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a b s t r a c t

The prevalence of Alzheimer’s disease (AD) in the growing elderly population makes accurately
predicting AD progression crucial. Due to AD’s complex etiology and pathogenesis, an effective and
medically practical solution is a challenging task. In this paper, we developed and evaluated two novel
hybrid deep learning architectures for AD progression detection. These models are based on the fusion
of multiple deep bidirectional long short-term memory (BiLSTM) models. The first architecture is an
interpretable multitask regression model that predicts seven crucial cognitive scores for the patient
2.5 years after their last observations. The predicted scores are used to build an interpretable clinical
decision support system based on a glass-box model. This architecture aims to explore the role of
multitasking models in producing more stable, robust, and accurate results. The second architecture
is a hybrid model where the deep features extracted from the BiLSTM model are used to train
multiple machine learning classifiers. The two architectures were comprehensively evaluated using
different time series modalities of 1371 subjects participated in the study of the Alzheimer’s disease
neuroimaging initiative (ADNI). The extensive, real-world experimental results over ADNI data help
establish the effectiveness and practicality of the proposed deep learning models.

© 2020 Elsevier B.V. All rights reserved.
,

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative chronic brain
isorder that results in progressive memory loss and cognitive
mpairment. Worldwide, 50 million patients have dementia [1].
y 2030, the number of dementia patients is expected to reach
5.6 million, and by 2050 the number of patients will reach
35.5 million [2]. Dementia is one of the extortionate diseases
osting $604 billion worldwide in 2010, AD patients make up
0%–80% of all dementia patients [3]. Caregiving to AD patients is
heavy physical and emotional burden on families and friends.

n 2014, caregivers provided 17.9 billion hours of unpaid care to
D patients at a cost of about $217.7 billion in just the U.S. [4].
D pathology occurs several years before the onset of clinical
ymptoms, which makes the disease hard to detect in its early
tages [5]. Mild cognitive impairment (MCI) is considered an AD
rodromal phase, where the progression rate from MCI to AD is
t an annual rate of 10%–25% [6]. There are two types of MCI,
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i.e., stable MCI (sMCI) and progressive MCI (pMCI). pMCI patients
convert to AD after a certain period of time, but sMCIs patients
do not convert. As AD currently cannot be cured or prevented,
early detection of possible pMCI progression, before the occur-
rence of irreversible brain damages, is of tremendous importance
for preventive care, it helps inform personalized medicine and
ultimately gives a better quality of life. However, this task is
tough due to the high subjectivity and instability in individual
patient’s cognitive markers and neuroimaging biomarkers. Ma-
chine learning (ML) techniques have been widely used to tackle
this challenge [6–10]. Some studies have surveyed the recent ML
techniques for AD progression prediction [11–13].

1.1. Complexity of AD progression detection

Applying ML to AD progression modeling is a complex process
for several reasons. First, AD data are naturally multimodal data [3
11,14] where each patient has a collection of complementary
pieces of different types including magnetic resonance imaging
(MRI), positron emission tomography (PET), neuropsychologi-
cal battery, vital signs, cognitive scores (CSs), medical history,
genetics, cerebrospinal fluid (CSF), lab tests, physical examina-
tions, symptoms, neurological examination, and demographics.

https://doi.org/10.1016/j.knosys.2020.106688
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hese heterogeneous modalities carry complementary knowl-
dge, which describes the disease status from different view-
oints [15]. For example, CSF and PET are the most appropriate
or detecting the accumulation of amyloid-β in the brain years
efore disease-related structural changes can be detected, on
he other hand, an MRI is more sensitive to changes after the
irst symptoms appear. Moreover, medical history, including age
nd number of years education; CSs including MMSE, ADAS-cog,
DRSB, FAQ, etc.; and neuropsychological battery features such
s RAVLTs have shown to be significant factors in predicting AD
rogression [10,15–18]. However, most AD studies concentrate
n MRI analysis [13,19–21]. Although MRI is critical for AD de-
ection, it is its fusion with other modalities that could provide a
olistic picture of a patient’s status and could potentially enhance
he accuracy of a progression model. This fusion reduces noise
y averaging it out over a number of independent data sources.
urthermore, multimodal systems usually yield more comprehen-
ive insights, more precise results, more reliable behaviors, and
ccordingly more acceptance from the medical community [22–
5]. However, how to effectively fuse information from hetero-
eneous sources remains a challenge. This approach is known as
ultimodal design. Forouzannezhad et al. [26] used a Gaussian-
ased model to predict MCI based on demographics, PET, and MRI
ata, they achieve an accuracy of 78.8%. Second, most AD data are
ollected over time (i.e. longitudinal or time-series data), which
ndicates that the disease state at a certain time is dependent on
he state at a previous point in time. Therefore, to study the rela-
ive longitudinal changes in AD, we must trace pathophysiological
hanges over a huge number of observations [14]. However,
he vast majority of the research does not explore AD’s tempo-
al/sequential nature [12]. Accordingly, the AD investigations in
revious literature did not analyze any correlation among multi-
odal signals and how they evolve over time [27]. Traditional

ime series algorithms have been applied in AD progression,
ut these techniques have their own limitations [28,29]. Third,
o accurately predict AD progression, it is critical to monitor
ultiple features at the same time in what is called multitask
odeling [14]. Various efforts have been made in AD multi-

ask modeling, these efforts generally fall into one of multiple
ategories, including single-modal single-task classification [6]
nd regression [7] learning, single-modal multitask regression
earning [8], as well as multimodal single-task classification [9]
nd regression [10] learning. Going a step further and considering
everal modalities and predicting multiple clinical variables that
ould be required by a medical expert to assess a patient, this

s called multimodal multitask learning, where a task has mul-
iple input sources, and all tasks are related in a chronological
equence [17,30–32]. Modeling AD progression as a multimodal
ultitask process based on time series data is a challenge [33].
owever, recent studies have asserted that this modeling of AD
elated tasks has delivered promising performance and is more
table than other models [14,30]. Zhang et al. [15] proposed a
eneral method called multimodal multitask (M3T) learning to
oncurrently predict multiple medical scores (i.e. MMSE, ADAS,
nd diagnosis feature) by combining multimodal data (i.e. MRI,
ET, and CSF). They used SVMs and baseline data from a small
umber of modalities. Recently, Ding et al. [17] found that most
D studies consider a limited number of features, which are
otentially inadequate to understand this complex disease. Yet,
espite much ongoing research, predicting AD progression is still
challenge [14]. Deep learning (DL) can enhance the performance
f this complex modeling task [34]. However, few studies have
xplored the role of DL in AD prediction based on time series
ultimodal multitask data.
2

1.2. Deep learning based AD prediction

Regular ML has been used in previous literature to predict
AD progression. Lu et al. [6] utilized Fluorodeoxyglucose PET
(FDG-PET) functional imaging to identify cognitively normal (CN)
subjects who will convert to MCI early. The authors built a bi-
nary classifier using an incomplete RF–robust SVM approach and
achieved 90.53% accuracy. Zhang et al. [3] provided a survey of
the predictions from pMCI conversion studies. Existing studies
depended on a limited number of biomarkers, which could be
insufficient to provide a complete interpretation of the disease.
For example, Liu et al. [9] built their model based on MRI and
CSF modalities only. Furthermore, most studies currently neglect
any temporal dependency within the feature series and across the
different features and instead focus on cross-sectional data. Cho,
et al. [35] used the ADNI data to predict probable AD conversion
using single baseline MRI scans. Moreover, most AD progression
studies are classification problems, i.e. categorizing patients into a
particular category (e.g. CN, MCI, or AD). Few studies have formu-
lated the problem as a regression task [36–38], also these models
fitted logistic or polynomial functions to the longitudinal dynam-
ics of each biomarker separately. These studies have mostly relied
on independent biomarker modeling, and no study has consid-
ered the temporal dependencies among features [39]. Solving
these issues using regular ML classifiers has critical limitations,
especially when it comes to learning multiple tasks by fusing
many time series modalities together [14]. DL techniques have
demonstrated promising prediction results in several areas [40,
41]. These techniques are based on recurrent neural networks
(RNN) or CNN architectures, which are powerful and can extract
deep longitudinal features from fused multivariate time series
data [21,27,42]. Tabarestani et al. [43] used two variations of
an RNN, namely a long short-term memory (LSTM) and a gated
recurrent units (GRU), to predict the patient’s status for the next
three time points using the previous three historical time points.
Alternatively, several studies have formulated AD progression de-
tection as a regression task based on CSs [17,18] considering the
fact that CSs are highly predictive factors for AD progression [31,
44]. For example, Ding et al. [17] used CDR as an index of AD
severity to build a Bayesian network model for AD classification
using the AIBL longitudinal dataset. Frisoni et al. [45] found a
strong correlation between MRI features and those scores. Most
regression studies have focused on predicting one score, based
on regular ML algorithms such as SVMs and RF [11,15,22,46–
48]. Some studies have set up MCI progression as a multimodal
single-task regression model, where one CS as MMSE or ADAS-
Cog is used as an indicator for AD progression [10,16]. Recently,
Yagi et al. [49] concluded that each CS marker has its limitations,
and predicting AD progression based on multiple CSs is medically
intuitive and more accurate. Recent works on AD prediction and
progression have formulated the problem as a multitask problem,
here the model optimizes a multi-objective cost function. Simul-
taneously learning for multiple related tasks has been proven to
perform better than learning for single tasks separately [11,15].
DL techniques are more accurate for jointly learning multiple
tasks [34]. In the context of AD, Wang et al. [11] began the
trend in AD progression modeling towards DL, multitask, and
time series analysis. Liu et al. [30] presented a CNN-based model
for concurrently learning the AD diagnosis and CSs regression.
Choi et al. [50] also proposed a CNN-based model to detect
pMCI patients using their PET images as a single-task model.
A multimodal single task classification model was proposed by
Spasov et al. [42], where authors utilized the CNN to detect AD
progression. In their work, authors combined MRI, demographic,
neuropsychological, and APOE e4 genetic data in a late fusion
process to do classification. Most Alzheimer’s DL models use
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NN models with a single (baseline) MRI scan [18], but these
odels are less accurate and not medically acceptable [17]. Wang
t al. [21] proposed an LSTM-based regression model to predict
D progression based on time series data with non-uniform visit
ime intervals. Liu et al. [30] proposed a CNN-based model for
D diagnosis and predicting clinical scores. Their model fused
RI data and demographic features of only the baseline visits.
ost of the recent Alzheimer’s DL models are based on the CNN
nd consider the baseline MRI scans [18]. Usually medical experts
ccumulate longitudinal multimodal patient data before making
ny progression decisions. Therefore, models that only depend
n baseline data of the patient are less accurate, less sufficient,
nd not medically acceptable [17]. Furthermore, most DL models
roposed for the AD diagnosis and progression are formulated as
inary classification problems, and multiclass fine-grained mod-
ls are still far from achieving satisfactory results that can be
pplied clinically [51]. Moreover, DL needs a huge dataset to fit
odels properly and given the small datasets available in the AD
omain, DL is prone to overfitting. DL models are a black-box, and
hese models that are not interpretable are less acceptable in the
edical domain.

.3. The study hypotheses

The goal of our study is to answer the following research
uestions: (1) Can the use of fused multimodal time series data
nd a deep LSTM-based model lead to more accurate prediction of
D progression? (2) Does the joint learning of multiple regression
asks generate a more robust and stable DL model? (3) Does a
ybrid model – consisting of a deep learning model for feature
earning and an ML model for classification – improve the overall
erformance of the AD progression detection? (4) As cognitive
cores are crucial for AD progression detection, is it possible to
redict the future values of a set of cognitive scores and use
hem to predict AD progression? (5) Does the resulting model
ecome more explainable than the black-box DL models? (6)
hat is the most important category of MRI features (e.g. volume,

ortical thickness, temporal, etc.) in terms of contributing to the
ost accurate predictions? To the best of our knowledge, there

s no current study in the AD domain that critically analyzes
hese questions. To answer these questions, extensive experi-
ents were carried out based on the AD neuroimaging initiative

ADNI) dataset of 1371 subjects. In this study, we propose a
ybrid DL model (HDL) to help overcome the current limitations
f DL-based models for AD prediction. The HDL model predicts
D progression after 2.5 years (i.e. at month 48) based on the
atient’s multimodal time series data from baseline (BL), month
(M06), month 12 (M12), and month 18 (M18). The proposed
L model can be used to directly predict AD patients at M48 as
multiclass classification task. This kind of outcome is poorly
redicted by simple DL models as shown later in the results
ection. In the proposed HDL model, a multivariate BiLSTM model
s used for deep feature representation learning, and a regular ML
odel such as decision tree (DT), random forest (RF), or support
ector machine (SVM) is used for the classification task. We call
his approach deep feature-based learning (DFBL). BiLSTM is a
owerful technique for extracting dynamic dependence relation-
hips from longitudinal features, especially from complex and
eterogeneous multivariate time series. However, the resulting
rchitecture is complex, and adding Softmax classification to this
rchitecture has certain limitations. In an alternative approach,
ur DFBL adopted both DL and regular ML models that were
rained concurrently. The DL model extracts the deep features
rom the multimodal data, and these features are used to train the
egular machine learning model. This paradigm has been used in
ther literature to explore the idea of replacing the usual Softmax
3

classifier with other ML classifiers such as SVM or RF. Remark-
ably, this design has achieved better results than the model it
replaced [52–54]. In the context of AD, Zhu et al. [55] extracted
representative features from the volume of the gray matter data
using a discriminative self-representation sparse regression, these
extracted features are fed into an SVM classifier to make the pre-
diction. In [51], Amoroso et al. combined RF for feature extraction
and a feed-forward neural network for classification. Lin et al. [56]
utilized a CNN along with PCA-LASSO to extract deep features
from MRI data, then used SVM to classify the disease. These
studies are based on a single modality (i.e. MRI) of a single visit
(i.e. no time series), which have several limitations [57]. Unlike
the previous literature, we fuse the four time-series modalities
from neuropsychological battery markers, CSs sub-scores, MRI,
and FDG-PET biomarkers. These modalities are popular in the AD
domain [58]. These modalities are fused using a deep BiLSTM
model.

We also propose in the study another paradigm called mul-
titask regression-based learning (MRBL) to check the multitask
learning capability of the proposed DL models. In the first phase
of this design, a multivariate BiLSTM model is used to jointly
learn seven regression tasks; then, in the second phase, a regular
ML model is used to learn the multiclass AD progression clas-
sification based on the predicted CSs and patient demographics.
The seven regression tasks are used to predict seven of the most
accurate and popular CSs in the AD domain (i.e. ADAS 13, MMES,
CDRSB, MOCA, RAVLT, FAQ, ADNI MEM, and RAVLT) [14,29,58,59].
The multitask paradigm works as a regularizer for the seven
tasks to efficiently train a DL model than single-task models.
CS markers are robust predictors for AD progression [18,44,60].
In other words, based on the temporal changes of CSs, it is
possible to predict AD progression quite accurately. In real-world
practice, medical experts always rely on CSs to make these deci-
sions [5]. Most previous studies have predicted a single cognitive
score using either the multimodal or multitask paradigm based
on regular ML techniques [8]. In addition, most of these stud-
ies are based on a small number of modalities and use only
baseline data [60], they used these predicted values as an indi-
cator for AD progression. Our model jointly predicts seven scores
based on a deep LSTM model and multimodal time-series data.
This includes multiple longitudinal modalities and simultane-
ously predicts multiple CSs that might help explain and more
accurately predict AD progression [5]. Multitask learning assumes
that different tasks have common representation space. Multi-
modal learning analyzes how multiple sets of clinical data can
be merged longitudinally to extract more abstract features on AD
progression. In other words, multiple tasks share features from
multimodalities to jointly model correlation among outcomes and
optimize a multi-objective cost function. In a medical environ-
ment, expert users never accept a computerized clinical decision
support system unless they understand why and how a certain
recommendation is given [61]. In our case, the MRBL improves
the interpretability of the DL model. Using an easy to interpret
model such as DT in the second phase of MRBL produces an easy
to interpret recommendation [62,63]. The resulting explanation
is much accurate than using interpretable models to explain the
behavior of DL. In the current design, the interpretable model is
created based on CSs features learned by the DL model. To extend
this idea, we explore two interpretable fuzzy classifiers which
are based on Fuzzy Logic (FL), including the fuzzy unordered
rule induction algorithm FURIA [29] and a multi-objective evo-
lutionary fuzzy classifier (MOEFC) [61]. To select the best scores,
we study the correlation between all CSs and AD progression
by using suitable statistical analysis tools and select the highest
correlated scores. In addition, the best set of modalities, with the
most suitable set of features, was selected and used by the BiLSTM
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odel. In both MRBL and DFBL, each modality is learned by a
eparate BiLSTM module to extract deep longitudinal features.
fter extracting longitudinal features from every modality using
separate LSTM model, we use the late fusion technique based
n BiLSTM to extract any complementary features from different
odalities jointly. From these, the four modules are fused and

earned again with another deep BiLSTM module. Predicted mak-
rs are integrated with the most progression sensitive baseline
eatures to further predict the exact M48 diagnosis (CN vs. MCI
s. AD). By comparing the classification at M18 with M48, we
an determine the progress MCI patients within the 2.5 years
rom M18. To the best of our knowledge, these explored design
aradigms have not been studied in the AD domain, especially
or progression detection. As brain atrophy from AD may start
s early as twenty years prior to symptoms [57], analysis of MRI
ata is critical to AD prediction. However, most previous studies
ave concentrated on exploring the predictive power of specific
RI measures for AD predicting such as hippocampal atrophy,
olumetric abnormality, temporal atrophy, cortical thickness ab-
ormality, etc. [13,59,64,65]. As a method of feature selection,
e explore the role of different categories of MRI features, in
ombination with other modalities, on the models’ performance.
To sum up, our study makes the following contributions:

• We propose two novel hybrid DL models to tackle the cur-
rent limitations of DL-based models for AD progression pre-
diction. Our model predicts AD progression 2.5 years later
(i.e. at month 48) based on the patient’s partial or entire
multimodal time series data from the previous 18 months.
• The first HDL model, called DFBL, uses a multivariate BiLSTM

architecture for deep feature representation learning, and
a regular ML model such as DT, RF, SVM, or FL for the AD
prediction task.
• The second HDL model, called MRBL, has two main phases.

In the first phase, it uses a multivariate BiLSTM model to
jointly learn seven regression tasks; then, in the second
phase, a regular ML model is used to learn the multiclass
AD progression (CN vs. MCI vs. AD) based on the predicted
CSs from the first stage.
• Comprehensive evaluations were conducted based on data

from 1371 subjects collected from the ADNI. We explored a
set of DL and ML techniques, such as SoftMax classifier, RF,
SVM, DT, general model (GM), FURIA, and MOEFC.
• Broad performance comparisons were carried out to show

(i) the effect of the included time-series data, when (1) using
all of the patient’s data (four time-steps), (2) using the BL
visit data, and (3) using the M18 visit data, (ii) the effect
of applying a single and multitask approach for the MRBL
model, (iii) the effect of using BiLSTM architecture against
using only flattening time-series data with a conventional
DL architecture, and (iv) the role of fusing different MRI
feature spaces with other modalities to reduce noise and
improve the performance.

he remainder of the paper is organized as follows. Section 2
resents the methods and techniques used in our architecture for
eep feature representation and classification. Section 3 presents
he details of the proposed hybrid model. The experimental
ramework that explains the flow of the comprehensive exper-
ments in this paper is provided in Section 4. The results and
iscussion are presented in Section 5. Finally, Section 6 concludes
he paper.

. Methods

In this section, we introduce the main techniques adopted
n our proposed architecture such as LSTM, BiLSTM, and ML
lgorithms that were optimized to work as classifiers for AD
rogression detection.
4

2.1. Long short-term memory

LSTM is a powerful technique to detect patterns in time series
and sequential data. However, the number of studies exploiting
LSTM for AD multimodal longitudinal data analysis is still limited.
AD data from each time point is correlated with the data from the
preceding and following time points. To fully capture the tempo-
ral variations in correlations of AD data, we apply the BiLSTM,
which consists of a forward LSTM (i = 1, · · ·, n) and a backward
LSTM (i = n, · · ·,1). The BiLSTM networks are used in two po-
sitions. First, modalities, i.e. X ∈ {XPET , XMRI , XCSD, XNPD, XASD} are
trained separately by BiLSTM subnetwork. We have five modali-
ties, so we have five two-layer BiLSTM networks trained concur-
rently and independently to capture the temporal features within
single features and among features of different modalities. Sec-
ond, the learned features from these five networks are fused and
learned using another two-layer BiLSTM network to extract the
common features among different modalities. Fig. 1 represents
the BiLSTM network used to fuse different modalities.

For each time point, the outputs of the forward and backward
BiLSTMs are concatenated to form the output of the BiLSTM at
that time point, see Fig. 2. We add two BiLSTM layers to effi-
ciently process and summarize longitudinal data of each modality
separately. Since the patient time series are only 4 steps, the
two layers do not increase the computation loads. The LSTM
cell structure consists of three gates: the input gate (itn ), forget
gate (ftn ), and output gate (otn ). These gates are used to regulate
information contained in the cell state. Ctn , Ctn−1 and Ĉtn are the
cell status contents at the time tn, the cell status value of the
last time step, and the update of the current cell status value,
respectively. htn−1 is the value of a memory cell in the hidden
layer at the tn−1 time step. htn is the output value of a hidden
layer at the time tn derived from Ĉtn and Ctn−1 . The calculated
weight matrices and biases vectors are represented as θs and b,
respectively. These are updated following the back propagation
algorithm. ⊗ is the Hadamard product; ⊗ is the concatenation
operator; σ is the logistic sigmoid function; φ is the activation
function output, e.g. SoftMax, ReLU , or Tanh. The Eqs. (1) to (7)
represent the flow of information in an LSTM memory cell at each
step.

ftn = σ
(
θf •

[
htn−1 , xtn

]
+ bf

)
(1)

itn = σ
(
θi •

[
htn−1 , xtn

]
+ bi

)
(2)

C̃tn = tanh
(
θC •

[
htn−1 , xtn

]
+ bC

)
(3)

Ctn =

(
ftn ⊗ C tn−1 ⊕ itn ⊗ C̃tn

)
(4)

tn = σ
(
θo •

[
htn−1 , xtn

]
+ bo

)
(5)

tn = otn ⊗ tanh
(
Ctn

)
(6)

n = ϕ(θyhtn + by) (7)

he LSTM unit captures information related to the previous in-
ut sequence in a time series but does not capture the rela-
ion between future and previous sequences. BiLSTM [66] merge
wo independent hidden LSTM layers in the forward and back-
ord directions into the same output to learn the overall de-
endencies in a time series. BiLSTM gets an input sequence,
= (Xt0, Xt1, . . . , Xtn), in a forward hidden sequence as in

he conventional LSTM,
−→
h t = (

−→
h t0,
−→
h t1, . . . ,

−→
h tn), and a

ackward hidden sequence in the opposite direction,
←−
h t =

←−
h ,
←−
h , . . . ,

←−
h ). The output vector of a hidden layer y =
t0 t1 tn t
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Fig. 1. BiLSTM-based framework for time series data learning and multitask progression prediction.
yt0, yt1, . . . , ytn), t = 1, 2..t is the combination of
−→
h t and

←−
h t ,

t = [
−→
h t ,
←−
h t ], as shown in Eqs. (8) to (11).

→
h tn = σ

(
θ−→h n
•

[
−→
h tn−1 , xtn

]
+ b−→h n

)
(8)

−
h tn = σ

(
θ←−h n
•

[
←−
h tn−1 , xtn

]
+ b←−h n

)
(9)(

−→
h t0,
←−
h t0

)
. . .

(
−→
h tn,
←−
h tn

)
= BiLSTM(Xt0, Xt1, . . . , Xtn) (10)

t = σ

(
θyt
−→
h n

−→
h tn + θyt

←−
h n

←−
h tn + byt

)
(11)

he output of a BiLSTM yt is fed to the next hidden layer. The
utput yt from the former layer is fed as an input to the later
ayer, see Fig. 1. Since the time series of our study are not long,
he computation load of the two BiLSTM layers is insignificant.

.2. Regular machine learning models

Many regular ML algorithms have been optimized to work as
lassifiers based on either learned deep features from the LSTM
odel or the predicted cognitive scores of M48. These models

nclude SVM, RF, DT, Naïve Bayes (NB), and GM. According to our
esults, we found that the best model is RF [67]. In addition, fuzzy
lassifiers are popular classification approaches especially in the
edical domain, because (1) they provide interpretable models
ased on linguistic labels in their fuzzy rules, (2) they are able
o handle the vague and uncertain nature of medical data, and
3) they can be trained easier than deep learning models [68,69].
ore details about the regular ML models used can be found in
upplementary File 2.
5

3. Proposed learning approach

In this section, we describe the detailed steps of the proposed
hybrid multitask LSTM-based models. The model predicts AD
progression at M48 based on four time-steps (BL, M06, M12, and
M18). As shown in Fig. 1, the inputs to the system are two types of
data, namely four time-series modalities and baseline data. In the
first layer, each time series modality is learned by a deep LSTM
module. In the second layer, the learned deep features of the first
layer are fused and used by another multilayer LSTM module to
learn deeper features. The baseline data includes many critical
features collected from the first visit including age, education,
TAU, APOE, etc. These data work as background knowledge in the
DL model. These data are learned by using a feed forward neural
network (FFNN). Learned features from the FFNN and second
layer of LSTM are fused again and used in the two different ML
models. We compare two design schemes: DFBL and MRBL. In
the DFBL design, these fused features are concurrently used to
train regular ML models (RF, DT, SVM, GM, and NB), FL models
(FURIA and MOEFC), and a DL model (SoftMax). In the MRBL
design, these fused features are used to train a multitask model.
We use the learned deep features to learn seven regression tasks
based on a set of dense layers for each task, as shown in Fig. 1.
Each regression task is responsible for predicting one CSs at
M48. We create a new dataset of the predicted CSs by adding
another three critical features (i.e. age, gender, and education).
The resulting dataset is used to train another multiclass classifier
(CN vs. MCI vs. AD) to predict AD progression at M48. We tested
many classifiers for this step including regular ML models (RF,
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Fig. 2. The architecture of the proposed LSTM layer for AD prediction.
T, SVM, GM, and NB), FL models (FURIA and MOEFC), and DL
odel (SoftMax). The multitask learning process is formulated as
iscussed in the next section.

.1. Multitask LSTM-based modeling

The proposed DL framework is a multimodal multitask model,
here the model simultaneously learns relevant tasks Y based
n AD modalities M . The modalities set M can be depicted
s X={X (1), . . . , X (M)

}, and the tasks to be leaned represented
s Y = {y(1), . . . , y(T )}, where y(j) = {y(j)1 , . . . , y(j)N } is a vec-
or of N values for N subjects. A modality Xm

∈ X is repre-
ented as Xm

= {x(m)
1 , . . . , x(m)

i , . . . , x(m)
N } of N patient examples,

here an example x(m)
i is a multivariate time series x(m)

i =

x(m)
i1t , x(m)

i2t , . . . , x(m)
ift }, for t = 1, . . . , s time-steps and f set of

nivariate time series. Each patient i ∈ N is represented as xi =
x(1)i , . . . , x(m)

i , . . . , x(M)
i , y1i , y

2
i , . . . , y

T
i }, where i = 1, . . . ,N , and

1
i is the label of the first task for the ith example. For simplicity,
ig. 3 illustrates a single modality for N subjects. Each modality
as four-time steps and M features, that is, input X , and four
Ss as regression tasks Y . The model should optimize shared
arameters (θ sh) and task-specific (θ t ) parameters, where the
arametric hypothesis of each task is f t

(
x, θ sh, θ t

)
: X → y(t), and

he task-specific loss functions are Lt (., .) : y(t) × y(t) → R+. In
our proposed multimodal multitask model, the learning process
is a gradient-based multi-objective optimization of task-specific
losses, as shown in Eq. (12).

min
θsh,

θ1,...,θT

L
(
θ sh, θ1, . . . , θ T )

= min
θsh,

θ1,...,θT

(
L̂1 (

θ sh, θ1) , . . . , L̂T (
θ sh, θ T )) (12)

where L̂t (., .) is a task-specific loss function defined as
L̂t

(
θ sh, θ t

)
=

1
N

∑
i L(f

t
(
xi; θ sh, θ t

)
, y(t)i ). Our model predicts

seven regression tasks. The regression tasks are equally treated
with the objective function defined in Eq. (13), for m, which is
the number of θ sh and θ t parameters.

L̂t (θ sh, θ t)
=

1
T

T∑
t=2

1
N

N∑
i=1

(
y(t)i − ŷ(t)i

)2
+

λ

m

m∑
j=1

θ2
j (13)

here the loss function is the mean squared loss for regression,
nd the added term in the equation is the regularization term.
n this study, the T cognitive scores are exploited in the back
6

propagation algorithm to update weighs of the BiLSTM layers, and
learn afterword the most relevant features in the dense layers. It
is worth noting that the DL model can simultaneously optimize
multiple tasks if they share inputs [70].

3.2. Data preparation

Prior to the training of the proposed model, several data
preparation steps were carried out. The first step is to deter-
mine the best CSs that can be used to predict AD progression at
M48. Based on previous literature and our statistical significance
analysis of most CSs (Supplementary File 2), we determined the
discriminative power of each independent score for measuring
AD severity. We use the correlation analysis, non-parametric
Kruskal–Wallis test, and probability density function to achieve
this task. Selected scores are used as the regression features in
the proposed model. Regarding the multimodal time series data
and the baseline data, a set of preprocessing steps is performed
to improve the data quality. These steps include the following:

• In the first step, missing data are handled for both time
series modalities and baseline static data. For static data,
all features with more than 30% missing data are removed.
For the rest of the features with missing data , we use the
k-nearest neighbors (KNN) algorithm to impute a missing
value with the average of its k neighbors, assuming that the
missing values are at random places. In our study, the mixed
Euclidean distance function is used, k is set to 10 empirically
via experiment. The average percentage of missing values
handled by KNN imputation is 9.6% (8.64% in training data
and 0.96% in testing data). Although the baseline static data
(e.g. Tau, Amyloid Beta, age, etc.) are: (1) medically critical
for the medical experts to infer about the patient’s status,
and (2) valuable to enhance the performance and robustness
of the deep learning models as illustrated in Figure S4 of
Supplementary File 2, we found that the use of different
imputation techniques has a minor effect on the overall
model performance. For time-series data, any univariate
time series time with either more than 30% missing data or
has no baseline reading is removed. Handling missing values
in time series is conducted in two sequential strategies.
(1) Unify all time series by filling values at a specific time
based on our knowledge of ADNI procedures. Some time
series values are intentionally not collated by ADNI based
on the patient status. For example, CN patients of ADNI1
do not have an MRI scan at the M18 visit. Also several lab



T. Abuhmed, S. El-Sappagh and J.M. Alonso Knowledge-Based Systems 213 (2021) 106688
Fig. 3. The structure of each time series modality for the LSTM model.
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and cognitive tests as well as neuroimaging scans are not
done periodically for all patients. We follow a restricted
procedure to fill these values by a forward filling of for-
mer values when the diagnosis has not changed. We only
consider a value is missing in the time series if the patient
diagnosis has changed. This technique of unifying the time
series is common in Alzheimer’s literature [71]. (2) We
take the advantages of LSTM’s ability to analyze time series
with variable lengths or has missing data at certain time
points. An LSTM masking layer is added after the input to
handle the missing inputs. This method is well known in the
literature and outperform other imputations techniques for
handling missing values of time series data [72–74]. In our
model, the missing time points are filled with meaningless
values (−55) in the masking layer. The resulting time-series
data have a regular interval of six months and fed to our
BiLSTM model directly.
• The second step is to divide the dataset into a training set

(90%) and a test set (10%). The training set is for building
and validating the model, while the test set is for checking
the generalizability of the model. This process is repeated
ten times and the average performance is reported.
• The third step is to rescale the data to be homogeneous. We

normalize the data in the range [0, 1]. Outliers are detected
and replaced by the average value for its class.
• The fourth step is data balancing. Our dataset is not severely

imbalanced because the classes distribution are: CN (30.56%),
MCI (44.71%), and AD (24.73%). Since the ML models are
prone to be biased in the case of imbalanced datasets. There
are many techniques for handling imbalanced datasets, and
the synthetic minority oversampling technique (SMOTE) is
a popular technique for oversampling and undersampling
data [75]. In our case, SMOTE is adopted to address the class
imbalance in the training set by only using the oversampling
technique.
• Feature selection is a critical step in the ML pipeline. In the

embedding methodology, selection is part of the learning
procedure. We are mainly rely on the power of DL to extract
the most informative features from the time series data. In
addition, we explicitly examine the role of different MRI fea-
ture categories including hippocampal, volume, temporal,
cortical thickness, etc.

After data preparation, the DL model is trained and validated.
To guarantee unbiased tuning of model hyperparameters and be-
cause our dataset is relatively small, the LSTM model training and
validation process (i.e. hyperparameters optimization) are based
on stratified 10 fold cross-validation repeated 10 times [76]. The
DL model is separately optimized for both design schemes (MRBL
and DFBL). The tuned models are tested using the unseen test
sets. Keeping the test set untouched is critical to estimate the gen-

eralization performance of the selected model. It is worth noting c

7

that the final evaluation of the resulting model is performed on
the held-out set, which is not used prior to either model training
or tuning of its parameters. This process is repeated 10 times,
and the average performance is reported. For the DFBL design, the
hybrid model is optimized concurrently. The LSTM model and the
connected classifier (ML, FL, SoftMax) are trained simultaneously.
For the MRBL design, the LSTM model is optimized for learning
the seven regression tasks, and the predicted CSs are collected. A
separate process for optimizing the classifier (ML, FL, SoftMax) is
carried out based on the resulting feature set.

4. Experimental framework

4.1. ADNI study

The data used to prepare this study was obtained from the
Alzheimer’s disease neuroimaging initiative (ADNI) database. The
data was accessed on March 18, 2019. We selected 1371 subjects
(54.5% male) from ADNI 1, ADNI GO, and ADNI 2 based on the
availability of data. Based on the subjects diagnosis from the
baseline to month 48 of ADNI study, patients are grouped into
4 classes, as shown in Fig. 4. (1) 419 subjects are diagnosed
as CN and remained CN during the study period (i.e., from the
baseline to M48). (2) 473 subjects are diagnosed as MCI during
all the study period. (3) 140 subjects are diagnosed as MCI at
baseline+M06+M12+M18 visits and progressed to AD within
.5 years starting from M18 (i.e., from M18 up to M48). (4) 339
ubjects are diagnosed as AD in all visits. The used list of patient
Ds can be found in Supplementary File 2. As shown in Fig. 4,
o subjects with reverse diagnosis, (e.g., from MCI to CN, or
D to MCI) during visits, are included from the study. In other
ords, we considered the subjects with the reverse diagnosis
s misdiagnosed, this comes from the consideration that AD is
n irreversible form of dementia. Furthermore, all subject that
ave converted from CN to AD are also excluded. Our collected
ata has two main categories. Several neuropsychological tests
nd biomarkers have been collected and individually validated
or AD progression. In this study, we will fuse two types of
ata. The first type is time-series data including the five modal-
ties of CSs subscores (78 features), neuropsychological battery
55 features), neuropathology data (13 features), MRI (326 fea-
ures), and PET data (46 features). Specific categories of MRI that
re explored include volumes (115 features), cortical thicknesses
144 features), hippocampus region (17 features), surface areas
75 features), temporal region (47 features). The second type is
aseline (i.e. not time series) data including the 108 features of
SF markers (i.e. amyloid-β peptide of 42 amino acids-Aβ1–42
ABETA], TAU, and phosphorylated TAU [PTAU]); genetic informa-
ion APOE4; demographics; medical history; symptoms; lab tests;
nd physical examinations. A full description of our dataset can
e found in Supplementary file 2. Table 1 shows demographic and

linical information of the subjects.
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Fig. 4. Data formulation process.
able 1
escriptive statistics of the main features of the dataset at baseline and month 84.

CN MCI (n = 613) AD (n = 339)

(n = 419) sMCI (n = 473) pMCI (n = 140)

Baseline M84 Baseline M84 Baseline M84 Baseline M84

Gender (M/F) 191/228 191/228 283/190 283/190 74/66 74/66 187/152 187/152
Age (years) 73.97 ± 05.74 73.97 ± 05.74 72.92 ± 07.75 72.92 ± 07.75 74.34 ± 07.14 74.34 ± 07.14 75.00 ± 07.80 75.00 ± 07.80
Education (y) 16.39 ± 02.69 16.39 ± 02.69 15.79 ± 02.96 15.79 ± 02.96 16.14 ± 02.94 16.14 ± 02.94 15.12 ± 02.98 15.12 ± 02.98
FAQ 00.19 ± 00.73 00.30 ± 01.11 02.09 ± 03.14 03.47 ± 04.81 04.55 ± 04.53 15.04 ± 07.52 13.30 ± 06.85 18.69 ± 07.37
MMSE 28.98 ± 01.16 28.92 ± 01.31 27.63 ± 02.13 27.06 ± 02.72 26.45 ± 02.09 22.23 ± 04.01 22.06 ± 03.79 19.46 ± 05.44
MoCA 25.67 ± 01.96 25.30 ± 02.54 23.14 ± 02.69 22.74 ± 03.14 21.77 ± 01.99 17.83 ± 04.47 17.48 ± 03.54 16.07 ± 05.30
APOe4 00.27 ± 00.48 00.27 ± 00.48 00.51 ± 00.66 00.51 ± 00.66 00.84 ± 00.69 00.84 ± 00.69 00.85 ± 00.71 00.85 ± 00.71
ADAS 11 05.63 ± 02.82 05.75 ± 03.24 08.89 ± 3.80 10.55 ± 06.44 13.41 ± 05.02 22.95 ± 11.58 20.21 ± 06.53 25.84 ± 12.12
ADAS 13 08.70 ± 04.09 08.96 ± 04.45 14.78 ± 05.86 16.22 ± 08.77 19.61 ± 05.04 30.43 ± 10.17 29.99 ± 07.99 37.00 ± 13.08
RAVLT imm. 45.79 ± 09.71 45.78 ± 10.85 36.42 ± 10.66 34.10 ± 11.81 29.69 ± 07.08 21.72 ± 07.54 22.64 ± 07.48 18.33 ± 08.44
RAVLT learn 06.12 ± 02.23 05.76 ± 02.40 04.56 ± 02.51 03.20 ± 02.54 02.67 ± 02.48 01.48 ± 01.36 01.37 ± 01.35 01.40 ± 01.67
RAVLT forget 03.56 ± 02.83 03.39 ± 02.90 04.42 ± 02.61 04.52 ± 02.39 05.60 ± 02.35 04.72 ± 02.14 04.80 ± 02.83 04.98 ± 02.18
RAVLT % forget 32.45 ± 25.79 33.97 ± 27.60 54.65 ± 30.45 63.87 ± 32.11 76.87 ± 27.30 89.85 ± 32.55 89.50 ± 20.86 92.41 ± 24.20
CDR 00.08 ± 0.31 00.11 ± 00.37 01.34 ± 00.89 01.66 ± 01.29 02.70 ± 01.00 05.35 ± 02.86 05.22 ± 02.28 07.17 ± 03.56

Statistical measures of the features are shown as mean ± standard deviation.
Table 2
Optimized hyperparameters for ML algorithms used in the DFBL and MRBL models.
Model. Algorithm Hyperparameter

DFBL

SVM Support Vectors = 74, Cost = 10, solver – lbfgs, gamma = 0.01, learning_rate = adaptive
NB Laplace smoothing = active
RF criterion = gain ratio, max_depth = 2, number of trees = 100
GM alpha = 0.5, lambda = 9.145E−4, kernel = guession
DT criterion = gini, max_depth = 4, minimum leaf split = 2
FURIA fuzzy operator = product T-norm, batch = 20, folds = 4, optimization = 2, minimum weight = 2
MOEFC algorithm = NSGA2, batch = 20, generations = 100, population = 150, max similarity = 0.4

MRBL

SVM Support Vectors = 465, Cost = 1000, solver – lbfgs, gamma = 1.0E−4, learning_rate = adaptive
NB Laplace smoothing = active
RF criterion = gain ratio, max_depth = 4, number of trees = 60
GM alpha = 0.5, lambda = 6.855E−4, kernel = guession
DT criterion = gain ratio, max_depth = 4, minimum leaf split = 2
FURIA fuzzy operator=product T-norm, batch = 20, folds=4, optimization = 2, minimum weight = 2
MOEFC algorithm=NSGA2, batch = 20, generations=100, population = 150, max similarity = 0.4
4.2. Model training process

All the experiments of the paper are conducted on a machine
ith an Intel R⃝ Xeon(R) CPU E5-2620 v3 @ 2.40 GHz× 24 with
uda-10.0 and three GEFORCE GTX TITANx 12 GB GPUs; we
sed Python 3.7.7 distributed in Anaconda 4.8.3 (64-bit). All the
roposed models are implemented using Keras library based on
ensorFlow as the backend. For the classification task, the Soft-
ax activation function with categorical cross-entropy loss was
sed, while the sigmoid activation function with mean square
rror loss was applied for the regression tasks. For the learning
ate optimization, all deep learning models are adopted Adam
ptimizer with a learning rate of 0.0001 [77]. The training batch
ize and number of epochs were 15 and 60, respectively. To speed
p, we parallelized the training process across the GPUs. The
raining of the proposed models is an optimization process to
ind the best parameters that give the best performance either in
8

the classification task or in multitask regression tasks. We split
our dataset into stratified 90% training and validation, and 10%
test datasets. We used a procedure known as stratification to
randomize the instances at each execution to ensure that training
and testing datasets contain a similar proportion of the all classes.
This procedure is repeated ten times in all reported experiments
to avoid bias. For the DFBL design, the DL model optimizes a mul-
ticlass classification task using SoftMax at the output layer. After
the optimization process, the model is frozen and used to identify
deep features in the test dataset. The resulting deep features are
fed to either SoftMax, regular ML, or fuzzy classifiers. For the
MRBL model, the DL model is optimized to learn seven regression
tasks using the Sigmoid activation function at the output layers.
The hyperparameters of the final models are evaluated using
stratified 10-fold cross-validation before we decided on the final
hyperparameters. In our experiments, we feed each modality of
our five modality data to a masking layer followed by two stacked
BiLSTM layers. These layers have (128 × 2) and (64 × 2) units
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ith L2 regularization of 0.005, a dropout of 0.15, and a Tanh
ctivation function. Each BiLSTM module has an equal number
f LSTM layers, but their weights are independently optimized.
he five BiLSTM blocks are fused to a new BiLSTM layer with
320 × 2) units and this is merged with the background static
ata to learn the more abstract deep features of all modalities.
he background data are added to the model after passing two
equential feed-forward dense layers, these reduce the dimen-
ionality of features from 108 to 64. The learned abstract features
ed to either the regression or classification task after passing
hrough three consecutive dense layers (64, 32, 32 units for each
ayer) using the ReLU activation function, L2 regularization of
.005, and drop out of 0.20. All outputs from the last dense layer
re used either to optimize DFBL or MRBL, as illustrated in Fig. 1.
or the DFBL architecture, the 32 deep features generated by the
ast dense layer are fed to three classifies types, including the
oftMax, ML (SVM, RF, DT, NB, and GM), and FL (FURIA, and
OEFC) classifiers to predict the AD progression at M48, see
upplementary Figure S1. The 10-fold cross-validation was used
n all the classification experiments with the grid search method
hosen to find the optimal hyperparameters. The optimized ML
odel was evaluated on an unseen test set, the average of the ten
valuations is reported. For the MRBL design, the model jointly
ptimizes seven regression tasks. The concatenated features of
he last BiLSTM layer with a static layer are fed to seven separate
locks, where each block is responsible for one regression task, as
llustrated in Fig. 1. The added dense block has three dense layers
sing the ReLU activation function, L2 regularization of 0.005, and
rop out of 0.20. Another dense layer is added for each regression
ask using a sigmoid activation function, L2 regularization of
.005, and drop out of 0.20 to predict the regression values, see
upplementary Figure S2. The regression tasks are stopped early
hen the error does not decrease within the next 30 epochs. The
etwork is trained only on a training set, while validation samples
re used to determine when to stop the optimization process.
he average results of the regression multitask are reported for
he unseen test sets. Similar to DFBL, all the predicted values
f the multitask regression are fed to three classifies types, the
oftMax, ML (SVM, RF, DT, NB, and GM), and FL (FURIA, and
OEFC) classifiers, to predict the AD progression at M48. In the
RBL experiments, the 10-fold cross-validation was used in all

he classification experiments using the grid search method to
ind the optimal hyperparameters. The optimized ML model is
valuated on the unseen test set, and the average of ten evalua-
ions is reported. Table 2 illustrates the optimal hyperparameters
f the ML algorithms for the DFBL and MRBL models.

.3. Performance evaluation metrics

The performance in regression tasks is evaluated using the
ean absolute error (MAE), as defined in Eq. (14), where N is the

number of cases, yi is the actual value for example i, and f (xi) is
its predicted value.

MAE =
1
N

N∑
i=1

(yi − f (xi)) (14)

The performance in classification tasks is evaluated using the
standard four metrics of accuracy, precision, recall, and F1-score
(Eqs. (15) to (18)), where TP stand for true positive, TN means
true negative, FP is false positive, and FN is false negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

recision =
TP

(16)

TP + FP

9

Recall =
TP

TN + FN
(17)

1− score =
2× Precision× Recall
Precision+ Recall

(18)

.4. Statistical analysis

.4.1. Selecting efficient cognitive markers
To determine the independent CSs with the highest discrim-

native power, we performed the following steps. First, we sur-
eyed the literature to collect the most important cognitive
arkers. Next, based on our training dataset, we performed a
eep statistical analysis to select the most significant scores for
se in regression tasks with the DL model. A P-value < .05 is con-
idered significant. We use a set of statistical tests based on the
ature of the data, i.e. normal distribution and outliers. The sizes
f the different diagnostic groups (i.e. CN, MCI, and AD) are large
nough for all statistical tests, and CSs, to have no outliers. For
Ss displaying normal distribution including ADAS-cog, MoCA,
DNI MEM, and RAVLT-Immediate, we used a one-way analysis
f variance (ANOVA) parametric test to check that the three
ndependent classes are significantly different (i.e. CN-MCI-AD).
or post-hoc testing after AVOVA, we use the conservative Scheffe
est to check each pair of diagnostic groups (i.e. CN-MCI, CN-AD,
nd MCI-AD), this prevents type 1 errors. For the groups that
ad a non-normal distribution including MMSE, FAQ, and CDR we
se the non-parametric Kruskal–Wallis test for the three groups
ests followed by Dunn’s test for post-hoc multiple comparisons
ased on Bonferroni’s correction. Seven markers were selected to
e predicted by the LSTM model. As asserted in Fig. 5, statistical
nalysis indicates that the selected scores are statistically highly
ignificant (P<.0001), and there exists statistically high significant
ifferences among CN and MCI, CN and AD, and MCI and AD
P<.0001). As can be seen in the distributions in Fig. 5, there are
ignificant differences among the means of different groups for
ach score. As a result, the selected markers are considered as
ignificant predictors of AD progression. Longitudinal changes in
he selected CSs could track AD patient progression. As shown in
ig. 6, different Alzheimer’s disease classes (i.e. CN, sMCI, pMCI,
nd AD) have significantly different ranges of values (P<.005) at
ach specific visit at BL, M06, M012, M18, and M48. As a result,
he LSTM model is able to differentiate each class at each visit
nd track its change from the previous visit. In addition, the
MCI class has a clear progression behavior between M18 and
48 for all selected CSs. In other words, in the M18 visits, all
MCI cases are considered MCI, but in M48 visits these cases
ave progressed to AD class. We notice that different classes have
ifferent levels of progression for each marker. As shown by the
tandard deviations, the CN and sMCI classes are approximately
table because they are changing very slowly. On the other
and, the pMCI and AD classes are changing fast. For example,
DR has average values of 0.083±0.30, 1.34±0.89, 2.07±1.00,

and 5.23±2.29 for respective CN, sMCI, pMCI, AD classes at
the BL visit; 0.083±0.30, 1.34±0.89, 2.07±1.00, and 5.23±2.29
t M06; 0.099±0.32, 1.39±0.98, 2.29±1.11, and 6.00±2.93 at
12; 0.099±0.32, 1.38±1.00, 2.48±1.15, and 6.02±2.97 at M18;
.11±0.37, 1.66±1.30, 5.37±2.69, and 7.18±3.57 at M48. CN and
MCI classes exhibit a slow rate of cognitive decline; however, the
MCI and AD groups undergo statistically significantly increases
P<.001) especially between M18 and M48, indicating a cognitive
ecline of the participants.
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Fig. 5. Group of box plots showing the distributions of seven CSs selected to be learned by the DL model.
Fig. 6. Patterns of decline of different markers to show the temporal progression of selected CSs from BL reading to M48 reading.
.4.2. Selecting static features
The selected CS markers in the previous step are used in the

STM model as the seven regression tasks. The LSTM function is
o predict the values of these scores at M48 visit based on the
our-time steps of BL, M06, M12, and M18. Other features like
ge (P<.0005, Student’s T-test), gender (P< .0002, Chi-Square test),
nd the number of education years (P<.0001, Student’s T-test) are
ound to make a significant difference between different classes.
hese three features are combined with the predicted values of
he seven CS markers. These 10 features are used later by the
nterpretable models to elucidate the model’s decisions at M48.
he LSTM model combines a large set of static baseline features
ith five complementary time-series modalities including CSs
ub-scores, a neuropsychological battery, neuropathology, MRI,
nd PET to optimize the multitask (i.e. seven task) regression
roblem.

. Results and discussion

To evaluate the performance and effectiveness of our pro-
osed multimodal multitask DL methods, we tested and com-
ared many schemes, as illustrated in Figure S3 of Supplementary
ile 2. All reported results are based on the unseen testing data.
ll experiments were repeated ten times and the average perfor-
ance is reported. In these experiments, we answer the proposed
10
hypotheses in the Introduction Section. Before starting the ex-
periments to evaluate the proposed models, we have conducted
an initial evaluation for selecting the best modalities that can be
used in our multimodal models, as illustrated in Figure S4 and
S5 of Supplementary File 2. We have noticed that including all
modalities achieved the best performance and made the model
robust and stable. Moreover, we explored the option of replacing
BiLSTM layers of the two proposed model of Fig. 2 by BiGRU layers
and found ≈ 3%, 2% accuracy degradation in the MRBL and DFBL
models, respectively (see Figure S4 and S5 of Supplementary File
2). In Experiment 1, we check the first argument o ‘‘can the use
of fused multimodal time series data and deep BiLSTM model lead to
a more accurate prediction of AD progression?’’ In this experiment,
we compare the deep BiLSTM model with the FFNN. The FFNN
has been optimized using the BL, M18, and flattened data. The
flattening process is inspired by the image processing field. As
shown in Fig. 7, for each patient, all time-series data are con-
verted into a single vector. This vector is fed as input to the FFNN.
The question of ‘‘does a hybrid model of a deep learning model
for feature representation learning and an accurate ML model for
classification improve the performance of the resulting DL model?’’ is
answered in Experiment 2. The question of ‘‘does the joint learning
of multiple regression tasks generate a more robust and stable DL
model?’’ is answered in Experiment 3. The question ‘‘is it possible
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Fig. 7. Time series flattening process and learning with FFNN.
Fig. 8. Comparison between performance for different deep features learning methods.
o predict the future values of a set of cognitive scores and use them
o predict the AD progression?’’ is investigated in Experiment 4.
The explainability question is tackled in Experiment 5. Finally,
the selection of the best category of MRI features is investigated
in every experiment to determine the most critical feature set
from the volume, cortical thickness, hippocampus, surface area,
temporal region, or all MRI features. Please note that we used
this categorization according to previous studies [13,59,64,65].
We select the best category results using our less complex, faster,
and more interpretable model.

5.1. Experiment 1: Deep feature extraction

This experiment explores the role of time-series data and the
BiLSTM DL model to recognize deep representation in the mul-
tivariate longitudinal data. We compare the LSTM model based
on multimodal time series data with the FFNN based on the BL,
M18, or flattened time series data. Please note that we used the
BL data because most previous studies were based on baseline
data [18,35,39]. The M18 data was used to check if the model is
more accurate when we shorten the period between observation
and prediction. We used the flattened dense architecture, which
was fed with the flattened time series data, to compare the
models’ capability for capturing temporal relationships with the
BiLSTM architecture. Fig. 8(A) depicts the comparison between
the deep BiLSTM-based and FFNN-based models. The BiLSTM
model was optimized based on multimodal time-series data, and
the FFNN models were optimized using BL, M018, and flattened
datasets. The BL-FFNN model achieved an average performance
of Accuracy= 74.55%, Precision= 75.28%, Recall= 85.94%, and F1-
Score= 79.02%. The M18-FFNN model achieved average perfor-
mance of Accuracy= 72.62%, Precision= 80.83%, Recall= 89.42%,
11
and F1-Score= 72.33%. The Flatten-FFNN model achieved aver-
age performance of Accuracy= 73.64%, Precision= 76.44%, Recall=
84.01%, and F1-Score= 73.58%. The time-series-BiLSTM model
achieved average performance of Accuracy= 81.22%, Precision=
78.21%, Recall= 82.24%, and F1-Score= 81.23%.

The M18-FFNN model achieved the worst F1- and Accuracy
scores, but it achieved the best Recall. The BiLSTM based model
achieved the best Accuracy and F1-Scores. Note that, even though
the M18-FFNN model achieved the best Recall, the BiLSTM based
model achieved the highest F1-Score, which is the mean of both
the Recall and Precision. The Flatten-FFNN model did not see any
improvement in performance, even though it is based on all of
the data over all time steps. The main reason for this is probably
due to the huge features created in the flattening process, and
the limited capability of the FFNN to learn the temporal features
of the data. On the other hand, we observed that M18-FFNN
and Flatten-FFNN models achieved comparable performance. It is
worth noting that this experiment is based on the DFBL design.
Concretely, the four compared models are carry out multiclass
classification tasks to predict patient class at M48 using the
SoftMax classifier. The learned deep features were tested for the
multitask regression optimization design (MRBL). Fig. 8(B) shows
the performance of the different models. The deep features of
every model are used to optimize the seven regression tasks for
CSs at M48, and then these scores are used to predict the patient’s
class. The BiLSTM based model achieved the highest average
results of Accuracy= 78.89%, Precision= 80.79%, Recall= 77.60%,
and F1-Score= 79.13%. the BL based model achieved the worst
average results of Accuracy= 54.53%, Precision= 65.69%, Recall=
54.38%, and F1-Score= 59.51%. We observe that the BiLSTM based
model is also more stable and confident. The average standard
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Fig. 9. Comparison between different classifiers based on the learned deep features.
Fig. 10. Performance of the cognitive scores prediction based on different models(i.e., Time series, BL, M18, and Flatten) and used MRI category.
deviations of the models are 8.26%, 8.77%, 8.15%, and 5.84%, for
BL, M18, Flatten, and BiLSTM based models, respectively. From
these results, we selected the BiLSTM based model to be the
main model for learning the deep representations in the time
series data. It can be seen that the performance of almost none
of the models is high, and this problem is tackled in the next
experiments where we integrate the learned deep features with
regular ML and fuzzy classifiers.

5.2. Experiment 2: Progression detection based on the DFBL

This experiment investigates the second hypothesis. We ex-
lore the effect of using different classifiers with the learned
eep features from the deep BiLSTM model. We replaced the
eep learning classifier with two types of classifiers, including
ive regular ML and two fuzzy classifiers. The results are shown
n Table 3. This table shows the classification performance of
ight classifiers using six different categories of MRI features.
urprisingly, the Softmax classifier did not beat any of the tested
lassifiers, it achieved results of Accuracy= 81.22%, Precision=
8.21%, Recall= 82.24%, and F1-Score= 81.23%. The lowest perfor-
ance of the other classifiers was from the MOEFC. It achieved
verage Accuracy= 81.30%, Precision= 81.72%, Recall= 81.30%, and
1-Score= 81.26%. Fuzzy classifiers commonly have lower perfor-
ance, but they provide interpretable results in the form of lists
12
of fuzzy rules. FURIA and MOEFC have similar results. The best
classifier is RF, which has average Accuracy= 82.63%, Precision=
84.68%, Recall= 84.80%, and F1-Score= 84.73%. Fig. 9(A) illustrates
a comparison between the average performance of different mod-
els. On average, RF achieved the best results. RF is an ensemble
classifier, which is more robust than other individual classifiers
such as SVM and NB. We conclude that combining regular ML
with deep learning can improve classification task results and
beat the performance of the SoftMax classifier.

To explore the role of using different categories of MRI fea-
tures, we optimize the BiLSTMmodel based on the used MRI cate-
gory in combination with other features. Different categories have
different results. The list of Surface Area features achieved the
highest average results of Accuracy= 84.19%, Precision= 84.77%,
Recall= 84.74%, and F1-Score= 84.75%. Using the Temporal region
features (see Figure S6 in Supplementary File 2) achieved a com-
parable result to the Surface Area category, i.e. Accuracy= 83.73%,
Precision= 84.38%, Recall= 84.62%, and F1-Score= 84.59%. Fig. 9(B)
depicts the average performance of each category regardless of
the ML classifier used. As illustrated in Fig. 9(B), using all the
MRI features is not a good idea because it achieved the lowest
average results of Accuracy= 76.88%, Precision= 78.62%, Recall=

78.03%, and F1-Score= 77.89%.
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able 3
erformance of the DFBL model.
Metric Modality SVM NB RF GM DT Softmax FURIA MOEFC

Accuracy

Volume 86.02 ± 6.85 83.68 ± 5.43 82.87 ± 4.15 86.02 ± 6.85 84.91 ± 6.71 81.03 ± 2.23 81.32 ± 1.79 80.52 ± 2.41
Cortical 81.75 ± 2.59 79.43 ± 4.49 82.81 ± 2.20 81.75 ± 2.59 83.92 ± 3.53 80.88 ± 0.96 80.88 ± 2.28 81.76 ± 2.18
Hippocampus 82.92 ± 4.70 78.54 ± 3.44 82.98 ± 2.29 84.04 ± 0.39 82.98 ± 2.29 82.27 ± 1.82 82.27 ± 2.04 81.46 ± 2.04
Surface 86.08 ± 5.99 88.19 ± 4.52 81.75 ± 2.59 86.08 ± 5.99 82.87 ± 4.15 82.78 ± 2.01 82.63 ± 2.00 83.14 ± 2.52
Temporal 84.80 ± 2.33 83.86 ± 0.48 84.74 ± 4.75 86.08 ± 4.69 82.87 ± 4.15 81.25 ± 1.62 83.14 ± 2.29 83.07 ± 2.68
All MRI 71.11 ± 8.42 80.75 ± 4.66 80.64 ± 2.91 72.34 ± 4.36 75.56 ± 4.54 79.13 ± 2.18 77.74 ± 3.37 77.82 ± 2.26

Precision

Volume 86.70 ± 6.59 86.52 ± 2.85 84.70 ± 5.09 86.02 ± 6.85 86.10 ± 6.29 77.01 ± 2.68 81.60 ± 0.02 80.72 ± 0.02
Cortical 83.48 ± 4.07 78.92 ± 2.57 84.83 ± 3.93 83.48 ± 4.07 85.32 ± 3.03 78.37 ± 2.14 81.40 ± 0.02 81.92 ± 0.02
Hippocampus 84.34 ± 5.61 84.06 ± 2.42 87.12 ± 1.75 86.67 ± 1.56 85.28 ± 3.65 77.35 ± 1.98 82.59 ± 0.02 81.92 ± 0.02
Surface 87.20 ± 5.52 89.25 ± 3.36 82.84 ± 2.37 87.20 ± 5.52 83.82 ± 3.92 83.09 ± 1.91 82.85 ± 0.02 81.92 ± 0.02
Temporal 85.68 ± 3.59 86.03 ± 0.96 86.98 ± 4.26 88.45 ± 3.61 83.82 ± 3.92 77.89 ± 2.35 83.50 ± 0.02 81.92 ± 0.02
All MRI 77.49 ± 6.72 81.17 ± 4.42 81.60 ± 3.78 77.44 ± 4.66 76.23 ± 4.86 75.53 ± 3.12 77.64 ± 0.03 81.92 ± 0.02

Recall

Volume 88.67 ± 6.31 84.59 ± 5.30 85.81 ± 4.13 88.67 ± 6.31 87.33 ± 6.22 81.09 ± 3.84 81.33 ± 0.02 80.51 ± 0.02
Cortical 81.78 ± 3.22 79.98 ± 1.42 84.56 ± 3.67 81.78 ± 3.22 84.02 ± 2.79 81.53 ± 3.87 80.88 ± 0.02 81.77 ± 0.02
Hippocampus 85.13 ± 3.96 79.24 ± 4.95 88.28 ± 3.13 85.88 ± 1.28 84.86 ± 1.97 82.40 ± 2.98 82.27 ± 0.02 81.46 ± 0.02
Surface 87.47 ± 5.86 88.19 ± 4.52 81.86 ± 2.91 87.47 ± 5.86 83.74 ± 3.13 83.38 ± 3.03 82.64 ± 0.02 83.15 ± 0.03
Temporal 86.63 ± 3.57 86.11 ± 1.17 85.98 ± 5.69 87.63 ± 4.71 83.74 ± 3.13 80.66 ± 3.76 83.14 ± 0.02 83.07 ± 0.03
All MRI 71.24 ± 6.60 79.22 ± 5.04 82.32 ± 2.12 73.83 ± 4.43 77.76 ± 3.78 84.35 ± 2.86 77.74 ± 0.03 77.81 ± 0.02

F1-Score

Volume 87.67 ± 6.45 85.54 ± 4.07 85.25 ± 4.52 87.32 ± 6.55 86.71 ± 6.25 81.03 ± 2.23 81.36 ± 0.02 80.55 ± 0.02
Cortical 82.62 ± 3.64 79.44 ± 1.99 84.69 ± 3.75 82.62 ± 3.64 84.66 ± 2.91 80.88 ± 0.96 81.00 ± 0.02 81.75 ± 0.02
Hippocampus 84.73 ± 5.73 81.57 ± 3.68 87.69 ± 2.44 86.20 ± 1.42 85.07 ± 2.81 82.27 ± 1.82 82.35 ± 0.02 81.54 ± 0.02
Surface 87.33 ± 5.69 88.71 ± 2.26 82.34 ± 2.64 87.33 ± 5.69 83.77 ± 3.52 82.78 ± 1.90 82.64 ± 0.02 83.09 ± 0.03
Temporal 86.15 ± 3.58 86.05 ± 0.98 86.47 ± 4.97 86.83 ± 3.72 83.75 ± 3.21 81.25 ± 1.62 83.14 ± 0.02 83.06 ± 0.03
All MRI 74.23 ± 6.66 80.14 ± 4.73 81.95 ± 2.91 75.59 ± 4.49 76.98 ± 4.25 79.16 ± 2.16 77.47 ± 0.03 77.58 ± 0.02
Table 4
The MAE results for deep feature extraction based on DL and FFNN models.
Model (time steps) Modality ADAS13 MMSCORE FAQTOTAL CDRSB MOCA RAVLT ADNI MEM

DL (4 time-steps)

Volume 6.00 ± 0.34 6.00 ± 0.19 09.00 ± 0.42 06.00 ± 0.26 08.00 ± 0.31 06.00 ± 0.20 5.00 ± 0.16
Temporal 5.00 ± 0.23 6.00 ± 0.11 09.00 ± 0.41 06.00 ± 0.23 08.00 ± 0.21 06.00 ± 0.18 5.00 ± 0.14
Cortical 5.97 ± 0.31 6.48 ± 0.24 09.97 ± 0.57 06.96 ± 0.27 09.25 ± 0.31 06.61 ± 0.28 5.81 ± 0.23
Hippocampus 5.00 ± 0.25 6.00 ± 0.17 09.00 ± 0.39 06.00 ± 0.27 08.00 ± 0.27 06.00 ± 0.19 5.00 ± 0.09
Surface 6.00 ± 0.31 6.00 ± 0.19 09.00 ± 0.36 06.00 ± 0.29 08.00 ± 0.24 06.00 ± 0.22 5.00 ± 0.12
ALL MRI 5.00 ± 0.23 6.00 ± 0.22 09.00 ± 0.38 07.00 ± 0.26 09.00 ± 0.25 06.00 ± 0.34 5.00 ± 0.28

FFNN (baseline visit)

Volume 7.00 ± 0.85 9.00 ± 0.73 10.00 ± 2.35 09.00 ± 2.56 10.00 ± 0.45 11.00 ± 0.53 8.00 ± 0.41
Temporal 8.00 ± 1.53 9.00 ± 0.18 11.00 ± 2.91 10.00 ± 1.87 10.00 ± 0.39 11.00 ± 0.51 8.00 ± 0.39
Cortical 8.00 ± 0.57 9.00 ± 1.37 10.00 ± 0.52 10.00 ± 2.30 10.00 ± 0.59 11.00 ± 0.83 8.00 ± 0.60
Hippocampus 9.00 ± 1.93 9.00 ± 0.23 12.00 ± 3.46 11.00 ± 1.61 10.00 ± 0.48 11.00 ± 0.75 8.00 ± 0.64
Surface 8.00 ± 0.78 9.00 ± 0.15 11.00 ± 2.92 10.00 ± 2.25 10.00 ± 0.52 11.00 ± 0.54 9.00 ± 0.37
ALL MRI 7.00 ± 0.49 7.00 ± 1.66 09.00 ± 0.45 07.00 ± 0.72 10.00 ± 0.47 10.00 ± 0.59 8.00 ± 0.38

FFNN (M18 visit)

Volume 7.00 ± 0.59 9.00 ± 1.33 09.00 ± 0.73 09.00 ± 1.74 09.00 ± 0.35 10.00 ± 0.63 8.00 ± 0.57
Temporal 7.00 ± 0.93 9.00 ± 0.21 11.00 ± 1.86 09.00 ± 1.34 10.00 ± 0.36 10.00 ± 0.56 8.00 ± 0.37
Cortical 7.00 ± 0.48 8.00 ± 1.59 10.00 ± 0.51 09.00 ± 1.74 10.00 ± 0.58 10.00 ± 0.78 8.00 ± 0.55
Hippocampus 7.00 ± 0.84 9.00 ± 0.73 11.00 ± 0.80 09.00 ± 0.91 10.00 ± 0.36 10.00 ± 1.18 8.00 ± 0.63
Surface 7.00 ± 0.66 9.00 ± 0.63 11.00 ± 0.59 09.00 ± 1.73 10.00 ± 0.74 10.00 ± 0.54 8.00 ± 0.56
ALL MRI 7.00 ± 0.50 7.00 ± 1.45 10.00 ± 0.36 07.00 ± 0.70 09.00 ± 0.33 09.00 ± 0.46 7.00 ± 0.31

FFNN (flatten 4 time-series)

Volume 6.00 ± 0.41 5.00 ± 0.19 09.00 ± 0.28 06.00 ± 0.23 09.00 ± 0.37 09.00 ± 0.46 7.00 ± 0.47
Temporal 6.00 ± 0.52 5.00 ± 0.22 10.00 ± 0.54 07.00 ± 0.45 09.00 ± 0.44 09.00 ± 0.36 7.00 ± 0.56
Cortical 6.00 ± 0.76 5.00 ± 0.36 09.00 ± 0.43 07.00 ± 0.40 09.00 ± 0.32 09.00 ± 0.35 7.00 ± 0.42
Hippocampus 6.00 ± 0.61 6.00 ± 1.18 10.00 ± 2.09 07.00 ± 0.64 09.00 ± 0.65 09.00 ± 0.42 7.00 ± 0.62
Surface 6.00 ± 0.40 5.00 ± 0.30 09.00 ± 0.41 07.00 ± 0.34 09.00 ± 0.57 09.00 ± 0.82 7.00 ± 0.33
ALL MRI 6.00 ± 0.48 5.00 ± 0.24 09.00 ± 0.45 07.00 ± 0.32 09.00 ± 0.48 08.00 ± 0.52 6.00 ± 0.22
5.3. Experiment 3: Multi-tasks regression

In this experiment, we investigated the two related questions
f ‘‘is the joint learning of multiple tasks based on the deep BiLSTM
odel more accurate and stable than using FFNN with BL, M18, and
latten?’’ and ‘‘does the joint learning of multiple regression tasks
generate a more robust and stable model than single-task models?’’.
he first question investigates the role of BiLSTM in multitask
odeling, the second one investigates the role of multitask mod-
ling on the performance of regression tasks based on the BiLSTM
odel. Regarding the first question, Table 4 shows the results
ased on the MAE for the seven regression tasks. The results
re reported for the six MRI categories. We investigated four
odels: deep BiLSTM with time series, and FFNN with BL, M18,
nd Flatten data. It is clear from the table that BiLSTM has a lower
rror rate for every regression task compared to the FFNN models.
13
The detailed performance of every regression task for each model
is illustrated in Figure S6 in Supplementary file 2. The box plots
of Figure S2, assert that BiLSTM based SCs are more accurate
and less noisy than FFNN based scores. The average performance
of these four models is illustrated in Fig. 10(A). The BiLSTM
model is more accurate than all other FFNN models because it
achieved the lowest error rates in all MRI categories. The BiLSTM
model achieved MAE values of 6.5714, 6.4286, 7.2929, 6.4286,
6.5714, and 6.7143 for Volume, Temporal, Cortical, Hippocampus,
Surface, and All MRI categories, respectively. The average MAE
rates for the BiLSTM, BL-FFNN, M18-FFNN, and Flatten-FFNN are
6.6679, 9.3571, 8.8333, and 7.4286. More importantly, the BiLSTM
model is more stable than the other models. The average standard
deviations for the BiLSTM, BL-FFNN, M18-FFNN, and Flatten-FFNN
are 0.2598, 1.0435, 0.7809, and 0.4914. As noticed the Flatten-
FFNN model is more stable than other FFNN models. This could



T. Abuhmed, S. El-Sappagh and J.M. Alonso Knowledge-Based Systems 213 (2021) 106688

8
o
8
e
s
t
7
3
4
s
d
a
l
t
i
t
s
h
t
b
t
m

Fig. 11. A comparison between single task and multitask regression.

be a result of using all flattened time-series features. Fig. 10(B)
explores the best performing CSs for every design model. It is
of note that the BiLSTM model achieved the lowest MAE rates
for the seven tasks. ADNI MEM had the best cognitive score
(MAE= 5.135) in the BiLSTM model, and FAQTOTAL had the worst
(MAE= 9.162). The average MAE rates for ADAS13, MMSCORE,
FAQTOTAL, CDRSB, MOCA, RAVLT, ADNI MEM are 6.582, 7.103,
9.832, 7.832, 9.26, 8.9, and 6.992, respectively. On average ADAS
13 achieved the best performance and FAQTOTAL the worst. As
shown in Fig. 10(B), the BL-FFNN model achieved the worst
results for all CSs regression tasks. It has MAE rates of 7.833,
8.667, 10.5, 9.5, 10, 10.833, and 8.167 for ADAS13, MMSCORE,
FAQTOTAL, CDRSB, MOCA, RAVLT, ADNI MEM, respectively. This
is obvious because the learning of the joint features for seven
tasks and the optimization of such complex objective functions
is too difficult to be learned in a single time step, especially
using the BL step. Fig. 10(C) explores the role of different MRI
categories on the performance of the BILSTM and FFNN models.
Again, the BiLSTM model achieved the best results for all MRI
categories. For the BiLSTM model, the best MRI feature groups are
the Hippocampus and Temporal, i.e. MAE= 6.429, and using All
MRI features achieved the highest MAE of 6.714. On average, the
MAE for the Volume, Temporal, Cortical, Hippocampus, Surface,
and All MRI are 7.929, 8.179, 8.252, 8.321, 8.214, and 7.536, re-
spectively. The BL-FFNN achieved the highest MAE rates of 9.143,
9.571, 9.429, 10, 9.714, and 8.286 for Volume, Temporal, Cortical,
Hippocampus, Surface, and All MRI. To conclude, the previous
results asserted the important role of the deep BiLSTM model to
optimize a complex multitask objective function. To answer the
second question, we have compared the multitask model with 42
single-task models (7 CSs × 6 datasets of different subsets of MRI
data). Fig. 11 compares the performance of different data fusions
by averaging the results of the seven tasks. Multitask modeling
achieved statistically significantly better results (P= 0.01, Student
t-test). In addition, the multitask models are more stable because
the models have lower variance than the single-task models.

5.4. Experiment 4: Progression detection based on the MRBL

This experiment investigates the question ‘‘Is it possible to
predict the future values of a set of cognitive scores and use them
to predict AD progression?’’ We predicted seven critical CSs at
M48 and used these scores to classify the patient as CN vs.
MCI vs. AD. We depended on the learned CSs from BiLSTM, as
discussed in Experiment 3. The predicted scores are combined
with age, gender, and education features from background data.
Note that the added features are not affected by the time, so it

is safe to integrate them with predicted features. The prepared

14
dataset was used to optimize five regular ML classifiers, Soft-
max, and two fuzzy classifiers. Table 5 shows the results for all
classifiers. We checked the role of different MRI feature types.
Fig. 12 illustrates the average performance with respect to the ML
model (Fig. 12(A)) and the MRI category (Fig. 12(B)). As shown in
Fig. 12(A), the RF ensemble classifier achieved the best average
results of Accuracy= 80.30%, Precision= 81.65%, Recall= 80.80%,
and F1-score= 81.19%. FURIA achieved the worst results of Ac-
curacy= 68.90%, Precision= 74.81%, Recall= 68.90%, and F1-score=
68.39%. However, MOEFC achieved a comparable average result to
other ML models, i.e. Accuracy= 79.08%, Precision= 79.06%, Recall=
81.06%, and F1-score= 78.87%. The Softmax classifier achieved
average results of Accuracy= 78.89%, Precision= 80.79%, Recall=
77.60%, and F1-score= 79.13%. MOEFC is the most stable because
it has the lowest standard deviation of all performance metrics.
i.e. Accuracy= 2.06%, Precision= 2.17%, Recall= 2.17%, and F1-
score= 2%. As a result, integrating regular ML models with an
accurate DL model could improve performance. DL is better at
learning deep feature representations from complex data struc-
tures like time series. Furthermore, DL models can jointly learn
multiple tasks to produce more stable models. However, adding
a DL classifier to the extracted features usually requires a large
amount of data. Regular ML classifiers could help in this situation
because they can be optimized using smaller amounts of data.
Fig. 12(B) compares the role of MRI categories in the MRBL
design. Using All MRI features achieved the worst average re-
sults of Accuracy= 68.34%, Precision= 69.31%, Recall= 68.32%, and
F1-score= 67.66%. The Surface and Volume categories achieved
the highest performance of Accuracy= 80.60%, Precision= 82.72%,
Recall= 81.28%, and F1-score= 81.59%.

5.5. Comparison of DFBL and MRBL architectures

In this section, we compare the overall performance of MRBL
and DFBL design architectures. Fig. 13(A) shows a comparison
between eight models based on the FFNN and BiLSTM architec-
tures for deep feature learning. To explore the role of regular
ML models as classifiers, we compare the best ML (i.e. RF) and
Softmax models. All ML models based on BiLSTM features are
more accurate than other models based on FFNN. These mod-
els achieved the best results, either using the RF or Softmax
classifiers. Using the BiLSTM deep feature architecture: (1) the
DFBL-RF achieved the best results of Accuracy= 82.63±1.803%,
Precision= 84.68±2.363%, Recall= 84.80±3.390%, and F1-score=
4.73±1.782%; (2) MRBL-RF achieved the second-best results
f Accuracy= 80.30±3.983%, Precision= 81.65±2.953%, Recall=
0.80±3.962%, and F1-score= 81.19±3.692%. Besides, these mod-
ls are more stable than other models. Using the Softmax clas-
ifier with BiLSTM deep features, the DFBL-Softmax architec-
ure achieved better results (Accuracy= 81.22±3.148%, Precision=
8.21±3.530%, Recall= 82.24±3.608%, and F1-score= 81.23±
.538%) than the MRBL-Softmax architecture (Accuracy= 78.89±
.955%, Precision= 80.79±5.703%, Recall= 77.60±6.578%, and F1-
core= 79.13±6.138%). It is of note that using the DFBL to extract
eep features from time-series data using the BiLSTM model
nd feeding the extracted deep features to an accurate classifier
ike RF results in a more accurate and more stable architec-
ure. However, the resulting model is not interpretable because
t is based on deep features. On the other hand, optimizing
he RF classifier using the predicted CSs at M48 did not re-
ult in a highly accurate model, but the generated model is
ighly interpretable. This model is based on ten medically in-
erpretable features. The visualization of the resulting RF can
e easily understood by medical experts [78], and the collec-
ion of rules from the RF’s trees can be extracted and sum-
arized using tools like inTrees [79]. In addition, the fuzzy
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he performance of the MRBL model.
Metric Modality SVM NB RF GM DT Softmax FURIA MOEFC

Accuracy

Volume 82.63 ± 2.92 81.68 ± 4.22 83.47 ± 2.56 81.68 ± 4.22 83.68 ± 2.10 83.53 ± 4.23 67.16 ± 6.58 80.59 ± 1.89
Cortical 72.42 ± 5.85 71.42 ± 5.72 82.89 ± 6.57 62.00 ± 7.61 77.53 ± 4.62 78.32 ± 2.64 67.74 ± 3.30 77.96 ± 2.52
Hippocampus 79.63 ± 3.28 80.42 ± 2.18 84.95 ± 9.28 80.42 ± 2.18 82.53 ± 2.31 80.63 ± 6.66 65.84 ± 4.54 80.81 ± 1.92
Surface 78.53 ± 6.91 81.47 ± 2.54 84.95 ± 6.98 80.63 ± 2.05 80.53 ± 2.76 81.42 ± 2.95 75.33 ± 2.98 82.34 ± 2.06
Temporal 78.58 ± 4.26 79.58 ± 3.77 82.84 ± 8.90 79.63 ± 3.28 79.58 ± 0.58 79.63 ± 3.28 67.74 ± 4.86 80.81 ± 1.92
All MRI 69.37 ± 5.21 75.26 ± 2.16 62.74 ± 3.44 64.84 ± 5.42 63.16 ± 3.87 69.79 ± 4.14 69.57 ± 2.26 71.98 ± 2.04

Precision

Volume 84.82 ± 4.49 86.29 ± 0.55 86.18 ± 2.03 85.12 ± 2.45 85.03 ± 4.35 86.65 ± 2.49 74.04 ± 0.05 80.50 ± 0.02
Cortical 74.87 ± 6.04 74.44 ± 4.24 85.17 ± 7.23 74.21 ± 5.25 77.56 ± 4.20 81.05 ± 5.13 74.32 ± 0.02 78.03 ± 0.03
Hippocampus 80.17 ± 2.74 81.35 ± 2.92 85.65 ± 8.52 81.35 ± 2.92 83.14 ± 2.48 83.88 ± 4.79 73.08 ± 0.03 80.71 ± 0.02
Surface 78.50 ± 6.33 82.83 ± 3.12 87.00 ± 6.61 82.08 ± 2.68 81.42 ± 1.33 82.62 ± 3.00 78.1 ± 0.02 82.26 ± 0.02
Temporal 80.68 ± 3.24 81.65 ± 3.38 84.37 ± 7.99 81.21 ± 4.09 80.63 ± 3.15 80.94 ± 0.91 74.26 ± 0.03 80.71 ± 0.02
All MRI 76.03 ± 6.53 79.00 ± 3.09 61.52 ± 1.84 60.18 ± 3.58 60.95 ± 3.14 69.59 ± 6.40 75.08 ± 0.03 72.15 ± 0.02

Recall

Volume 83.90 ± 3.55 82.41 ± 4.58 84.66 ± 1.59 82.00 ± 4.70 84.84 ± 3.28 84.75 ± 3.31 67.16 ± 0.07 80.58 ± 0.02
Cortical 74.06 ± 7.11 72.57 ± 6.19 82.66 ± 6.47 62.74 ± 7.81 79.08 ± 4.27 78.52 ± 3.68 67.75 ± 0.03 77.97 ± 0.03
Hippocampus 79.99 ± 3.78 81.13 ± 3.00 86.50 ± 9.39 81.13 ± 3.00 83.35 ± 2.63 80.29 ± 6.67 65.84 ± 0.05 80.82 ± 0.02
Surface 80.15 ± 5.54 82.26 ± 3.58 84.71 ± 7.80 81.59 ± 2.93 81.95 ± 3.58 81.88 ± 3.40 75.33 ± 0.03 82.33 ± 0.02
Temporal 79.94 ± 5.01 80.25 ± 3.91 83.83 ± 8.59 80.02 ± 4.06 80.52 ± 4.71 79.94 ± 1.81 67.74 ± 0.05 82.33 ± 0.02
All MRI 69.60 ± 4.99 75.59 ± 2.31 62.41 ± 5.63 63.91 ± 6.19 62.86 ± 5.40 60.24 ± 4.90 69.58 ± 0.02 82.33 ± 0.02

F1-Score

Volume 84.36 ± 3.11 84.31 ± 2.54 85.41 ± 1.81 83.53 ± 3.57 84.93 ± 3.81 85.69 ± 2.80 65.80 ± 0.09 80.27 ± 0.02
Cortical 74.46 ± 6.57 73.50 ± 5.21 83.90 ± 6.85 67.99 ± 6.53 78.31 ± 4.23 79.76 ± 4.41 67.64 ± 0.04 77.78 ± 0.02
Hippocampus 80.08 ± 3.51 81.24 ± 2.64 86.07 ± 8.95 81.24 ± 2.96 83.24 ± 2.55 82.05 ± 5.73 64.67 ± 0.06 80.57 ± 0.02
Surface 79.32 ± 3.21 82.53 ± 4.33 85.84 ± 7.20 81.83 ± 2.80 81.68 ± 2.45 82.25 ± 3.20 75.64 ± 0.03 82.03 ± 0.02
Temporal 80.31 ± 4.25 80.94 ± 3.64 84.10 ± 8.29 80.61 ± 4.07 80.57 ± 3.66 80.44 ± 1.36 67.13 ± 0.06 80.57 ± 0.02
All MRI 72.33 ± 5.76 77.25 ± 2.69 61.82 ± 3.73 61.98 ± 4.88 61.89 ± 4.27 64.57 ± 5.65 69.43 ± 0.03 71.99 ± 0.02
Fig. 12. Performance of different classifiers based on the MRBL architecture.
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lassifier in the MRBL can generate a medically acceptable model.
his issue is discussed in the next section. The FFNN based
odels are less accurate and noisier. The best Accuracy of an
RBL-based model is the Flatten-FFNN-Softmax model (64.87±
.028%) and the best of a DFBL-based model is the BL-FFNN-
oftmax model (74.55± 1.76%). The best Precision of an MRBL-
ased model is the Flatten-FFNN-Softmax model (69.33±6.99%)
nd of a DFBL-based model is the M18-FFNN-Softmax model
80.82±1.70%). The best Recall of an MRBL-based model is the
latten-FFNN-Softmax model (66.86±8.98%) and of a DFBL-based
odel is the M18-FFNN-Softmax model (89.42±3.53%). The best
1-Score of an MRBL-based model is the Flatten-FFNN-Softmax
odel (67.65±7.60%) and of a DFBL-based model is the BL-FFNN-
oftmax model (79.02±1.50%). The Flatten-FFNN-Softmax model
chieved better overall performance compared to other FFNN-
ased models. However, it has much fewer results compared to
he BiLSTM-based models including RF and Softmax. Fig. 13(B)
llustrates a comprehensive comparison between the different
esign architectures for the performance of all MRI categories
rom both FFNN and BiLSTM architectures. It can be seen that
he BiLSTM based models achieved the best average results for
ither MRBL or DFBL based on the Surface area category. Please
ote that these averages are calculated from the performance
f the five regular ML, the Softmax, and the two fuzzy models.
15
The MRBL-based design has an average performance of Accuracy=
80.65±3.72%, Precision= 81.85±2.83%, Recall= 81.28±3.17%, and
F1-score= 81.39±2.72%. The DFBL-based design has the average
performance of Accuracy= 84.19±3.65%, Precision= 84.77±2.76%,
Recall= 84.74±3.36%, and F1-score= 84.75±2.90%. The best FFNN-
based model is FFNN-Hippocampus-DFBL, where the Hippocam-
pus category is used with the DFBL design. It achieved average
performance of Accuracy= 74.32±5.06%, Precision= 79.32±3.76%,
Recall= 80.02±5.70%, and F1-score= 76.46±3.75%. All of these
esults are less accurate than the BiLSTM-based architecture,
hich highlights the crucial role of time series analysis in deep
iLSTM models.

.6. Experiment 5: Explainability of progression detection decision

The previous list of experiments concentrated on the perfor-
ance of the resulting model. However, in the medical domain,
ccuracy is not the only measure of acceptable systems. The
nterpretability of the model is also a crucial requirement be-
ause physicians are expected to sufficiently understand and
rust the model before they start using it [80]. In ML, there is a
rade-off between performance (e.g. accuracy) and interpretabil-
ty. Transparent models that are considered interpretable, such
s LR, KNN, DT, and FL models, often perform worse than black-
ox models, such as DL, SVM, and RF. Medical experts prefer a
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Fig. 13. Comparison between the best models from DFBL and MRBL architectures. FVM (FFNN-Volume-MRBL), FVD (FFNN-Volume-DFBL), FCM (FFNN-
Cortical-MRBL), FCD (FFNN-Cortical-DFBL), FHM (FFNN-Hippocampus-MRBL), FHD (FFNN-Hippocampus-DFBL), FSM (FFNN-Surface-MRBL), FSD (FFNN-Surface-DFBL),
FTM (FFNN-Temporal-MRBL), FTD (FFNN-Temporal-DFBL), FAM (FFNN-All MRI-MRBL), FAD (FFNN-All MRI-DFBL), BSM (BiLSTM-Surface-MRBL), and BSD
(BiLSTM-Surface-DFBL).
Table 6
Heat map of the fuzzy rules for the FURIA and MOEFC classifiers.

Color codes: high = red, medium = orange, low = green; not considered feature = gray.
t
a
i
t
m

alanced model that is as accurate and interpretable as possible.
or example, in Caruana et al. [81], LR was chosen by domain
xperts over FFNN because of interpretability concerns. Although
FNN achieved a significantly higher ROC score than the LR,
he experts considered it too risky to deploy a black-box model
ike FFNN for decision making with real patients. The LR, on
 t

16
he other hand, though less accurate, provides physicians with
transparent and interpretable model, which can facilitate the

nvestigation of problematic patterns in data. It is worth noting
hat there is no previous study on the interpretability of hybrid
ultimodal multitask DL models in the AD domain. According to
he previous experiments above, the DFBL with RF achieved the
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est results. However, all models based on the DFBL are not
nterpretable because they are based on deep features extracted
rom the BiLSTM model. As a result, to achieve interpretability,
e should concentrate on the MRBL architecture. It is possible to
alculate the importance of the learned features with MRBL (Sup-
lementary File 2, Figure S7). We have calculated the importance
f the eight learned CSs and integrated three demographics using
any techniques including information gain, Gini index, gain ra-

io, correlation, feature importance of the XGBoost classifier, and
ermutation importance using RF. All methods agreed that CDRSB
s the best feature to predict AD progression, followed by FAQ. The
east important feature is gender. Using the level of importance,
omain experts can understand why a model has taken specific
ecision for a specific patient. Further, we used many ML models
ith the MRBL design and the most interpretable models are
he DT, FURIA, and MOEFC. All these models can formulate their
ecision behavior as a list of rules. Nevertheless, the performance
f the RF model is better than all explainable models, see Table 5.
he best accuracy achieved by the RF model is 84.95% using
ippocampus and surface area feature spaces. The best accuracy
f the DT is 83.68% using the volume feature set. Regarding
URIA and MOEFC, the best accuracies are 75.33% and 82.34%,
espectively, using the surface area feature space. It should be
oted that DT and MOEFC achieved acceptable results compared
o RF. These models are expected to provide an accurate expla-
ation in connection with the RF decisions. As MOEFC is based
n genetic optimization and Gaussian membership functions, it
chieved better results than FURIA. Simple rule-based models
re commonly considered to be interpretable [80]. The MOEFC
enerated eight rules (3 for AD, 3 for MCI, and 2 for CN), FURIA
enerated 15 rules (6 for AD, 6 for MCI, and 3 for CN), and DT
enerated 21 rules (7 for AD, 11 for MCI, 2 for CN). The full list
f rules can be found in Supplementary Table S2, Table S3, and
able S4. Table 6 illustrates the utilized features for the rule-
ased FURIA and MOEFC. On average four features are used in the
ntecedent of the FURIA rules and nine features are utilized by the
OEFC model. The Education feature was completely ignored by
OEFC, while the RAVLT features was ignored by FURIA. Please
ote that we could not add the DT rules in Table 6 because the
ecision boundaries of these rules are crisp.

.7. Comparison with related studies

The methods proposed in this study show advances in both
eep learning and AD progression detection. (1) Regarding the DL
roposal, first, we explored the role of late fusion of multimodal
ultivariate time series data using BiLSTMmodels to improve the
erformance of DL models. Second, we investigated the role of
ybrid modeling of DL feature extraction and regular ML classi-
iers. According to our results, we discovered that replacing the
utput layer of DL models with more accurate classifiers such as
F improved the performance of the overall model. We checked
he performance of many regular ML classifiers for performing
he classification step of the deep learning model. In addition,
e investigated the role of two popular fuzzy classifiers to do
he same task. Third, we explored the performance of multitask
odeling to generate more accurate and stable DL models. We

ointly trained models to simultaneously predict seven CSs at
48. (2) Regarding AD progression detection, first, we utilized

ive popular time-series modalities in addition to the baseline
ata to predict AD progression within 2.5 years from last visit.
ach time series modality was separately learned by a deep
iLSTM model and the resulting deep features of these het-
rogeneous modalities were fused using another deep BiLSTM
odel. The resulting features were further fused with the learned

eatures from the baseline data. AD progression detection was
17
explored using DFBL and MRBL techniques. Second, we studied
the role of different MRI feature sets to enhance the performance
of every model. The discriminating capabilities of the volume,
cortical thickness, hippocampus region, surface areas, temporal
region, and all MRI features were explored for both the DFBL
and MRBL techniques. Third, we utilized the feature importance,
fuzzy classifiers, and DT to interpret the decisions of DL models.
To the best of our knowledge, the proposed models have not
been explored in the AD domain before. In addition, we achieved
accurate, stable, and interpretable results. El-Sappagh et al. [83]
proposed a DL model for AD progression detection based on
a multimodal multitask paradigm. The current proposal can be
considered as an extension to that by El-Sappagh et al. [83].
As an example of the extensions, in the MRBL, we predicted
more CSs using multitask modeling and utilized a different fusion
mechanism by using multiple layers of decision fusion based
on BiLSTM. Table 7 shows a comparison of models from the
most recent literature on AD progression detection. As can be
clearly seen, all previous studies have concentrated on a single
narrow area for their evaluations. For example, [6,42,74,82,84]
modeled AD progression as a simple binary classification task.
The majority of the AD studies are mainly based on the analysis
of the MRI data [26,30,57,65,74,84,85,87,88,90,92,96]. The deep
learning models proposed for dealing with baseline MRI data are
mostly based on a CNN architecture [30,42,84,92]. Time-series
data analysis is not popular in the AD domain because there are
not enough data and the data has long time steps in between. Lee
et al. [6] proposed a binary classifier based on the early fusion
of demographics, MRI, CSs, and CSF data. This study collected
four time-steps and achieved 81% accuracy using a GRU model.
Cui et al. [74] utilized a stacked CNN-BGRU to build a binary
classifier based on MRI data only. The model achieved an accuracy
of 91.33% for AD vs. NC and 71.71% for pMCI vs. sMCI tasks. El-
Sappagh et al. [83] utilized a longer time series of 15 time-steps;
however, the authors did not use a gap between the last observed
data and the prediction time step. Platero and Tobar [89] used
six time-steps and Hong et al. [57] used ten time-steps. Most
time-series data analysis utilized RNN models [6,57,74,83,89].
Due to space restrictions, we will not discuss the details of every
study, Table 7 provides a nice comparison of nine metrics and
provides the most critical features from every study. The pro-
posed model can be used as a starting point to build a clinical
decision support system for Alzheimer’s disease progression de-
tection. The model is more accurate than state-of-the-art studies.
In addition, the model could provide the explainability of the
suggested decisions. Moreover, the proposed model is medically
more intuitive than the current literature because it is based on
the multimodal longitudinal data of different critical modalities
including MRI, PET, neuropsychological battery, cognitive sub-
scores, and neuropathology. Several baseline features have been
combined in the model to support the model providing more
robust decisions. The proposed model can provide customized
and individualized decisions based on the patient’s complete
profile. Although our model provides an advanced point in the
fields of AD management and deep learning, the model still
needs further improvements to be used in real environments.
The interoperability of the clinical decision support system with
the hospital information systems is complex and needs further
investigation. The more comprehensive explainability techniques
model decisions such as ontology and case-based reasoning, neu-
roimage visualization, and knowledge-based systems should be
considered in future work.
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comparison with the literature studies.
Study Subjects Tasks

(classes)
Reg.
tasks

Modality Fusion Time
steps

Performance (%) Method

[6] 1618 1 (2) – D, MRI, CSs,
CSF

Early 4 Accuracy (81%) GRU

[26] 896 1 (2) – MRI – – Accuracy (CN/MCI: 78.8%) Gaussian process

[30] 1984 1 (4) 4 MRI Late – Accuracy (4-classes: 51.8%), RMSE (CDRSB,
ADAS 11, ADAS 13, MMSE: 1.666, 6.2, 8.537,
2.373)

CNN

[42] 785 2 (2) – MRI, D, N,
and APOe4

Early – Accuracy (sMCI/pMCI: 86%, CN/AD: 100%) CNN

[57] 1105 1 (2) – MRI – 10 Accuracy (AD/CN: 93.5%, CN/MCI: 69.7%,
MCI/AD: 79.8%, 3-classes: 77.7%)

LSTM

[58] 488 1 (3) 1 CSs, PET, MRI,
CSF

Early – Accuracy (3-classes: 83.0%), R2 = 0.874 SVM, Ridge

[65] 485 1 (3) – MRI – – Accuracy (CN/AD: 0.94%, MCI/AD: 87%,
CN/MCI: 95%, 3-classes: 82%)

LR, KNN, SVM, DT,
RF

[82] 237 1 (2) – 10 modalities Early – Accuracy (73%) SVM

[74] 830 2 (2) – MRI – 6 Accuracy (AD/NC: 91.33%, pMCI/sMCI: 71.71%) Stacked
CNN-BGRU

[83] 1536 1 (4) 4 MRI, PET, CSs,
N

Late 15 Accuracy (4-classes: 92.62%), MAE(FAQ, ADAS,
CDR, MMSE: 0.107, 0.076, 0.075, and 0.085)

Stacked
CNN-BiLSTM

[84] 694 1 (2) – MRI – – Accuracy (CN/AD: 86.60%, CN/pMCI: 77.37%,
CN/sMCI: 63.04%, AD/pMCI: 60.97%, sMCI/AD:
75.06%)

CNN

[85] 458 1 (4) 4 MRI – – Accuracy (CN/AD: 93.01%, pMCI/sMCI: 75.00%) SVM

[86] 906 1 (3) – MRI, AV45
PET

Early – Accuracy (CN/sMCI: 79.25%, 3-classes:75.28%,
sMCI/pMCI/AD: 67.69%)

GDCA

[87] 449 1 (2) – MRI Late fusion – Accuracy (CN/AD: 88.9%, CN/MCI: 76.2%) CNN, DenseNet

[88] 400 1 (4) – MRI Early – Accuracy (4-classes: 61.9%) RF

[89] 321 1 (2) – MRI and N Early 6 Accuracy (MCI/AD: 78% baseline, 85% time
series)

LDA

[90] 828 1 (4) – MRI – – Accuracy(4-classes: 83.01%) ResNet

[91] 1051 1 (2) – FDG-PET – – Accuracy (NC/AD: 93.58%, sMCI/pMCI: 81.55%,
sMCI/pMCI: 82.51%)

DNN

[92] 229 1 (2) – MRI – – Accuracy (sMCI/pMCI: 75%, CN/AD: 99%, CNN

[93] 756 1 (2) – MRI, CSs Early – Accuracy( sMCI/pMCI: 87%) Naïve Bayes

[94] 475 1 (3) – MRI – – Accuracy (MCI/AD: 81.3%) two stage
classifiers

[95] 290 1 (2) – CSF, CSs, MRI Early – Accuracy (sMCI/pMCI: 86.4%) SVM

[96] 509 1 (2) – MRI – – Accuracy (CN/ AD: 84%, CN/pMCI: 79%,
sMCI/pMCI: 62%)

Ensemble CNN

[97] 1029 1 (4) – C, CSs, MH – – Accuracy (3-classes: 87.69%, 4-classes: 83.68%) LR, KNN, SVM, DT,
RF

This
work

1371 2 (3) 7 MRI, PET,
CSs, N, NP, D

Late 4 Accuracy (3-classes: 84.95% (MRBL), 86.08%
(DFBL))

Hybrid/ multitask
BiLSTM

4-classes: CN/sMCI/pMCI/AD, 3-classes: CN/MCI/AD, D: Demographics, N: Neuropsychological, NP: Neuropathology, MH: Medication History, C: comorbidities.
6. Conclusion

In this paper, we proposed and compared two BiLSTM-based
eep learning models (i.e., MRBL and DFBL models) for AD pro-
ression detection. The models are based on the fusion of mul-
imodal time series data collected from the ADNI dataset. The
ntegrated time series data includes neuroimaging (i.e. MRI, PET),
ognitive subscores, neuropathology, and neuropsychological bat-
ery data. In addition, we explored the role of different MRI
eatures to improve the prediction performance. The extracted
eep features from the deep BiLSTM model were used to train
he MRBL and DFBL models. The MRBL model is based on the
usion of the learned deep features and the patient demograph-
cs at baseline. It is based on a multitask modeling paradigm,
here the model has been optimized to learn seven medically
elated regression tasks. Each task is responsible for predicting
specific cognitive score at month 48, i.e. 2.5 years after final
18
observation. The collected scores at M48 are used to predict
the AD progression at that time. We compared multiple models
(SoftMax, FURIA, MOEFC, RF, DT, SVM, GM, and NB) to predict
AD progression based on these collected scores. The RF ensemble
classifier achieved the best average results of Accuracy= 80.30%,
Precision= 81.65%, Recall= 80.80%, and F1-score= 81.19%. The
predicted scores at M48 can be used to build an explainable
model, which facilitates domain experts to understand why the
model has taken a specific decision. We optimized DT and fuzzy
classifiers (FURIA and MOEFC) to predict AD progression. These
models achieved good performance, and they are interpretable
at the same time. On the other hand, the DFBL model is a hybrid
BiLSTM-ML model, where BiLSTM is used to extract deep features
from the multimodal time-series data, and the ML classifier is
optimized to perform the classification task. The architecture was
compared when using the regular SoftMax classifier to when

using popular ML classifiers like SVM and RF. RF achieved better
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verage performance (i.e. Accuracy= 82.63%, Precision= 84.68%,
ecall= 84.80%, and F1-Score= 84.73%) than SoftMax. These results
ighlight a possible role for ML models to work as classifiers
hat are integrated with deep learning architectures. Although
he DFBL architecture is more accurate than the MRBL archi-
ecture, the latter is more interpretable. Accordingly, the MRBL
rchitecture is more trustful and acceptable by medical experts
ho usually prefer balanced models (i.e., models which achieve
cceptable performance but provide users also with explainable
utcome). The impact of fine-tuning the proposed models as well
s evaluating the models run time complexity will be explored in
he future work.
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