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Multiple sclerosis (MS) is a chronic neurological disease of the central nervous system (CNS). Early diagnosis of MS is highly
desirable as treatments are more effective in preventing MS-related disability when given in the early stages of the disease. The
main aim of this research is to predict the occurrence of a second MS-related clinical event, which indicates the conversion of
clinically isolated syndrome (CIS) to clinically definite MS (CDMS). In this study, we apply a branch of artificial intelligence
known as deep learning and develop a fully automated algorithm primed with convolutional neural network (CNN) that has
the ability to learn from MRI scan features. The basic architecture of our algorithm is that of the VGG16 CNN model, but
amended such that it can handle MRI DICOM images. A dataset comprised of scans acquired using two different scanners was
used for the purposes of verification of the algorithm. A group of 49 patients had volumetric MRI scans taken at onset of the
disease and then again one year later using one of the two scanners. In total, this yielded 7360 images which were then used
for training, validation, and testing of the algorithm. Initially, these raw images were taken through 4 steps of preprocessing. In
order to boost the efficiency of the process, we pretrained our algorithm using the publicly available ADNI dataset used to
classify Alzheimer’s disease. Finally, we used our preprocessed dataset to train and test the algorithm. Clinical evaluation
conducted a year after the first time point revealed that 26 of the 49 patients had converted to CDMS, while the remaining 23
had not. Results of testing showed that our algorithm was able to predict the clinical results with an accuracy of 88.8% and
with an area under the curve (AUC) of 91%. A highly accurate algorithm was developed using CNN approach to reliably
predict conversion of patients with CIS to CDMS using MRI data from two different scanners.

1. Introduction

MS is a chronic inflammatory disease of the central nervous
system (CNS) [1]. It is considered to be an autoimmune dis-
ease, with lymphocytes attacking the CNS resulting in demy-
elination, inflammation, and axonal damage. Damage to the
CNS can involve simultaneously several different areas. The
World Health Organization (WHO) reports that currently
there are more than 2 million MS sufferers globally, with
the disease having an estimated prevalence of 30 cases per

100,000 people worldwide. The average age of sufferers is
29.2 years, and the rate of disease in people between the ages
25.3 and 31.8 is increasing rapidly. MS seems to occur more
frequently in women, and the ratio seems to be increasing
steadily [2].

There is no specific diagnostic method for MS, with
diagnoses usually being made based on an assessment of a
patient’s symptoms, MRI scans of white matter lesions,
and the exclusion of other diseases. Generally, patients
initially present with clinically isolated syndrome (CIS), in
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which MS-like symptoms are apparent, but a definite diag-
nosis cannot always be made. For around 20% of CIS
patients, the initial event is isolated and remains so, with
no further progression even after two decades [3]. However,
around 30% of CIS patients will get a second attack and
(thus) a diagnosis of CDMS within one year. Certain criteria
have been developed to assist in the diagnosis of MS, the
most recent being McDonald et al’s criteria [4]. Barkhof
et al.’s [5] and MAGNIMS guidelines [6] help in determin-
ing MS characteristics on MRI. These guidelines were devel-
oped to be able to include patients early into clinical trials
but are not always helpful in clinical practice.

Apart from its application in the diagnosis of MS, MRI is
used also to follow a patient’s progress. In this regard, spe-
cific MRI sequences based on different tissue contrasts are
used in order to highlight particular tissue changes. For
example, fluid-attenuated inversion recovery (FLAIR)
images achieve the best visualization of MS plaques, while
T1 weighted (T'1w) is considered the most reliable when
measurements of atrophy are required [7].

Interest in a subset of AI known as deep learning has
been increasing in medicine in recent years due to the pre-
dictive accuracy and robustness that it offers. Deep learning
has a range of medical applications, with one of these being
in the segmentation of MRI scans [8-15]. While artificial
intelligence and specifically its subbranches of machine
learning and deep learning are being used in the classifica-
tion and prognosis of MS, the work done in this area
remains limited. So, we have tried to overcome this issue
by developing a fully automated algorithm.

In this study, we have attempted to overcome the prob-
lems relating to robustness and accuracy described above
with a fully automated method that uses VGG16 with
CNN architecture that we have especially modified. We
developed an earlier algorithm for the prediction of CIS to
CDMS [16]. These preliminary results were derived from a
small dataset and had a simple architecture. The algorithm
predicted the presence of MS with an accuracy of 83.3%
and 100% in two experiments with different settings. We
improved this earlier algorithm by using a bigger dataset
and developed a new automated complex algorithm trained
especially for DICOM images. This new algorithm is now
tested on more scans and has robust and reliable architec-
ture as described in the next section. Convolutional neural
networks (CNNs) were applied to predict the conversion of
CIS patients to CDMS within the first year.

2. Methodology

We modified the architecture of our preexisting VGG16
algorithm to enable it to handle 3D volumetric MRI scans
in the DICOM format. This modified algorithm was then
pretrained on an ADNI [17] dataset in order to obtain initial
weights. Two separate datasets consisting of conventional
MRIs acquired from a group of MS patients using two differ-
ent scanners were preprocessed before then being used to
train the algorithm. These datasets will be described in detail
in the following sections. The method described above not
only allowed us to achieve a high level of accuracy but was
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also very robust in nature due to the approach of using data-
sets acquired from two different scanners. This automated
algorithm will help neurologists to diagnose MS at an early
stage when treatment is most efficacious. A general diagram
of the algorithm can be seen in Figure 1.

2.1. Dataset. Evaluation of the algorithm was done using
datasets from two different MRI scanners. One of these data-
sets consisted of scans from 21 patients at each of two time
points (CIS and a 1-year follow-up—42 scans in total) at
the Hunter Medical Research Institute Imaging Centre
(HMRI-IC) using a Siemens PRISMA 3T MRI scanner.
Clinical evaluation after one year using McDonald et al.’s
criteria indicated that 11 of these patients had converted to
CDMS, and 10 had not. The other dataset consisted of scans
acquired from 28 patients at each of two time points (CIS
and a l-year follow-up—56 scans in total) at the John
Hunter Hospital (JHH) using a Siemens 3T VARIO MRI
scanner. Clinical evaluation after one year using McDonald
et al’s criteria indicated that 15 of these patients had con-
verted to CDMS and 13 had not by that time. Both T1w
and FLAIR scanning sequences were used in the acquisition
of each of the datasets above. Importantly, the use of two dif-
ferent scanners for the acquisition of data allowed us to test
the robustness of our method.

From the above, 3D scans taken from 49 CIS patients at
one time point and then again at a second time point one
year later gave a total of 98 MRI volumetric scans, which
at an average of 80 slices per MRI scan yielded 7360 images.
Clinical evaluation of patients at the second time point
revealed that 26 had converted to CDMS and 23 had not.
The scans of 40 of these patients were then used to train
the algorithm, with this training dataset then being ran-
domly divided into subsets for training and validation at a
ratio of 80:20. Scans from the remaining 9 patients were
used for testing purposes. These datasets are presented in
more detail in Table 1. Figure 2 gives the percentage relative
sizes of the training, validation, and testing datasets.

2.2. Preprocessing. The two datasets were preprocessed using
statistical parametric mapping (SPM) [18]. Preprocessing
helps us to improve the results by denoising and normaliza-
tion of the images. Preprocessing steps included skull strip-
ping, intensity normalization, image denoising, and image
registration. For skull stripping, we used a Brain Extraction
Tool (BET) by Salehi et al. [19]; for intensity normalization,
we used N3 intensity normalization by Leger et al. [20];
while for image denoising, we used Gaussian presmoothing
filters. Rigid registration was performed using a Functional
Magnetic Resonance Imaging of the Brain (FMRIB) Linear
Image Registration Tool (FLIRT).

2.3. Pretraining and Data Augmentation. Before the MS
datasets were uploaded to the algorithm, we implemented
two important steps: an algorithm pretraining step and a
data augmentation step. These techniques were applied in
order to compensate for size limitations in our MS datasets.

It can be difficult for naive CNN models to learn the gen-
eral relevance of features, so because the limited size of our
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FIGURE 1: General diagram of the algorithm developed in this study.

TaBLE 1: PRISMA and VARIO datasets.

PRISMA VARIO
Training 17 23
Testing 4 5
Total 21 (42) 28 (56)
Types T1w, FLAIR T1w, FLAIR

42 and 56 show two time points, one is at CIS and one is at CDMS, and
make 98 MRI scans in total, where every MRI has 80 average slices which
make 7360 images in total.

Testing
18%

« Training
« Validation
« Testing

FIGURE 2: Percentage of scans (combined PRISMA/VARIO dataset)
used for training, validation, and testing.

MS datasets precluded us from using them to train our algo-
rithm from scratch, we undertook pretraining of the algo-
rithm using 921 scans from the publicly available ADNI
datasets. These 921 scans were made up of 276 scans from
either normal subjects or Alzheimer’s patients and were
taken at multiple sites at from 1 to 3 time points using a vari-
ety of 1.5 Tesla scanners. Pretraining of our algorithm using
this data gave us initial weights, which could then be used
for the main training of the algorithm using our MS training
dataset. This pretraining is a type of transfer learning which
can lead to improvements in classification results when only
limited data is available. Transfer learning is a technique in
which a model that has already been developed for a partic-
ular task is used as the starting point for the development of
another model needed for a different task.

Data augmentation is used to increase the amount of
data in a limited dataset through the addition of modified
copies of existing data or synthetic data to the dataset. Bigger
datasets allow better training of algorithms and also reduce

the risk of overfitting in complex algorithms such as our
amended algorithm. We applied data augmentation tech-
niques including cropping, flipping, translating, scaling,
and rotating to both the PRISMA and VARIO datasets. Pre-
processing steps such as intensity inhomogeneity, gradient
nonlinearity, and phantom-based distortion correction had
already been done on these scans before data augmentation
was applied.

2.4. CNN Architecture. VGG16’s architecture [21] comprises
thirteen convolutional layers, three fully connected (FC)
layers, and a softmax layer for prediction purposes. It was
designed by the Visual Geometry Group (VGG) of London,
mainly for the purposes of classification. One reason why
this is a popular algorithm is that it comes with weights pro-
vided. These weights allow researchers to fine tune the algo-
rithm based on its intended application, which in our case is
medical imaging.

A 3x3 kernel is used as a sliding window which is
passed over the images at each of the 13 convolutional
layers. The stride value controls the degree of slide, which
could, for example, be pixel by pixel or could skip a certain
number of pixels as per requirements. The general equation
for learning features as the window slides over an image can
be expressed as follows:

y=f(Lx+B), (1)

where L and B are the learnable parameters, x is the pixel
value, and y is the output.

Each of the 13 convolutional layers has a range of 3 x 3
filters and is associated with an activation layer—that being
a rectified linear unit (ReLU) in our case. MaxPooling was
used for the downsampling of the features. These layers are
used for the automatic extraction of features, which in our
case are features that will allow us to discriminate between
patients who will go on to develop MS and those who will
not. This extraction of features yields features maps, and
some examples of which are shown in Figure 3. After the
convolutional layers comes the fully connected (FC) layer,
which is the penultimate layer and acts as a classifier. Finally,
we have the softmax function which calculates the probabil-
ity that the images are from a patient who will go on to
develop MS.

VGG was made with a greater number of layers and
smaller filter sizes than other classification algorithms specif-
ically so that it could be used in the learning of more
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FIGURE 3: Some examples of feature maps.

complex features, and all this leads to a generally more com-
plex system. Appropriate management can ensure that this
system can yield better results than less complex architec-
tures. We used data augmentation to increase the quantity
and variety of our images, which yielded output with better
accuracy. All images were resized to 224 x 224 before being
input into the algorithm so as to maintain consistency of
input across both datasets.

After testing a variety of different window configurations
and stride values, we settled on a 3 x 3 sliding window with a
stride value of 1. The smaller window size was chosen, and
we found that larger windows result in more false positives.

With the above modifications to our algorithm, we were
able to identify a greater variety of features at an increased
resolution than would be possible using the VGG model.
MS lesions can be very small and typically occupy only
around 1% of the total brain volume, so the more sensitive
the method for their detection, the better. Currently, neurol-
ogists mostly depend on the visual application of McDonald
et al.’s criteria to MRI scans when trying to identify the types
of brain lesion that will allow them to differentiate between
MS and non-MS patients. Our algorithm will allow the auto-
matic selection of dense features and will so assist in the effi-
cient classification of scans as either diseased or nondiseased.

3. Implementation Details

Our algorithm was written in Python, using Keras with Ten-
sorFlow at the back-end due to their open-source nature and
associated range of machine learning libraries. We used a
2.7GHz Intel Xeon Gold processor (model no. E5-6150)
with a 32GB Nvidia GPU. The method was run for 120
epochs, with early stopping for a patience value of 15. We
set the batch size at 64, and the learning rate at 0.0001.
The algorithm was run using Da’s method [22] as an
optimizer.

3.1. Evaluation Metrics. A range of metrics was used to check
the accuracy of our method. These metrics were used on
both datasets and are defined as follows.

3.1.1. Accuracy. The accuracy of the algorithm is calculated
by the following formula:

Tp,+T,

(2)

Accuracy = o+
n

where T represents the number of true positives, T', repre-

sents the number of true negatives, and (p + n) is the total
population.

3.1.2. Precision. Precision (also known as the lesion false dis-
covery rate—LFPR) is defined by the following:

b ®)

P P

Precision =

where F, represents the number of false positives.

3.1.3. Recall/Sensitivity. The recall/sensitivity of the method
(also known as the lesion true positive rate—LTPR) is
defined by the following:

Recal T, (4)
Sensitivity T, +F,’

where F, is the number of false negatives.

3.1.4. DSC/F1 Score. The overall accuracy of the algorithm as
expressed in terms of the dice similarity coefficient (DSC)
between automated segmentation masks and manually
annotated areas is defined by the following:

DSC 2xT (5)
_— fe= ————m ———————
F1 ¢ F,+F,+2xT,

3.2. Results. Training of our algorithm resulted in the identifi-
cation of a range of features, and some examples of which are
shown in Figure 3. Figure 4 shows some heat maps of scans
classified by our algorithm. Heat maps such as these are used
to show the positive and negative relevance of the algorithm’s
results. The green areas correspond to lesions that have been
correctly classified by the algorithm, while the red areas corre-
spond to incorrectly classified (i.e., false positive) areas. We
were able to achieve training and validation accuracies for
our algorithm of 85% and 83%, respectively. The manual seg-
mentation was used as gold standards. The accuracy graph is
shown in Figure 5, and the area under the curve (AUC) is
shown in Figure 6. The AUC was calculated as 91%. As previ-
ously mentioned, scans from 9 of the patients were used for
testing purposes. A range of metrics was applied to each of
these scans, and the averages were calculated (see Table 2).
All evaluation metrics are shown in Figure 7.
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FIGURE 4: Examples of heat maps, where the green color shows the true positives and the red color shows the false positives.
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FIGURE 5: Accuracy graph for the algorithm.
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4. Discussion

The robustness of our algorithm is shown in its ability to
maintain high accuracy for prediction of disease throughout
both the PRISMA and VARIO datasets. Further evidence for
this robustness lies in the stability of the accuracy, F1 score,

TasLE 2: Different evaluation metrics for training, validation, and
testing.

Process Accuracy Recall Precision F1 score
(%) (%) (%) (%)
Training 89.0 — — _
Validation 83.0 — — _
Testing 88.8 76.0 86.3% 79.5

precision, and recall parameters for data taken at different
time points and with different scanners.

Our qualitative and quantitative results are improved
compared to previously published algorithms. Wottschel
et al. [23] developed an algorithm that used machine learn-
ing techniques to predict the conversion of CIS to CDMS.
Their dataset consisted of seventy-four patients at CIS
stage, with the scans being clinically reviewed after one year
and three years. Scans of confirmed CDMS patients were
used as their benchmark with a support vector machine
(SVM) being used with the purpose of classification and
prediction. They implemented a multimodel architecture
in which the patient’s demographic and clinical data were
used together with conventional MRI. Clinical evaluation
showed that 30% of the patients had converted to MS after
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one year, and 44% had converted after three years. The
SVM’s accuracy in predicting patient conversion to CDMS
after one year was only 71.4% with a sensitivity of 77% and
a specificity of 66%, while the accuracy for predicting
patient conversion after 3 years was worse at only 60% with
a specificity of 76%. This algorithm had limitations, as
accuracy was very low, and after three years, it was even
worse.

Another algorithm with the same aim was described by
Zhang et al. [24], and they developed an algorithm based
solely on an imaging-based machine learning technique
(i.e., random forest) to predict the conversion of CIS to
CDMS. The success of their algorithm was limited due to
their lack of a multimodel approach. Their dataset consisted
of scans acquired from a single cohort of 84 patients from
one site, with a follow-up at three years. McDonald et al.’s
criteria were used for the clinical classification of MS
patients. After completing computer-assisted manual
annotation of lesions, they used SPM for automatic seg-
mentation of lesions and then identified the brightness
features and the shape features from the segmented masks.
These features were then used as input for their algorithm
when training the random forest classifier, which was then
able to predict conversion to MS with an accuracy of
84.5%. Their research suggested that shape features were
useful in predicting MS, whereas intensity features were
of little help. Like the previously discussed algorithm, this
algorithm also has its limitations. The limitation of their
approach was that the accuracy of their algorithm was
checked by using only one type of scanner at only one site
(the same scanner in fact), which meant that the robust-
ness of their algorithm was not tested.

Eitel et al. [25] proposed an algorithm using CNN to
diagnose MS by using conventional MRI and a layer-wise
propagation technique for CNNs. The architecture was
pretrained like in our study on the publicly available Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) dataset,
which consists of 921 scans of Alzheimer patients. Their
study involved a cohort of 147 subjects, which included
both MS patients and healthy controls, with CNN being
used to distinguish between the two groups. They were
able to achieve an accuracy of 87.04% to differentiate MS
from healthy controls using their architecture, concluding
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that their CNN model was able to diagnose MS with con-
siderable accuracy but did not determine the prediction of
conversion from CIS to MS. Also, as with the study previ-
ously mentioned, the robustness of their algorithm
remained untested.

In our developed algorithm, we focused on robustness by
including datasets from different scanners. Two different
scanners had different parameters which were handled by
preprocessing. Image registration was performed to align
all images, and then, training was performed. In this study,
we developed a fully automated algorithm primed with con-
volutional neural network (CNN) that has the ability to
learn the features of MRI scans. The basic architecture of
our algorithm is that of the VGG16 CNN model, but
amended such that it can handle MRI DICOM images. A
dataset comprised of scans acquired using two different
scanners was used for the purposes of verification of the
algorithm. The qualitative and quantitative results above
indicate that our fully automated algorithm is able to predict
conversion to MS with an accuracy of 88.8% robust in nature
as it was checked on different scanners and different deep
learning parameters, which suggests that it could have a role
as a valuable time saving tool for neurologists.

The main limitation of our study is the limited dataset as
deep learning works best with extremely large datasets. In
future, we will collect more datasets from different scanners
that will help us to increase the efficiency of our algorithm.
We also plan to train our algorithm on multimodal data,
including demographic and clinical data. This algorithm will
also be checked with different parameters like different batch
sizes, different convolutional layers, filters, and learning rate
according to that dataset. More sequences of MRI will be
added to increase accuracy and reliability of algorithm.

5. Conclusion

In this study, we describe a fully automated algorithm for the
early diagnosis of MS. This algorithm predicts whether a CIS
patient will go on to develop CDMS within one year. Our
method involved three main steps. The first of these is a 4-
step preprocessing of a MS dataset by SPM. This is followed
by pretraining of the algorithm using the publicly available
ADNI dataset and then training of the algorithm using the
preprocessed MS dataset. This approach, which is an exam-
ple of transfer learning, can improve the quality of results if
only a limited dataset is available. In our case, this was facil-
itated through the use of data augmentation to generate
more scans from our limited datasets. Our results have
shown that our amended VGG16 algorithm works very well
for medical imaging. Accuracy of the algorithm was tested
by applying a range of valuation metrics including accuracy,
F1 score, recall, and precision across the two MS datasets.
The efficacy of the algorithm was borne out by quantitative
as well as qualitative results, which we have presented along
with relevant graphs in Results. This automated algorithm
will help neurologists to predict whether or not CIS patients
will progress to CDMS within the first year and so allow
early interventions.
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Data Availability

Dataset is publicly not available due to Australian govern-
ment regulations because data used in training and testing
of algorithms is collected from local hospitals in Australia.
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