPs 90.78 ± 1.77 91.47 ± 2.98 89.93 ± 2.73 91.75 ± 2.00 91.57 ± 1.67 
MRI-PET 97.66 ± 1.51 97.13 ± 1.89 98.31 ± 2.11 98.62 ± 1.66 97.85 ± 1.38 
MRI-SNPs 95.99 ± 2.15 95.88 ± 3.11 96.11 ± 2.58 96.82 ± 2.02 96.32 ± 2.02 
PET-SNPs 97.13 ± 1.92 96.54 ± 2.86 97.85 ± 1.88 98.23 ± 1.48 97.35 ± 1.80 
Common 96.92 ± 1.42 99.16 ± 0.93 94.41 ± 3.46 95.29 ± 2.84 97.16 ± 1.28 
Ours 98.22 ± 1.26 97.78 ± 2.50 98.76 ± 1.26 98.99 ± 1.01 98.35 ± 1.22 

NC vs. sMCI MRI 84.67 ± 3.48 83.34 ± 5.62 86.01 ± 4.40 85.78 ± 3.84 84.40 ± 3.74 
PET 87.34 ± 3.82 85.75 ± 6.41 88.93 ± 4.72 88.76 ± 4.35 87.07 ± 4.11 
SNPs 97.40 ± 2.83 74.26 ± 6.28 84.53 ± 3.67 82.92 ± 3.02 78.16 ± 3.64 
MRI-PET 92.18 ± 2.00 91.18 ± 3.63 93.17 ± 3.03 93.14 ± 2.75 92.08 ± 2.10 
MRI-SNPs 88.28 ± 2.68 84.81 ± 5.00 91.76 ± 3.16 91.25 ± 3.02 87.81 ± 3.03 
PET-SNPs 90.16 ± 2.22 88.34 ± 4.78 91.98 ± 4.28 91.92 ± 3.82 89.95 ± 2.40 
Common 89.79 ± 2.85 89.62 ± 5.44 89.92 ± 4.53 88.62 ± 4.79 88.95 ± 3.14 
Ours 93.11 ± 1.64 92.65 ± 3.24 93.57 ± 2.65 93.60 ± 2.38 93.07 ± 1.42 

NC vs. pMCI MRI 94.48 ± 2.02 95.26 ± 2.58 93.41 ± 3.09 95.19 ± 2.13 95.20 ± 1.75 
PET 94.29 ± 2.54 96.14 ± 2.95 91.80 ± 4.44 94.15 ± 3.00 95.09 ± 2.19 
SNPs 92.83 ± 1.41 94.95 ± 1.94 89.95 ± 2.51 92.78 ± 1.65 93.84 ± 1.22 
MRI-PET 97.07 ± 1.15 97.83 ± 1.71 96.03 ± 1.88 97.13 ± 1.27 97.46 ± 1.02 
MRI-SNPs 95.94 ± 1.42 96.85 ± 1.86 94.71 ± 2.29 96.15 ± 1.60 96.48 ± 1.23 
PET-SNPs 97.22 ± 1.39 98.53 ± 0.85 95.45 ± 3.05 96.76 ± 2.00 97.62 ± 1.14 
Common 93.98 ± 2.18 96.05 ± 4.11 91.36 ± 4.81 93.54 ± 3.31 94.67 ± 1.97 
Ours 97.35 ± 0.99 97.82 ± 1.39 96.71 ± 1.46 97.58 ± 1.04 97.69 ± 0.87  
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3.3. Proposed framework 

The general framework of our proposed method for joint classifica-
tion and regression task using multimodal neuroimaging and genetic 
data is shown in Fig. 1. Our proposed framework maximally utilizes all 
the available samples from neuroimaging and genetic data by learning 
all the process in one unified framework. To alleviate the problem of the 
missing data, we initially filled the incomplete modality (PET and/or 
SNPs) using linear interpolation as shown in Fig. 2. It is significantly 
different from previous work which use the average of each reclassified 
modality to fill the missing of every sample in each modality [37]. 
Specifically, firstly, we reorganized the whole dataset (Fig. 2(a)) into 
four independent groups (i.e., NC, sMCI, pMCI, and AD) according to 
label for each sample (Fig. 2(b)). In this figure, the missing modality is 
represented as a blank (white) square. Secondly, since the missing mo-
dality of the samples was randomly distributed, some consecutive empty 
rows may appear in the reorganized feature matrix. Thus, we redis-
tributed the missing rows to the closest real samples (rows) in the same 
category in order to avoid any potential bias in the synthesized data. 
Finally, we performed the linear interpolation to fill the missing 

samples. 
After filling the incomplete samples, we propose a supervised CNN 

for identifying brain disease classification and predicting the clinical 
scores. Our framework utilizes three different types of modalities in one 
unified framework. We trained each modality using CNN such that the 
initially learned space representations from each modality are concat-
enated and then applied to a series of fully connected (FC) layers to 
predict both classification and the clinical score regression tasks. In this 
way, the data heterogeneity is alleviated by sequentially concatenating 
the high-level feature representation from MRI, PET, and SNPs, 
respectively. 

3.4. CNN-Based classification 

The CNN is a category of deep neural network which is used to 
extract the high-level feature representation of the input data [38]. In 
our study, we used three stacked 2D CNN for extracting the high-level 
features from neuroimaging and genetic data. Specifically, we used 
five layers in our network (input, convolution, activation, batch 
normalization, pooling, and fully connected (FC)) such that volume of 

Fig. 10. Scatter plots of the estimated and the real clinical scores for NC vs. AD using five different methods.  

Fig. 11. Scatter plots of the estimated and the real clinical scores for NC vs. sMCI using five different methods.  
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the input data is transformed from one to another according to the 
current layer. First, the input data is convolved to a set of kernel filters 
for extracting high-level feature followed by rectified linear unit as an 
activation function. In addition, the pooling layer is applied to reduce 
the space size and hence, reduce the computation complexity and alle-
viate overfitting. On the other hand, the convolved output is followed by 
batch normalization to normalize the features and hence speeding up the 
learning process. Furthermore, the FC layer is used to flatten our matrix 
to a vector and then the flattened matrix goes through a FC layer for 
either computing the class scores using a Softmax activation function or 
estimating the clinical scores using linear activation function. 

4. Results and discussions 

4.1. Experimental settings 

All the experiments are conducted on a machine with Ubuntu 506 
Nvidia GTX Titan Xp x2 i76800K and implemented using Keras library 
with Tensorflow as backend. In our experiments, we applied a grid 
search for the hyperparameter tuning such that we fixed all the hyper-
parameters except only the one that is being used as a grid search. 
Specifically, we find the best batch size within the range of 
{10,20,⋯,100}. Also, we search the best number of epochs within the 
range of {40,50,⋯, 100} such that the rest of hyperparameters 
remained constant for different epochs. Furthermore, we searched the 
best value for learning rate within the range of 

{
10− 6,10− 5,⋯,10− 2}. 

Fig. 12. Scatter plots of the estimated and the real clinical scores for NC vs. pMCI using five different methods.  

Table 7 
Clinical score regression results of the three tasks using different configurations (%).  

Tasks Method MMSE CDR-SOB CDR-GLOB ADAS 

RMSE CC RMSE CC RMSE CC RMSE CC 

NC vs. AD MRI 10.33 ± 0.12 81.26 ± 3.24 11.23 ± 0.16 84.91 ± 3.26 11.39 ± 0.23 85.55 ± 2.35 10.74 ± 0.18 78.46 ± 3.31 
PET 10.31 ± 0.10 82.11 ± 2.15 11.21 ± 0.13 84.65 ± 2.76 11.24 ± 0.13 86.61 ± 2.56 10.79 ± 0.09 73.45 ± 3.37 
SNPs 10.24 ± 0.10 73.66 ± 3.03 11.95 ± 0.20 71.64 ± 4.89 11.75 ± 0.13 76.85 ± 3.96 10.98 ± 0.12 70.04 ± 3.23 
MRI-PET 10.30 ± 0.08 84.57 ± 2.68 11.03 ± 0.19 88.48 ± 1.14 11.12 ± 0.15 90.16 ± 1.32 10.65 ± 0.15 80.19 ± 3.05 
MRI-SNPs 10.24 ± 0.13 80.36 ± 2.06 11.14 ± 0.17 86.03 ± 3.01 11.25 ± 0.25 87.55 ± 3.30 10.71 ± 0.11 82.12 ± 2.31 
PET-SNPs 10.27 ± 0.10 81.81 ± 3.85 11.25 ± 0.35 83.29 ± 3.08 11.28 ± 0.12 86.73 ± 2.42 10.74 ± 0.16 75.15 ± 3.03 
Common 17.07 ± 0.09 74.97 ± 5.04 17.76 ± 0.15 94.55 ± 0.81 17.47 ± 0.23 94.72 ± 1.31 17.84 ± 0.19 89.09 ± 2.48 
Ours 10.23 ± 0.15 84.49 ± 1.89 11.03 ± 0.19 89.02 ± 1.31 11.15 ± 0.16 89.87 ± 2.44 10.64 ± 0.22 81.48 ± 2.10 

NC vs. sMCI MRI 9.95 ± 0.06 40.51 ± 4.73 12.37 ± 0.17 62.19 ± 3.88 11.17 ± 0.15 70.94 ± 4.81 10.25 ± 0.13 51.12 ± 6.37 
PET 10.02 ± 0.10 33.23 ± 4.37 12.49 ± 0.26 59.82 ± 3.55 10.84 ± 0.26 80.19 ± 5.86 10.52 ± 0.15 41.06 ± 3.98 
SNPs 10.02 ± 0.07 31.59 ± 6.49 12.90 ± 0.14 47.83 ± 4.17 11.38 ± 0.20 67.56 ± 4.49 10.39 ± 0.10 40.33 ± 4.18 
MRI-PET 10.00 ± 0.07 39.02 ± 4.46 11.83 ± 0.19 69.04 ± 3.61 10.73 ± 0.19 86.87 ± 2.54 10.21 ± 0.18 60.88 ± 2.47 
MRI-SNPs 9.90 ± 0.05 42.77 ± 5.42 11.99 ± 0.25 67.31 ± 3.70 10.88 ± 0.22 78.11 ± 3.5 10.06 ± 0.12 59.66 ± 5.42 
PET-SNPs 9.94 ± 0.06 33.61 ± 6.48 12.21 ± 0.31 62.27 ± 4.69 10.70 ± 0.18 82.02 ± 5.93 10.27 ± 0.17 51.86 ± 4.06 
Common 16.22 ± 0.19 67.19 ± 6.13 17.45 ± 0.32 77.72 ± 4.08 16.41 ± 0.17 86.44 ± 3.67 16.44 ± 0.17 74.54 ± 3.28 
Ours 9.85 ± 0.06 37.88 ± 4.35 11.62 ± 0.16 71.60 ± 3.71 10.67 ± 0.17 85.96 ± 3.03 10.10 ± 0.18 60.18 ± 4.89 

NC vs. pMCI MRI 10.64 ± 0.04 79.79 ± 6.88 11.39 ± 0.25 71.28 ± 5.95 10.78 ± 0.19 91.41 ± 4.21 11.19 ± 0.14 67.83 ± 4.95 
PET 10.57 ± 0.05 46.10 ± 6.66 11.89 ± 0.16 59.62 ± 6.01 10.81 ± 0.21 90.21 ± 7.88 11.41 ± 0.11 63.76 ± 3.54 
SNPs 10.67 ± 0.06 50.03 ± 4.72 11.53 ± 0.21 64.13 ± 3.52 11.02 ± 0.16 85.75 ± 3.51 11.25 ± 0.09 68.10 ± 3.19 
MRI-PET 10.63 ± 0.07 45.57 ± 5.04 10.95 ± 0.20 76.51 ± 3.14 10.56 ± 0.08 94.53 ± 2.32 11.13 ± 0.13 70.06 ± 5.03 
MRI-SNPs 10.65 ± 0.05 47.53 ± 4.70 11.12 ± 0.24 74.25 ± 4.12 10.60 ± 0.09 92.68 ± 3.08 11.12 ± 0.14 74.13 ± 4.50 
PET-SNPs 10.65 ± 0.05 42.89 ± 8.32 11.15 ± 0.21 74.14 ± 3.12 10.57 ± 0.12 96.36 ± 0.88 11.17 ± 0.9 72.83 ± 3.79 
Common 18.03 ± 0.17 78.87 ± 3.15 19.28 ± 0.30 87.58 ± 1.72 18.03 ± 0.16 94.12 ± 1.66 18.08 ± 0.22 82.71 ± 3.55 
Ours 10.64 ± 0.06 46.30 ± 5.63 10.98 ± 0.22 77.65 ± 5.36 10.54 ± 0.10 94.45 ± 4.50 11.06 ± 0.16 75.19 ± 2.70  
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Fig. 13. Top 10 brain regions from MRI data for NC vs. AD, NC vs. sMCI, and NC vs. pMCI shown in top, middle, and bottom rows, respectively.  

Fig. 14. Top 10 brain from PET data for NC vs. AD, NC vs. sMCI, and NC vs. pMCI shown in top, middle, and bottom rows, respectively.  

Table 8 
Top 10 MRI ROIs identified by the proposed method for the three tasks.  

NC vs. AD NC vs. sMCI NC vs. PMCI 

index Name index Name index Name 

10 Superior Frontal 
Gyrus Right 

42 Parietal 
Lobe WM 
Left 

6 Lateral Front- 
Orbital Gyrus 
Right 

91 Thalamus Right 16 Frontal 
Lobe WM 
Right 

12 Globus Palladus 
Left 

14 Inferior Frontal 
Gyrus Left 

79 Anterior 
Limb of 
Internal 
Capsule 
Right 

68 Entorhinal Cortex 
Right 

69 Hippocampal 
Formation Left 

19 Temporal 
Pole Right 

39 Caudate Nucleus 
Right 

26 Precuneus Right 32 Superior 
Occipital 
Gyrus 
Right 

30 Hippocampal 
Formation Right 

80 Middle Temporal 
Gyrus Right 

71 Parietal 
Lobe WM 
Right 

41 Precuneus Left 

19 Temporal Pole 
Right 

15 Putamen 
Right 

21 Nucleus 
Accumbens Right 

67 Lateral 
Occipitotemporal 
Gyrus Right 

24 Fornix Left 93 Fornix Right 

22 Uncus Right 64 Entorhinal 
Cortex Left 

78 Parahippocampal 
Gyrus Right 

38 Superior Parietal 
Lobule Left 

66 Superior 
Occipital 
Gyrus Left 

33 Caudate Nucleus 
Left  

Table 9 
Top 10 PET ROIs identified by the proposed method for the three tasks.  

NC vs. AD NC vs. sMCI NC vs. PMCI 

index Name index Name index Name 

89 Cuneus Right 70 Thalamus 
Left 

73 Postcentral Gyrus 
Right 

20 Subthalamic 
Nucleus Right 

36 Occipital 
Lobe Wm 
Right 

54 Inferior Frontal 
Gyrus Right 

82 Corpus Callosum 18 Angular 
Gyrus 
Right 

87 Angular Gyrus 
Left 

57 Medial Front- 
Orbital Gyrus Left 

91 Thalamus 
Right 

17 Parahippocampal 
Gyrus Left 

48 Middle Temporal 
Gyrus Left 

31 Inferior 
Occipital 
Gyrus Left 

90 Lateral 
Occipitotemporal 
Gyrus Left 

74 Lingual Gyrus 
Right 

57 Medial 
Front- 
Orbital 
Gyrus Left 

23 Cingulate Region 
Left 

78 Parahippocampal 
Gyrus Right 

41 Precuneus 
Left 

25 Frontal Lobe WM 
Left 

54 Inferior Frontal 
Gyrus Right 

7 Cingulate 
Region 
Right 

63 Temporal Pole 
Left 

28 Posterior Limb of 
Internal Capsule 
Inc. Cerebral 
Peduncle Left 

32 Superior 
Occipital 
Gyrus 
Right 

68 Entorhinal Cortex 
Right 

72 Insula Left 87 Angular 
Gyrus Left 

4 Insula Right  
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Moreover, we searched the best value of the first order exponential 
decay rates for the moment estimates, the second order exponential 
decay rates for the moment estimates, and the epsilon is 10-6 within the 
ranges of {0,0.2,⋯, 1}, {0.990,0.993,⋯,0.999}, and 
{
10− 8, 10− 7,⋯, 10− 1}, respectively. The best found hyperparameters 

were 40, 80, and 0.2 for the batch size, the number of epochs, the first 
order exponential decay rate for the moment estimate, respectively. On 
the other hand, the second order exponential decay rate for the moment 
estimate was 0.999, the epsilon was 10-6, while the learning rate of the 
network was set to 10-4. In this work, we used the binary cross entropy as 
loss function which yielded the best performance compared to other loss 
function as it matches the nature of our binary classification task. 
Finally, we used k-fold cross-validation with k = 10 for efficient learning 
of the model’s parameters particularly our dataset size is not big enough. 
Note that, the results reported in our tables are computed by averaging 
the 10 repetitions of the10-fold cross-validation. 

Furthermore, we used the measures: accuracy (ACC), sensitivity 

(SEN), specificity (SPE), precision (PRE), F1-score (F1), and the area 
under receive operation curve (AUC) to evaluate the performance of the 
classification. Whereas, the correlation coefficient (CC) and RMSE were 
used to evaluate the performance of the regression. 

4.2. Comparison methods 

For comparison, the proposed method was evaluated against four 
conventional feature representation, including multi-task feature 
learning (MTFL) [39], locality preserving projection (LPP) [40], prin-
ciple component analysis (PCA) [41], and SWDNN [14]. We chose these 
feature selection methods as they are commonly used in literature for 
the same purpose or similar tasks. Particularly, the MTFL which is 
widely used to identify the most informative features using combination 
of the l2,1-norm regularization and least square loss function [39,42]. 
This feature selection method has been applied for several association 
studies to identify the genetic markers causes AD. For MTFL, we found 
the best regularization parameters within the range of 
{
10− 4,10− 3,⋯, 10− 2}. Similarly, LPP is a well-known method that has 

been applied for several years because of its promising performance in 
dimension reduction [40,43,44]. The local manifold structure of the 
data can be preserved by constructing the adjacency graph among data 
points, and hence the data points mapped to a subspace by learning the 
projection matrix such that the local neighborhood structure can be well 
preserved. Finally, PCA is one of the linear dimensional reduction 
techniques that have been widely used in scientific research [41,45,46]. 
The goal of the PCA is to transform the data points into the direction of 
the maximum variance. 

To fairly perform fair comparisons with other methods, the three 
modality features and clinical scores are fused into a single feature 
vector and the SVM is adopted for classification and regression tasks. 
Also, all the comparisons are based on three different tasks (NC vs. AD, 
NC vs. sMCI, and NC vs. pMCI) and the results of all the techniques are 

Table 10 
Top 10 genes and SNPs identified by the proposed method for the three tasks.  

NC vs. AD NC vs. sMCI NC vs. pMCI 

Gene SNPs Gene SNPs Gene SNPs 

GAB2 rs118076932 SORL1 rs1219450 ADAM10 rs73424597 
SORL1 rs1791943 SORCS1 rs188635013 APOE rs438811 
PICALM rs187178331 ADAM10 rs11856657 SORL1 rs1219433 
SORL1 rs2850774 SORL1 rs144143061 APOE rs10119 
APOE rs483082 PICALM rs138888937 APOE rs429358 
DAPK1 rs4878115 TF rs1847872 DAPK1 rs2274605 
SORL1 rs1448137 ADAM10 rs144083301 SORL1 rs7925712 
SORL1 rs1791957 SORCS1 rs142554647 APOE rs439401 
IL33 rs12683567 ADAM10 rs141692019 SORL1 rs1789750 
SORCS1 rs7905723 SORCS1 rs149926148 CH25H rs146757074  

Table 11 
Comparisons between the proposed method against the state-of-the-art methods 
on the NC vs. AD classification task.  

Algorithm Subjects Modalities ACC SEN SPE 

Zhang et al. 
[52] 

51AD + 52 NC PET + MRI + CSF 93.20 93.0 93.3 

Liu et al.  
[53] 

93AD + 100 NC PET 91.20 91.40 91.00 

Liu et al. 
[38] 

93AD + 100 NC PET + MRI 93.26 92.55 93.94 

Feng et al.  
[54] 

93AD + 100 NC PET + MRI 94.29 96.59 92.38 

Feng et al. 
[55] 

93 AD + 100 
NC 

PET + MRI 94.82 97.70 92.45 

Ours 186AD + 226 
NC 

PET + MRI + SNPs 98.20 97.78 98.76  

Table 12 
Comparisons between the proposed method against the state-of-the-art methods on the NC vs. sMCI classification task.  

Algorithm Subjects Modalities ACC SEN SPE 

Liu et al.[38] 128sMCI + 100NC PET + MRI 64.04 63.07 67.05 
Feng et al. [54] 128sMCI + 100NC PET + MRI 64.47 70.43 48.41 
Feng et al.[55] 128sMCI + 100NC PET + MRI 65.35 70.59 69.17 
Ours 226sMCI + 226NC PET + MRI + SNPs 93.11 92.65 93.57  

Table 13 
Comparisons between the proposed method against the state-of-the-art methods on the NC vs. pMCI classification task.  

Algorithm Subjects Modalities ACC SEN SPE 

Liu et al.[38] 76pMCI + 100NC PET + MRI 82.95 81.08 84.31 
Feng et al [54] 76pMCI + 100NC PET + MRI 84.66 83.56 85.44 
Feng et al.[55] 76pMCI + 100NC PET + MRI 86.36 83.33 88.78 
Ours 167pMCI + 226NC PET + MRI + SNPs 97.35 97.82 96.71  
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computed by averaging the 10 repetitions of 10-fold cross-validation. 
Furthermore, we empirically search the best value for the soft margin 
parameter C of SVM classifier within the range of 

{
10− 4, 10− 3,⋯, 10− 4}. 

4.3. Characteristics of the complete dataset 

Figs. 3 and 4 show the normalized histogram and estimated proba-
bility distribution function (PDF) with number of features between the 
real and the complete datasets (real + synthetic) of PET and SNPs 
samples, respectively. It is shown that the normalized histogram and 
PDF of the real dataset and the complete dataset are close to each other. 

To further evaluate the effect of synthetic data on the complete 
dataset, we performed a statistical t-test under risk level (α = 0.05) for 
the mean of the real and complete dataset for PET and SNPs (Table 2). It 
is shown that the corresponding critical value in the t-distribution table 
under the specified α value is 1.963 and 1.962 for PET and SNPs, 
respectively. Comparing the t-values with the t-critical for PET and 
SNPs, we failed to reject the null hypothesis [47]. Therefore, we could 
claim that there is no significance difference between the real and the 
complete dataset for PET and SNPs. 

On the other hand, Table 3 shows the mean and SD for fifteen 
randomly selected features from real and complete dataset (including 
the synthetic samples). It is clear that, the mean and SD of the complete 
dataset and the real data are close with nonsignificant variance between 
them. Hence, the bias in the complete dataset can be ignored. Accord-
ingly, the diagnosis of samples with missing modality can be taken in 
consideration using our data filling method. 

4.4. Classification results 

The binary disease classification results for three tasks are given in 
Table 4 (boldfaces indicate the best performance). In addition, Figs. 5-7 
illustrate the boxplot of ACC, SEN, SPEC, PRE, and F1 for the different 
classification tasks. It is clear that, the proposed method significantly 
outperforms the competing methods in three classification tasks using 
five performance metrics. Moreover, our proposed method achieved 
98.22%, 93.11%, and 97.35% for NC vs. AD, NC vs. sMCI, and NC vs. 
pMCI, respectively. Furthermore, our proposed method attained the 
highest sensitivity in different tasks compared to the conventional 
methods, which indicate that the discrimination between AD and NC can 
be effectively increased by our proposed method. Hence, the proposed 
method can accurately identify AD patients, in comparison to those 
listed methods. The main reasons of obtaining such performance are the 
ability of the proposed method to learn the high-level features from all 
available samples in the ADNI dataset and the effectiveness of 
combining multimodal data as well. 

Table 5 shows the performance comparison of state-of-arts methods 
and our proposed method on clinical scores of NC vs. AD, NC vs, PMCI, 
and NC vs. pMCI. It is obvious that, our proposed method achieves the 
lowest RMSE and the highest CC compared to those provided by SWDNN 
and other machine learning techniques. On the other hand, Fig. 8 shows 
the ROC curves of different combinations of the proposed method and 
SWDNN for NC vs. AD, NC vs. sMCI, and NC vs. pMCI classification tasks. 
We can notice that, the multi-modal fusion achieves the highest AUC 
compared with competing methods and different combination of 
modalities. 

Fig. 9 and Tables 6 show the comparisons between the proposed 
method and different combinations of modalities for three different 
tasks. It is clear that, the involving of SNPs for AD diagnosis is not always 
achieving a promising result for classification or regression. For 
example, combining the SNPs with MRI reduces the performance of 
classification and regression. However, the combining SNPs with PET 
achieves better performance than using individual modality. Moreover, 
the multi-modality fusion achieves higher performance than single 
modality which verifies the effectiveness of the proposed method for 

improving the diagnosis of AD. The results of the proposed method are 
consistent with that achieved in the literature [14]. Besides, our pro-
posed method achieves the best performance in terms of disease 
classifications. 

4.5. Regression results 

Figs. 10-12 illustrate the scatter plot of the estimated clinical score 
vs. the real clinical scores for NC vs. AD, NC vs. sMCI, and NC vs. pMCI, 
respectively. Furthermore, Table 7 represents the clinical score regres-
sion results of the three tasks using different configurations. It is clear 
that the proposed method can achieve better performance than that 
obtained by the competing methods in the regression of four clinical 
scores. Specifically, the MMSE correlation of our method is 84.49%, 
37.88%, and 46.30% for the NC vs. AD, NC vs. sMCI, and NC vs. pMCI, 
respectively. Also, the CDR-SOB correlation of our method is 89.02%, 
71.60%, and 77.65% for the NC vs. AD, NC vs. sMCI, and NC vs. pMCI, 
respectively. In addition, the CDR-GLOB correlation of our method is 
89.87%, 85.96%, and 94.45% for the NC vs. AD, NC vs. sMCI, and NC vs. 
pMCI, respectively. Finally, the ADAS correlation of our method is 
81.48%, 60.18%, and 75.19% for the NC vs. AD, NC vs. sMCI, and NC vs. 
pMCI, respectively. From these results, we can notice that our proposed 
method attains the highest correlation compared to the state-of-art 
methods of the four clinical scores by at least 7.41%, 5.15%, and 
1.26% for the NC vs. AD, NC vs. sMCI, and NC vs. pMCI, respectively. On 
the other hand, the proposed method attains the lowest RMSE of 
10.23%, 9.85%, and 10.64% for the NC vs. AD, NC vs. sMCI, and NC vs. 
pMCI, respectively. Also, the CDR-SOB obtained by our method has an 
improved RMSE of 11.03%, 11.62%, and 10.98% for the NC vs. AD, NC 
vs. sMCI, and NC vs. pMCI, respectively. Similarly, the RMSE of the CDR- 
GLOB achieved by our method is better than competing methods by 
11.15%, 10.67%, and 10.54% for the NC vs. AD, NC vs. sMCI, and NC vs. 
pMCI, respectively. Likewise, our method attains the lowest RMSE for 
ADAS by 10.64%, 10.10%, and 11.06% for the NC vs. AD, NC vs. sMCI, 
and NC vs. pMCI, respectively. Finally, it is obvious that our proposed 
method attains the lowest RMSE compared to the state-of-art methods of 
the four clinical scores by at least 2.73%, 6.62%, and 7.59% for the NC 
vs. AD, NC vs. sMCI, and NC vs. pMCI, respectively. 

4.6. Discriminative ROIs and SNPs 

Figs. 13 and 14 show the top 10 ROIs identified for MRI and PET data 
for three classification tasks, respectively. We conclude the top 10 ROIs 
for each modality in Tables 8 and 9. Moreover, these finding are also 
consistent with the previous studies on AD diagnosis [44,48–50]. 

Table 10 summarizes the top 10 SNPs and their corresponding genes 
names identified by our proposed method. These findings are consistent 
with those reported in many AD diagnostic studies also genome-wide 
association studies and hence verify the effectiveness of our proposed 
method to identify the most discriminative brain regions and the most 
relevant SNPs cause AD [11,51]. 

4.7. Comparisons with previous studies 

Tables 11-13 compare the performance of proposed method with the 
state-of-the-arts methods on the ADNI database for the three classifica-
tion tasks. It is shown that, our proposed method achieves better per-
formance than the competing methods in most cases. However, our 
proposed method has a three major contribution compared to the pre-
vious studies. Firstly, our method uses multimodal neuroimaging and 
genetic data fusion for jointly brain disease classification and estimate 
the clinical score in one unified framework. Secondly, we propose to 
utilize the maximum number of the available samples by adopting linear 
interpolation to fill the incomplete samples. Third, we alleviate the data 
heterogeneity by concatenating the output features from each modality 
for brain disease classification and the clinical scores estimation. In 
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general, our method outperforms the previous methods with single and 
multimodal data. Furthermore, our proposed method can identify the 
most discriminative SNPs related to AD. 

5. Conclusions and future work 

In this work, a robust one-stage joint classification and regression 
using deep learning framework was proposed for diagnosing AD. Our 
framework is significantly different from previous works that learned 
the multimodal data including neuroimaging and genetic data in mul-
tiple stages for AD diagnosis. We first introduced a filling mechanism of 
the missing neuroimaging and genetic data and preserved the local 
structure of the complete dataset. This was proved to be significant via 
the statistical t-test with almost no bias between the real and the com-
plete datasets. Furthermore, we learned the neuroimaging features from 
MRI, PET, and SNPs using CNN to alleviate the heterogeneity among 
genotype and phenotype data. Afterwards, the learned high-level fea-
tures from each modality are combined for jointly identifying brain 
diseases and predicting clinical scores. Compared with the traditional 
methods, our proposed method demonstrated superior performance 
against competing methods in both tasks of disease classification and 
clinical scores regression. 

Although, the proposed method achieved better performance in both 
classification and regression tasks than conventional methods in litera-
ture, there are few limitations that we will try to address in our future 
work. First, the proposed method only considered the ADNI 805 dataset. 
However, including more data shall improve the performance. We will 
investigate this issue by combining ADNI-2 dataset with ADNI-1 dataset. 
Second, in this work, we used brain ROIs as features which may induce 
missing information. This can be addressed by using the original imag-
ing data and use attentive deep neural network models to extract the 
high-level features. 
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