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Abstract

Patches from three orthogonal views of selected cerebral regions can be utilized to learn

convolutional neural network (CNN) models for staging the Alzheimer disease (AD) spec-

trum including preclinical AD, mild cognitive impairment due to AD, and dementia due to AD

and normal controls. Hippocampi, amygdalae and insulae were selected from the volumetric

analysis of structured magnetic resonance images (MRIs). Three-view patches (TVPs) from

these regions were fed to the CNN for training. MRIs were classified with the SoftMax-nor-

malized scores of individual model predictions on TVPs. The significance of each region of

interest (ROI) for staging the AD spectrum was evaluated and reported. The results of the

ensemble classifier are compared with state-of-the-art methods using the same evaluation

metrics. Patch-based ROI ensembles provide comparable diagnostic performance for AD

staging. In this work, TVP-based ROI analysis using a CNN provides informative landmarks

in cerebral MRIs and may have significance in clinical studies and computer-aided diagnosis

system design.

Introduction

The National Institute on Aging and Alzheimer’s Association (NIA-AA) defines three stages

of AD on the basis of pathobiology and clinical symptoms [1]. The stages are a) preclinical AD

or asymptomatic predementia (aAD) b) MCI due to AD (mAD) and c) AD dementia (ADD).

The brain contains beta-amyloid outside the neuronal cells and tau tangles inside the neurons

in different phases of AD [2, 3]. Unlike mAD and ADD, the aAD stage is not associated with

cognitive symptoms.

In addition to clinical evaluation and psychological tests, artificial intelligence (AI)-based

computer-aided diagnosis (CAD) methods for staging AD from structured magnetic
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resonance imaging (sMRI) have been developed [4–17]. Conventional AI techniques require

domain expertise and careful engineering for feature extraction [18]. In contrast, deep learning

(DL)-based methods are well recognized for their representation learning capability [18]. As a

result, recent trends in AD diagnosis include the use of DL-based approaches. DL-based [7, 11,

12, 19–21] studies consider multimodal information for classifying AD and mAD from NC.

The studies [7, 22, 23] use 3D patches from the whole brain to train and test a CNN model.

There are [24] studies that also discuss 2D + �methods that incorporate multiview patches of

brain sMRI for diagnosing AD.

However, DL-based methods require a sufficient quantity of training data for generaliza-

tion, specifically for expressing highly complex problems such as AD staging. Due to difficulty

in data acquisition and quality annotation, the data scarcity problem is considered one of the

main limiting factors of AD classification [25]. Medical imaging studies [26–28] have

attempted to avoid the data scarcity issue by sufficient patch generation, which has also been

practiced in AD research [14, 29]. The patch generation from any voxel location of the brain

may not provide the discerning information. However, clinicians have suggested that, in its

early stage, AD causes structural atrophy to some regions. Some visual features of these regions

are more important than others to understand the AD spectrum. Generating patches from

these regions benefits solving the data scarcity problem and provides robust performance.

To the best of our knowledge, we are the first to propose three-view patch (TVP)-based

ROI ensembles for AD spectrum staging using a CNN. In this effort, rather than using multi-

modal information, we have performed our experiment on sMRI. It is worth mentioning that

sMRI provides detail information about the anatomical structures and morphology of brain

tissues such as white matter, gray matter and cerebrospinal fluid (CSF) [30]. Therefore, it is

possible to learn discernible features related to abnormal tissue atrophy and other biomarkers

[31] that are sensitive to AD. In addition to providing significant biomarkers, sMRI is cost-

effective and has no major side effects experienced by the participants. Some studies showed

significant improvements in early diagnosis of AD by examining biological markers in sMRI

[31–33]. Therefore, developing automatic image analysis methods based on sMRI may provide

significant insights about ROIs.

Our objective here is to focus on selective ROIs for staging AD into NIA-AA specified

phases. Statistical analysis, i.e., p-values from the permutation test, on volumetric measures

was performed to select significant ROIs. Our primary aim is to use the most affected regions

of the cerebral sMRI to achieve state-of-the-art results by deploying a TVP-based CNN

(TVPCNN). We have exploited the Gwangju Alzheimer and Related Dementia (GARD)

cohort data set and deployed lightweight CNNs for learning ROI-based binary classifiers. The

classifiers were ensembled for staging an sMRI scan. We have performed a permutation test to

select 3 pairs of ROIs from 101 different ROIs in the data set. TVPs of size 32 were generated

from the selected ROIs for training and testing.

Our study demonstrated that hippocampi, amygdalae and insulae provide significant fea-

tures for mAD and ADD. We have observed that the hippocampi are the most affected regions,

followed by amygdalae and insulae. We also observed that the proposed TVPCNN could not

find representative features to diagnose aAD from these ROIs in the sMRI modality at the pre-

scribed settings.

In section 2, we briefly describe our data set including demographic characteristics and the

preprocessing protocol. Section 3 presents the methodology of the study. ROI selection and

model design are discussed here. The experimental setup, presented in section 4, includes

ground truth preparation, data set separation and hyperparameter settings for training and

validation of the models. The results and findings of each model are described in section 5.
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The overall discussion and comparison with state-of-the-art methods are presented in section

6. Section 7 concludes the article.

Data set

In this study, we have exploited Gwangju Alzheimer Research Data (GARD) [34–36] and Alz-

heimer Neuroimaging Initiative Data. ADNI was exploited for comparison with stat-of-the-art

methods while extensive analysis was done for GARD database.

GARD dataset

GARD is a portion (326 baseline scans) of a large cohort prepared at the National Research

Center for Dementia (NRCD), Chosun University, Gwangju, South Korea. The sMRI scans

were acquired from the registered subjects at the NRCD during the time period of 2014 to

March 2018. The subject selection, MRI acquisition and exclusion criteria are mentioned in

[34–36].

Subjects. The clinical labels of the scans are cognitive normal (CN), amnestic mild cogni-

tive impairment (aMCI), nonamnestic mild cognitive impairment (naMCI) and Alzheimer

disease (AD). There are 206 CN scans, of which 108 subjects are female and the rest are male.

Considering the presence of beta-amyloid on the positron emission tomography (PET) scans

of these subjects, these 206 scans were divided into two NIA-AA defined categories, namely,

aAD (35) and NC (171). The aMCI class includes 30 scans (female: male = 10: 20), and the

naMCI class includes 9 scans (female: male = 4: 5). These two classes are merged into the

mAD class for analysis. The AD class is renamed as the ADD class and includes 81 scans with

42 females and 39 males.

The ages of the subjects vary from 49 years to 87 years, and more than 88% subjects are

older than 65 years. The education level of the participants varies from illiterate to highly edu-

cated (score 0 to 22). Table 1 briefly summarizes the data set under investigation.

Preprocessing. The sMRI scans were processed using the FreeSurfer software (FSS) ver-

sion 5.3.0 [37] with an automated reconstruction protocol described in [38–40]. Pure volume

(P), percentile of intracranial volume (V) and cortical thickness (T) of 101 ROIs for each scan

were assessed using the measurement techniques described in [34–36]. The test-retest repro-

ducibility of each quantitative measure was assessed. We determined the reliability of the data

using Cronbach’s alpha. For Cronbach’s alpha, α = 0.80219 indicates acceptable reliability of

the data.

Table 1. Selected number of MRI from different classes for training and testing.

Clinical Diagnosis No. of

Scans

Beta-Amyloid Clinical Dementia Rating

(CDR)

Education Age New Label (No. of scans(M/

F))

Cognitive Normal (CN) 260 - 0 16(5.54) 71.66

(5.43)

NC (171)

+ 0 7.88(6.30) 72.72

(4.82)

aAD (35)

Amnestic Mild Cognitive Impairment (aMCI) 30 + 0.5 to 1 8.3(4.79) 73.21

(8.24)

mAD (39)

Nonamnestic Mild Cognitive Impairment

(naMCI)

9 + 0.5 to 1 8.3(4.79) 73.0(2.91)

Alzheimer Disease (AD) 81 + 1 to 3 7.34(4.86) 71.96

(7.08)

ADD (81)

https://doi.org/10.1371/journal.pone.0242712.t001
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Data availability. GARD is currently not publicly available for distribution.

ADNI dataset

The ADNI was launched in 2003 as a public-private partnership. The primary goal of ADNI

has been to test whether MRI, positron emission tomography (PET), other biological markers,

and clinical and neuropsychological assessment can be combined to measure the progression

of mild cognitive impairment and early Alzheimer’s disease (AD).

Subjects. From ADNI dataset we have selected 60 subjects aged between 65 and 96. The

selected participants met the criteria defined in the ADNI protocol. There are 351 scans of

these 60 subjects. There are 22 NC subjects of which 12 are males and 10 are females. The age

are ranged between 62 to 90 years with mean 74.3 years and standard deviation of 3.6 years.

The mini-mental state estimation (MMSE) score is 29.2 with standard deviation of 1.0. The

number of MCI subjects are 18 who had not converted to AD within 18 months among which

11 are males and 7 are females with average age 70.4 with standard deviation of 3.2 years. The

MMSE score is 27.2. Number of AD subjects is 20 among which 9 are males and 11 are females

with average age 74.0 and standard deviotion of 5.3 years. The MMSE score is 23.2 with stan-

dard deviation 2.0.

Preprocessing. The raw data were provided in NII format in the ADNI database. The

scans were processed using the FreeSurfer software (FSS) version 5.3.0 [37] The ROI locations

were generated by DKT protocol described in [41].

Data availability. ADNI data is available at http://adni.loni.usc.edu/.

Methods

The study protocol was approved by the Institutional Review Board of Chosun University

Hospital, Korea (CHOSUN 2013-12-018-070). All volunteers or authorized guardians for cog-

nitively impaired individuals gave written informed consent before participation.

In the proposed approach, we first performed statistical analysis on the T and V measures

of the studied data set to identify the most significant ROIs. Second, TVPs from axial, sagittal

and coronal slices each of size 32 × 32 were produced from these ROIs for training the CNN

classifiers. Each ROI-based model is evaluated to find the contributing score in the final classi-

fication. Ultimately, the trained binary classifiers are ensembled. Fig 1 briefly illustrates the

pipeline, and the following subsections elaborate the concepts.

Region of interest selection

From 101 regions labeled in GARD segmented data, we have selected 6 regions (3-pairs) based

on the distinguishing capacity of the VT (percentile of intracranial volume, thickness) mea-

sures of the regions. The distinguishing capacity was measured by p-values obtained from the

permutation test [42] on the given data. The p-value tests the null hypothesis that the VT mea-

sures of a specific region from two different groups (AD vs. NC) of sMRIs are identical. We

have found the left hippocampus (LH), right hippocampus (RH), left amygdala (LA), right

amygdala (RA), left insula (LI) and right insula (RI) to be the most significant regions. As

gray matter and cortical thickness are measured on the whole brain, these two biomarkers are

not studied here. The V measures of these regions provided the lowest p-values in the permu-

tation test. The p-values for V measures are LH = 7.50e-23, RH = 3.25e-17, LI = 6.74e-11,

RA = 4.63e-9, LA = 1.33e-8. The p-values of these regions for T measures are LH = 0.00149,

RH = 3.74e-6, LI = 1.48e-11, RA = 1.73e-8, LA = 1.22e-12.
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Patch generation

Let any MRI, I = {v = (vx, vy, vz) | v is a voxel location}. The three principle planes (axial, sagittal

and coronal) at the voxel are defined by

axial : z ¼ vz
coronal : y ¼ vy
sagittal : x ¼ vx

ð1Þ

The corresponding patch of size α × β is defined by:

axial patch : fðx; yÞjðx; yÞ is a pixel on axial plane satisfying

vx �
a

2
� x � vx þ

a

2
and vy �

b

2
� y � vy þ

b

2
g

ð2Þ

coronal patch : fðx; zÞjðx; zÞ is a pixel on coronal plane satisfying

vx �
a

2
� x � vx þ

a

2
and vz �

b

2
� z � vz þ

b

2
g

ð3Þ

sagittal patch : fðy; zÞjðy; zÞ is a pixel on sagittal plane satisfying

vy �
a

2
� y � vy þ

a

2
and vz �

b

2
� z � vz þ

b

2
g

ð4Þ

Fig 1. Pipeline for Alzheimer disease staging from structured magnetic resonance imaging (sMRI). TVP means three-view patch; LH, RH, LI, RI, LA and RA are the

acronyms for left hippocampus, right hippocampus, left insula, right insula, left amygdala and right amygdala, respectively.

https://doi.org/10.1371/journal.pone.0242712.g001
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The TVP at v(vx, vy, vz) is then formed by

TVPv ¼ ½axial patch coronal patch sagittal patch� ð5Þ

By using Eq 5, we have an α × β × 3 patch. Here, α = β = 32. The class label of I is the class

label of TVPv.

Patch-based classification

The main problem of AD diagnosis is the scarcity of data. We have a limited number of sam-

ples from each class. On the other hand, it is well known that CNNs are highly susceptible to

the sample size. The classification accuracy of CNNs is subject to the discriminating features

among the available classes [43]. The availability of discriminating features of a class depends

on the number of samples from the class. In contrast, the scarcity of data may lead to an over-

fitted model.

Recently, patch-based techniques have been widely used in medical imaging to solve data

scarcity issues. Their application areas span from segmentation, noise removal, super-resolu-

tion, anomaly detection, disease diagnosis to image synthesis and many more [14, 27, 44–47].

In this study, we have used TVPs from the ROI. Producing TVPs facilitates acquiring sufficient

training data. In addition to solving the data scarcity problem, TVP-based processing assists us

to design a lightweight CNN model.

Algorithm 1: Algorithm for Training Data Preparation
Data: I = {I1, I2, I3, . . .In} a set of sMRI scans;
Labelled sMRI, S ¼

Sn
i¼1

Ri such that Ri is a region of the brain and Ri \
Rj = ; for any two regions Ri and Rj; RList = {Left Hippocampus: 17,
Left Amygdala: 18, Right Hippocampus: 53, Right Hippocampus: 54, Left
Insula: 1035, Right Insula: 2035}
Result: D = {x, y, l} where x is TVP, y is label and l is ROIlabel
1 D = {}
2 for each scan i 2 I do
3 y = label(i)
4 for each voxel (x, y, z) 2 i do
5 l = S(x, y, z)
6 if l�RList then
7 TVP = [axial_patch, coronal_patch, sagittal_patch]

/� Determined by Eq 5 �/
8 D = append(D, [TVP, y, l])
9 end
10 end
11 return D

Our TVP-based CNN consists of convolution and pooling layers. There are three convolu-

tion layers and two fully connected layers in the model. Each convolution layer and fully con-

nected layer are preceded by batch normalization, excluding the first and last layers. The

reason for not using batch normalization before the first layer is that the inputs are normalized

previously so that the mean intensity is zero and variance is one. The first and second convolu-

tions are followed by the average pooling layer. Before the last fully connected layer, we used a

dropout of 0.25, which converges the training process faster and increases the accuracy. The

output of the last convolution layer is the feature embedding of the ROI under study. These

features are further fed to the fully connected layers for binary classification. Adding a dropout

of 0.25 in the first fully connected layer improved the accuracy. We used SoftMax as the last

layer activation and cross-entropy as the loss function. For faster training and to avoid dying

ReLU problem we have utilized Leaky ReLU activation in other layers with α = 0.3 [48].

Despite the use of sobolev and other gradient based optimizers in some recent studies [49], we
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have applied Adam optimizer [50] by considering its fast convergence and efficiency. The

Xavier initialization [51] was used for weight and bias initialization. The total number of

parameters in the network is 100,197, among which 99,925 parameters are trainable. We tried

different structures and hyperparameters. We determined the proposed network after several

trials.

MRI classification

Let C = {aAD, ADD, mAD, NC} be the categories, O = {(ADD, NC), (ADD, mAD), (ADD,

aAD), (mAD, NC), (mAD, aAD), (aAD, NC)} be the classification objectives, and R = {LH,

RH, LA, RA, LI, RI} be the ROIs. A classifier Ml,i,j produces a sequence of scores S(sl,i,sl,j) for a

sequence of TVPs (tl,1, tl,2, . . . tl,n) generated from R. The scores in favor of Cl,i and Cl,j for each

TVP tl,i are summed up to compute the region-based score of an MRI. The score is SoftMax

normalized using Eq 6.

Sl;i ¼
Pn

k¼1
esl;i;k

Pn
k¼1
ðesl;i;k þ esl;j;kÞ

; Sl;j ¼
Pn

k¼1
esl;j;k

Pn
k¼1
ðesl;i;k þ esl;j;kÞ

ð6Þ

Here, sl,i,k and sl,j,k are the scores for tl,k in favor of class Cl,i and Cl,j. Sl,i, and Sl,j are the normal-

ized scores for classes Cl,i and Cl,j. e

Algorithm 2: Algorithm for MRI Classification
Data: I:a test sMRI scan; S:Scan that has ROI labels
Y: label of I, trained model set, M = mi,j,l, location label L = {LH:17,
RH:53, LA:18, RA:54, LI:1035, RI:2035}, classification tasks O =
{(ADD, NC), (ADD, mAD), (ADD, aAD), (mAD, NC), (mAD, aAD), (aAD, NC)}
Result: A table S containing class probability score of C = [ci, cj].
ci and cj 2 {aAD:c1, ADD:c2, mAD:c3, NC:c4}
1 Data  testData
2 S  0
3 for Obj(i, j) 2 O do
4 for l 2 R do
5 x, y  Data[l, i, j]
6 m  M[l, i, j]
7 score  m(x))

8 Sl;i ¼
Pn

k¼1
esl;i;k

Pn

k¼1
ðesl;i;kþesl;j;k Þ

9 Sl;j ¼
Pn

k¼1
esl;j;k

Pn

k¼1
ðesl;i;kþesl;j;k Þ

10 end

11 Si ¼
P6

l¼1
eSl;i

P6

l¼1
ðesl;iþesl;j Þ

12 Sj ¼
P6

l¼1
esl;j

P6

l¼1
ðesl;iþesl;j Þ

13 end
14 return S

To determine the most appropriate class label for a given sMRI, the results from all ROI-

based models are combined. Each ROI-based model produces decision scores of an sMRI that

indicates how well the sMRI fits a class. The individual decisions of the relevant sMRIs are

combined. Then, we have performed SoftMax normalization on the scores. The most likely

value is selected as the final class for an sMRI. The scores for ensemble classification are
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determined by Eq 7. The details are depicted in Fig 1 and in algorithm 14

Si ¼
P6

l¼1
eSl;i

P6

l¼1
ðesl;i þ esl;jÞ

; Sj ¼
P6

l¼1
esl;j

P6

l¼1
ðesl;i þ esl;jÞ

ð7Þ

Experimental setup

Platform

The experiment was performed in the Python 3.7 environment. We used the TensorFlow GPU

1.8 and Keras 2.4. The operating system was Windows 10 installed on an “Intel(R) Xeon (R)

CPU E5-1607 v4 @ 3.10 GHz with 32 GB of RAM” machine. The GPU was NVIDIA Quadro

M4000. FreeView was used for viewing and navigating through the images. FreeSurfer was

used for preprocessing and measurement purposes.

Data set separation

The sMRI scans provided in the GARD data set are baseline sMRI scans. All available scans

are taken into consideration for the experiment. We divided the data set into a training and

testing set. For testing, 50% of each class were kept. The remaining sMRIs from all classes were

used for training and validation. As we have used TVP generated from the ROI locations, we

did not encounter the data scarcity problem for training. Moreover, we applied shearing,

rescaling and zooming of the TVPs for data augmentation purposes to avoid the class imbal-

ance problem during training.

Ground truth preparation

For data generation, we have considered the label of each voxel in the labeled-sMRI of GARD.

If the label of a voxel matched the ROI label, then the same voxel location in the sMRI is used

to generate a TVP. The label of the sMRI from which the TVP is obtained is considered the

label of the TVP. For training the patch-based CNN, we have used all the voxels in an ROI for

TVP generation. For testing purposes, we have taken 32 TVPs for each ROI from each sMRI.

The voxel locations were selected semirandomly. The only constraint was that the boundary

voxels of a ROI are avoided. The details of the ground truth preparation are illustrated in algo-

rithm 1.

Training and validation

For patch-based classification, we trained different architectures with different hyperpara-

meters. The presented models were trained for 20 epochs with a batch size of 32. We started

the training with a learning rate of 0.001. The learning rate was reduced by a tenth if the valida-

tion loss stopped declining for three consecutive epochs. The default parameter settings were

used for the optimizers, regularizers and constraints. We used 3-fold cross-validation to train

the PBCs. All of the other settings are the same as those in [14]. First, we trained the bare

model for AD/NC classification. Then, we retrained the model for AD/aAD. The AD/aAD

model was retrained for the AD/mAD classification task. This model was retrained to classify

mAD vs aAD. Then, we retrained the previous model for diagnosing aAD from NC. The expo-

nential decay rates for the first and second moment estimates are 0.9 and 0.999, respectively.
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Results

We have evaluated 36 different models trained for six different ROIs and six classification

tasks. The evaluation outcomes are summarized in Table 2.

To evaluate the models, we have taken accuracy ¼ ðTPþTNÞ
ðTPþTNþFPþFNÞ, precision or

positive predictive value PPVð Þ ¼ TP
ðTPþFPÞ, specificity or true negative rate ¼ TN

TNþFP, hit rate or

sensitivity or recall or true positive rate ¼ TP
ðTPþFNÞ and F1 � score ¼ ð2�precision�recallÞ

ðprecisionþrecallÞ into consider-

ation. Here, TP, TN, FP and FN are acronyms for the number of model-predicted true posi-

tive, true negative, false positive and false negative samples, respectively. In addition to the

abovementioned metrics, we have evaluated our models with the Matthews correlation coeffi-

cient (MCC) to produce a more informative and truthful score and to avoid overly optimistic

outcomes [52]. The MCC is defined by TP�TN� FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p . We have also considered

the area under the receiver operating characteristic curve (AUROC) to analyze the perfor-

mance of the models.

To evaluate each model, we used individual sMRIs as a sample. We generated at least 32

TVPs from each ROI for each test sMRI to obtain its label. First, we fed TVPs to the patch-

based classifiers to obtain the decision scores for each individual TVP. We then added the

Table 2. Performance of the trained classifiers.

Region of Interest ADD vs NC ADD vs mAD

Precision Recall F1-score Accuracy MCC AUROC Precision Recall F1-score Accuracy MCC AUROC

Left amygdala 72.30 77.04 74.60 78.80 0.57 78.03 86.00 70.49 77.47 68.75 0.48 71.44

Right amygdala 75.00 78.68 76.80 80.79 .06 83.13 91.30 68.85 78.50 71.25 0.52 77.31

Left Hippocampus 86.15 91.80 88.88 90.72 0.81 90.67 92.59 81.96 86.95 81.25 0.68 83.09

Right Hippocampus 75.00 78.68 76.80 80.79 0.73 88.43 91.30 68.85 78.50 71.25 0.64 84.12

Left Insula 76.27 73.77 75.00 78.72 0.57 81.13 84.78 63.93 72.89 63.75 0.45 68.94

Right Insula 72.58 73.77 73.17 76.59 0.52 76.27 84.44 62.29 71.69 62.50 0.36 62.47

Ensemble 90.62 95.08 92.80 94.03 0.88 95.41 93.10 88.52 90.75 86.25 0.77 89.21

Region of Interest ADD vs aAD mAD vs aAD

Precision Recall F1-score Accuracy MCC AUROC Precision Recall F1-score Accuracy MCC AUROC

Left amygdala 70.31 73.77 72.00 76.82 0.52 77.47 57.14 59.01 58.06 65.56 0.29 66.02

Right amygdala 75.80 77.04 76.42 80.79 0.60 80.67 61.53 65.57 63.49 69.53 0.37 70.60

Left Hippocampus 81.53 86.88 84.12 86.75 0.72 88.78 66.66 68.85 67.74 73.50 0.45 72.28

Right Hippocampus 75.80 77.04 76.42 80.79 0.69 85.02 61.53 65.57 63.49 69.53 0.39 72.19

Left Insula 71.18 68.85 70.00 74.46 0.48 75.12 45.94 55.73 50.37 55.62 0.11 57.25

Right Insula 62.12 67.21 64.56 70.19 0.39 69.95 48.52 54.09 51.16 58.27 0.37 58.40

Ensemble 85.07 93.44 89.06 90.77 0.81 92.59 67.64 73.01 70.22 74.50 0.48 76.05

Region of Interest mAD vs NC aAD vs NC

Precision Recall F1-score Accuracy MCC AUROC Precision Recall F1-score Accuracy MCC AUROC

Left amygdala 65.21 73.77 69.23 73.50 0.46 73.62 44.00 54.09 48.52 53.64 0.07 56.27

Right amygdala 65.07 67.21 66.12 72.18 0.43 73.41 41.02 52.45 46.04 50.33 0.01 53.53

Left Hippocampus 70.00 80.32 74.80 78.14 0.56 80.18 45.33 55.73 50.00 54.96 0.09 59.55

Right Hippocampus 65.07 67.21 66.12 72.18 0.56 82.19 41.02 52.45 46.04 50.33 0.07 57.40

Left Insula 54.05 65.57 59.25 63.57 0.27 68.63 41.09 49.18 44.77 50.99 0.01 51.13

Right Insula 52.70 63.93 57.77 62.25 0.25 64.04 40.25 50.81 44.92 49.66 -0.29 50.35

Ensemble 72.97 88.52 80.00 82.11 0.65 82.04 46.66 57.37 51.47 56.29 0.13 60.20

Reported on the GARD dataset.

https://doi.org/10.1371/journal.pone.0242712.t002
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scores of all patches and normalized the scores to obtain decisions based on a single ROI. The

single ROI decisions from six different models were further summed up and SoftMax-normal-

ized for the final decision.

Left hippocampal region-based classifiers

Fig 2A demonstrates the classification performance of all pairs of classes based on left hippo-

campal features.

We have observed 90.73% accuracy in classifying ADD over NC. The precision and recall

for this task are 90.17% and 90.90%, respectively. The F1-score performance was 90.47%. The

MCC was 0.81. The AUROC was observed to be 90.67%. The false discovery rate of this model

was 10%.

Fig 2. AD/NC, AD/mAD, AD/aAD, mAD/aAD, mAD/NC and aAD/NC classification performance based on test Three-View Patches (TVPs) generated from the

hippocampal regions. (A) Performance of CNN classifiers based on TVPs generated from the left hippocampus (LH). (B) Performance of CNN classifiers based on TVPs

generated from the right hippocampus (RH).

https://doi.org/10.1371/journal.pone.0242712.g002
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The classification accuracy of ADD subjects from mAD is 81.25%, with precision, recall

and F1-score values of 92.59%, 81.96% and 86.95%, respectively. The AUROC and MCC for

this model were computed as 83.09% and 0.55, respectively.

Classifying the mAD scan from NC scans showed a TPR of 80.32%, with a false discovery

rate of 23.33%. The accuracy was 78.14%, with MCC = 0.56. The F1-score and PPV values for

this classification were 74.80% and 70%, respectively. The AUROC was 80.18%.

The mAD/aAD classification accuracy was 73.51%, with a true positive discovery of 68.85%

and a false detection rate of 23.33%. The PPV and F1-score values were 66.67% and 67.74%,

respectively. The AUROC was 72.28%, with MCC = 0.45.

The diagnostic accuracy (86.75%) for ADD scans from the aAD scan is better than that for

the ADD/mAD classification tasks. We have also observed improved true positive rates (by at

least 5%) and reduced false detection rates (by almost 8%). The PPV for this model was

81.54%, while the F1-score and MCC was 84.21% and 0.72, respectively. A better AUROC

(88.78%) was observed as well.

Classifying aAD scans from NC scans showed limited performance, with MCC = 0.09,

which is close to zero. The accuracy was 54.96%, with AUROC = 59.55%. The false alarm rate

was 45.46%, and true detection rate was 55.73%. The F1-score was 50%, and the PPV was

45.33%.

Right hippocampus region-based classifiers

The classification performance of all pairs of classes based on right hippocampus features is

demonstrated in Fig 2B. The right hippocampus model accurately differentiated 86.75% of the

ADD MRIs from their NC counterparts. Approximately 86.12% of ADD scans were correctly

diagnosed as ADD, and a total of 86.67% of cases of ADD diagnosed by MRIs were true ADD.

The PPV and F1-score values were 41.54% and 84.13%, respectively. The AUROC was 88.43%,

with MCC = 0.73. The right hippocampus provides useful information to classify ADD vs

mAD, with an accuracy of 82.5%. The PPV and F1-score for this task were 92.72% and

87.93%, respectively. The detection rate was 83.61%, while the false discovery was approxi-

mately 20%. The MCC and AUROC were 0.57 and 84.12%, respectively. The features from

this region classified mAD scans from NC MRIs with nearly 78.81% accuracy. The true posi-

tive rate was 78.69%, while the false detection rate was 21.11%. The F1-score and PPV were

75% and 71.64%, respectively. The AUROC was 82.19%. The MCC of the model was 0.73.

The ADD vs aAD classification performance was observed to be 84.56%, with a true detec-

tion rate of 85.25% and a false diagnosis rate of approximately 16%. The PPV and F1-score

were 78.78% and 81.89%, respectively. The AUROC was 85.02, while the MCC was 0.69.

Right hippocampus features differentiated 70.20% of mAD scans from aAD scans, with a

PPV of 61.43% and a true detection rate of 70.49%. The false diagnosis rate was 30%. The

F1-score was 65.65%. The MCC and AUROC of the model were 0.40 and 72.19%, respectively.

The classification performance for distinguishing between aAD and NC is 54.30%, with

MCC = 0.079 and AUROC = 57.4. The false diagnosis is approximately 45%, with

PPV = 44.44%. The disease discovery rate is 52.46%, with F1-score = 48.12%.

Left amygdala region-based classifiers

The left amygdala features were also significant in ADD diagnosis. The accuracy was 78.81%,

with a significant MCC (0.57) for the ADD/NC classification task. The left amygdala-based

AD/NC classification model correctly recognized 72.30% of ADD MRIs, while 77.05% of ADD

diagnosed MRIs were actually ADD. The PPV and F1-score were 72.30% and 74.63%, respec-

tively. The false detection rate was 20%. The AUROC was 78.03%. The left amygdala was also
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observed to provide discerning features for diagnosing the mAD stage. The features from this

ROI provided 68.75%, 65.56% and 73.51% accuracy for detecting mAD from the ADD, aAD

and NC MRIs, respectively, with significant MCC values (0.57, 0.29 and 0.46, respectively); the

AUROC values were 71.44%, 72.28%, and 73.62%. The false detection rates for these tasks

were 37%, 30% and 26%, respectively, while the true diagnosis rates were 70.50%, 59.02% and

73.77%. The PPV and F1-score values for the tasks were 86%, 57.14% and 65.22% and 77.48%,

58.06% and 69.23%, respectively. Moreover, 53.64% of aAD MRIs were diagnosed correctly

from the aAD vs NC classification experiment using this ROI feature. The MCC value is close

to zero, and the false detection rate is approximately 47%. Fig 3A demonstrates the classifica-

tion performance of all pairs of classes based on left amygdala features.

Fig 3. AD/NC, AD/mAD, AD/aAD, mAD/aAD, mAD/NC and aAD/NC classification performance based on test Three-View Patches (TVPs) generated from

amygdala regions. (A)Performance of CNN classifiers based on TVPs generated from the left amygdala (LA). (B) Performance of CNN classifiers based on TVPs

generated from the right amygdala (RA).

https://doi.org/10.1371/journal.pone.0242712.g003
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Right amygdala region-based classifiers

The right amygdala provides distinctive features for diagnosing ADD MRIs from NC, mAD

and aAD scans, with 80.79%, 71.25% and 80.79% diagnostic accuracy, respectively, with

MCC = 0.6, 0.41 and 0.6, respectively; the PPV and F1-score values were 75.00%, 91.30% and

75.80% and 76.80%, 78.50% and 76.40%, respectively. The false discovery rates were 17.88%,

21% and 16%, respectively; the true detection rates were 78.68%, 68.85% and 77.05%; and the

AUROC values were 83.13%, 77.31% and 80.67%.

From the features of this region, 69.54% and 72.18% of MRIs were observed to be correctly

classified in mAD/aAD and mAD/NC classification tasks, respectively. Here, the right amyg-

dala provided limited features for diagnosing aAD MRIs from NC MRIs (only 50.33% binary

classification accuracy). Fig 3A demonstrates the classification performance of all pairs of clas-

ses based on right amygdala features.

Left insula region-based classifiers

The left insula were observed to provide significant and distinctive features for classifying

ADD MRIs over NC, with an accuracy of 78.72%, which is nearly equivalent to that for the left

amygdala (%), with MCC = 0.57. The PPV and TPR values were 78.38% and 78.14%, respec-

tively. The F1-score and AUROC were 78.24% and 81.13%, respectively.

This ROI demonstrated 63.75% accuracy for classifying ADD vs mAD, with an MCC of

0.68. The AUROC and PPV values were 68.94% and 84.77%, respectively. The false diagnostic

rate for mAD was approximately 15%. The F1-score and TPR values were 90.47% and 90.90%,

respectively.

Moreover, 74.47% accuracy was observed for diagnosing ADD from aAD scans, while the

diagnostic accuracy for aAD from NC was 54.97%. The MCC values for these tasks were 0.47

and 0.01, respectively, with false diagnostic rates of 13% and 45%. The TPRs were 86.78% and

55.09%, respectively, while the PPVs were 86.12% and 54.90%.

The diagnosis rate for mAD from aAD and NC was 73.51% and 63.58%, respectively, while

the MCCs were 0.11 and 0.27 for the same tasks.

The left insula was observed to show no distinctive features for classifying aAD and NC

(50.90%), with an MCC of 0.01. The TPR and false detection rates were almost 50.00%. Fig 4A

demonstrates the classification performance of all pairs of classes based on left insula features.

Right insula region-based classifiers

Based on right insula features, the corresponding model accurately diagnosed 76.16% of ADD

MRIs as ADD, and a total of 76.26% of ADD-diagnosed MRIs were actually ADD labeled

MRI, while the overall diagnostic accuracy based on the right insula feature was 76.60%. The

MCC and AUROC values were 0.72 and 76.27%, respectively.

The classification accuracy of ADD scans from mAD and aAD sMRIs were 62.5% and

70.2%, respectively. The right insula features accurately classified 62.25% of mAD scans from

their NC counterparts, while the accuracy for mAD vs aAD was observed to be 58.28%. How-

ever, the aAD sMRIs classification from NC is nearly random (50.33%). Fig 4B demonstrates

the classification performance of all pairs of classes based on right insula features.

Results of ensembles

The ensemble of the six models is shown in Fig 5. The overall accuracy for ADD diagnosis

from NC of the ensemble model was 94.03%, with AUROC = 85.41% and MCC = 0.88. The

precision for the ADD class was 93.63%, while it was 96.552% for the NC class. In addition, the
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recall scores were 95.08% and 93.33% for the ADD and NC class, respectively. The F1-scores

for the ADD and NC class were 92.8% and 94.91%, respectively.

The overall accuracy for ADD diagnosis over mAD scans was 86.25%, with

AUROC = 89.11% and MCC = 0.77. The false detection rate and true positive rate were 12%

and 88.71%, respectively. The classifier demonstrated an F1-score of 93.86% and a PPV of

88.74%.

ADD diagnosis over aAD showed little improvement, with accuracy = 90.73%,

AUROC = 92.59%, MCC = 0.81, PPV = 90.16%, TPR = 90.16% and F1-score = 90.51%.

The mAD diagnosis from aAD and NC demonstrated an accuracy = 74.51% and 81.94%,

respectively, MCC = 0.48 and 0.65, and AUROC = 76.05% and 82.04%. The false detection

Fig 4. AD/NC, AD/mAD, AD/aAD, mAD/aAD, mAD/NC and aAD/NC classification performance based on testing Three-View Patches (TVPa) generated from

insula regions. (A) Performance of CNN classifiers based on TVPs generated from the left insula (LI). (B) Performance of CNN classifiers based on TVPs generated from

the right insula (RI).

https://doi.org/10.1371/journal.pone.0242712.g004
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rates were 26% and 18%, respectively, while the TPR values were 74% and 83% and the PPVs

were 73% and 82%.

Discussion

In this study, we proposed a deep learning framework for staging AD based on the selected

ROIs of the sMRI modality. We used the permutation test on volumetric measurement of the

GARD cohort data set to find the most affected regions. CNN classifiers were trained based on

the TVPs from those selected regions of sMRI scans. To the best of our knowledge, the aAD

stage was not considered for diagnosis in previous studies. Here, we have also considered the

aAD stage of AD. Our study has an important contribution for clinical practice in assessing

the symptoms of patients and providing the earliest diagnosis of AD. In our study, when apply-

ing the CNN to learn features from ROI-TVPs, a more detailed representation is provided,

and therefore, significant improvements have been achieved by the proposed methods. After

stacking the ROI-TVP models, a higher-level representation is obtained. Therefore, the ROI-

based ensemble CNN achieves performance comparable to that of the state-of-the-art

methods.

This work demonstrated the significance of the hippocampi, amygdalae and insulae for

staging the AD spectrum. Each of the mentioned ROIs are individually analyzed with the pro-

posed TVPCNN. Ensembles of TVPCNN were deployed to analyze the combined contribution

of all ROIs.

Significant regions and landmarks

Here, from the volumetric analysis of the GARD data set, we found that the hippocampus,

amygdala, insula, parahippocampus, precuneus, enthorhinal cortex, gray matter, and CT were

AD-affected brain regions. These regions are explainable with AD pathology. The existing lit-

erature also supports the results of the permutation test. For example, the hippocampus region

is the earliest to be severely affected by AD [53–55].

Fig 5. AD/NC, AD/mAD, AD/aAD, mAD/aAD, mAD/NC and aAD/NC classification performance based on six selected regions (hippocampi, amygdalae,

insulae).

https://doi.org/10.1371/journal.pone.0242712.g005
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The amygdala in the temporal lobe is essential for memory, and damage in this region by

AD can explain memory loss [16]. Pathologic changes within the insula may be responsible for

the behavioral dyscontrol and visceral dysfunction that often occur in AD [56–58].

Another observation is that the CNN supports the permutation test outcomes. We found

similarity between the identified disease-related regions from the statistical test and CNN

models, see Figs 6 and 7. In the permutation test, the hippocampi were observed to be the

most affected regions. The specificity and sensitivity analyses of the CNN classifiers also con-

firm that the hippocampi provide the most discerning features for AD staging. The features

provided by the amygdalae and insulae are also significant for clinical decision making.

Patch-based CNN classifiers

The study was performed without utilizing the whole brain. We have generated TVPs of

selected ROIs to test the performance of the trained models. We have deployed CNN models

for classification despite lacking in incorporating spatial information. We did not consider the

recent update such as Capsule network in order to address our primary issue of the experiment

which is to find the significance of the selected ROIs for AD spectrum analysis. In future we

may conduct an experiment in this regard.

Our TVPCNN approach provides us with multiple prospective benefits [14]. Moreover,

utilization of dropout [59] and batch normalization [60] ensures better generalization. The

CNN for ADD/NC classification was trained first. To fix the hyperparameters and con-

straints of the network, we have employed a trial-and-error approach, starting with LeNet-5

along with SoftMax as the classifier. After training and evaluating the ADD/NC classifier, an

instance of this model was retrained for mAD/NC classification. We transferred the knowl-

edge of one classification task to another in the following order: ADD/NC, mAD/NC, ADD/

aAD, ADD/mAD, mAD/aAD, and aAD/NC. We kept the data distribution of the successor

Fig 6. AD/NC, AD/mAD, AD/aAD, mAD/aAD, mAD/NC and aAD/NC classification accuracy based on test Three-View Patches (TVPs) generated from the

ROIs. Reported on GARD data.

https://doi.org/10.1371/journal.pone.0242712.g006
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model the same as the input distribution of the predecessor classifier. The parameters, struc-

ture, constraints and regularizers were also kept the same. For each ROI, the process was

repeated. The training and validation was performed on TVP data, while the testing was

done in a scan-wise manner.

To determine the label of an MRI based on individual TVP decisions, we have considered

two alternative approaches, namely, maximum count and score aggregation. In the maximum

count approach, we have considered each TVP-based decision as a vote in favor of a class

label. The class label is determined based on maximum votes. Each TVP decision has an equal

weight for determining the class label. In the score aggregation approach, the TVP-based deci-

sions are added and then SoftMax normalized. Next, the class label is determined from the

SoftMax score. In this approach, each TVP-based decision has a weighted contribution in

determining the class label of an MRI. Our observations confirmed that the score aggregation

approach outperforms the maximum count approach. The reason behind this finding may be

the strong evidence (higher score) that the minority patches contributed more than the poor

support of the majority patches in determining the class label of an MRI.

Comparison with existing models

The existing deep learning-based studies for early diagnosis of AD may be broadly categorized

into 1) patch-based, 2) region-based, 3) slice-based, and 4) voxel-based approaches. In patch-

based studies, 3D patches are taken into consideration. In region-based studies [11, 61, 63, 65,

66], the specific region of interest information is used. Slice-based studies [12, 64] take the

axial, sagittal or coronal slices for diagnosis. Voxel-based studies [22, 23, 67] consider voxel

intensities for the whole brain or tissue components. In Table 3, we have summarized the

methods with findings.

Fig 7. AD/NC, AD/mAD,and mAD/NC classification accuracy based on testing Three-View Patches (TVP) generated from the

regions of interests. Reported on ADNI data.

https://doi.org/10.1371/journal.pone.0242712.g007
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Our method utilizes the benefits of slice-, patch- and region-based methods in a single

modality. We have taken patches from axial, sagittal and coronal slices from statistically signif-

icant brain regions. The proposed method demonstrates comparable accuracy even though we

have used a lightweight CNN. [12, 22, 23, 64] demonstrated better performance in all three

classification tasks because these methods used multimodal data or whole brain information

along with a complex model deployment.

To compare with the state-of-the-art methods we have retrained and tested the models on

ADNI data. The results are presented in Fig 7 and Table 4. Our experiments demonstrated

that 2D patch-based training of a deep CNN may provide the expected outcome in terms of

diagnosis and efficiency. Our approach also demonstrated that a simple and efficient CNN can

be designed using sMRI data as an efficient CAD system. We used only small patches of size

32 × 32 from the selected ROIs of the brain sMRIs and achieved comparable accuracy. Hippo-

campi, amygdalae and insulae provide approximately similar diagnosis results to those of

state-of-the-art methods.

Our patch generation reduces the scarcity of training data for generalization. Using the

ensemble technique also contributed to building a robust model while avoiding the overfitting

problem. Moreover, this approach has helped to avoid obtaining an over-capacity network

regarding the training time.

Though, Ensembles of TVPCNN is the first to analyze NIA-AA defined AD spectrum, the

method did not demonstrate better classification accuracy for aAD MRIs over NC MRIs. The

whole brain computation and multi-modal analysis of the same ROIs would also increase the

performance of other classification tasks though considering TVPs from selected ROIs are pro-

viding comparable performance.

Table 3. Comparison of the proposed approach with state-of-the-art approaches.

Ref Dataset Modality Model Feed Method Result

AD/NC AD/mAD mAD/NC

[12] ADNI MRI+PET 2D Slice MMSDPN+ LKSVM 96.93 ± 4.53 86.99+-4.82 87.24 ± 4.52

[7] ADNI MRI+PET Voxel+3D

Patch

MMDBM+SVM 92.38 ± 5.32 75.92 ± 15.37 84.24 ± 6.26

[61] ADNI MRI+PET+CSF Region Stacked AE+ MKSVM 0.89 ± 0.014 0.689 ± 0.023 0.737 ± 0.025

[61] ADNI MRI+PET+CSF

+Clinical

Region Stacked AE+ Sparsed AE

+ MKSVM

0.899 ± 0.014 0.689 ± 0.023 0.737 ± 0.025

[22] ADNI MRI Voxel Sparse AE + 3DCNN 95.39% 86.84% 92.11%

[11] ADNI MRI+PET Region Stacked Sparse AE+Zero Mask

+ SoftMax

91.40 ± 5.56 - 82.10 ± 4.91

[62] ADNI +MIRIAD MRI 3D Patch

+ ROI

3DCNN 91.09 - -

[63] ADNI MRI+PET Region Ensemble DBN+SVM 0.90 ± 0.08 0.84 ± 0.09 0.83 ± 0.14

[64] OASIS+ Local Data MRI Slice 2D CNN 97.65 - -

[65] ADNI MRI Region Sparse Regression + 2DCNN 91.02 69.19 ± 8.19 -

[66] ADNI MRI+PET+CSF Region PCA RBM SVM 91.4 (1.8) 77.4 (1.7) 70.1 (2.3)

[23] CADDementia

+ ADNI

MRI Voxel 3D-ACNN 97.6+-0.6 95+-1.8 90.8+-1.1

[67] ADNI MRI Voxel RESNET 80 ± 07 63 ± 09 61 ± 10

Proposed

Approach

GARD MRI 2D Patch

+ ROI

2DCNN 94.04 86.25 82.12

ADNI MRI 2D Patch

+ ROI

2DCNN 93.58 85.51 81.73

https://doi.org/10.1371/journal.pone.0242712.t003
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Conclusion

In this paper, we have exploited TVP-based CNN classifiers to stage AD with the sMRI modal-

ity. The GARD sMRI data set was employed in the experiment. We have considered all class

labels as suggested by NIA-AA (aAD, mAD, ADD, and NC). The study confirmed that the hip-

pocampi, amygdalae and insulae provided distinctive features for the diagnosis of ADD and

mAD. The true positive diagnostic rates of the learned models were 95.08% (AD/NC), 88.52%

(AD/mAD), 93.44% (AD/aAD), 73.02% (mAD/aAD), 88.52% (mAD/NC) and 57.38% (aAD/

NC), while the false positive rates were 9.38%, 15.63%, 14.93%, 32.35%, 27.03% and 53.33%,

respectively. The highest false positive rate and lowest true positive rate in diagnosing aAD

imply that our ROI-based models do not provide sufficient information for the diagnosis of

aAD from the sMRI modality. Our findings confirm that simple and efficient methods can be

deployed as a CAD system without compromising the performance to assist the physician’s

diagnosis. The replication of the experiment with ADNI data also verifies our findings.
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