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Abstract
Background: A timely diagnosis of Alzheimer’s disease (AD) is crucial to obtain more practical treatments. 
In this article, a novel approach using Auto-Encoder Neural Networks (AENN) for early detection of AD 
was proposed. Method: The proposed method mainly deals with the classification of multimodal data and 
the imputation of missing data. The data under study involve the MiniMental State Examination, magnetic 
resonance imaging, positron emission tomography, cerebrospinal fluid data, and personal information. 
Natural logarithm was used for normalizing the data. The Auto-Encoder Neural Networks was used for 
imputing missing data.  Principal component analysis algorithm was used for reducing dimensionality of 
data. Support Vector Machine (SVM) was used as classifier. The proposed method was evaluated using 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Then, 10fold crossvalidation was used 
to audit the detection accuracy of the method. Results: The effectiveness of the proposed approach was 
studied under several scenarios considering 705 cases of ADNI database. In three binary classification 
problems, that is AD vs. normal controls (NCs), mild cognitive impairment (MCI) vs. NC, and MCI vs. 
AD, we obtained the accuracies of 95.57%, 83.01%, and 78.67%, respectively. Conclusion: Experimental 
results revealed that the proposed method significantly outperformed most of the stateoftheart methods.
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Introduction
Alzheimer’s disease  (AD) is one of the 
neurodegenerative brain dysfunctions 
frequently observed in elderly people. 
Amyloid plaques, neurofibrillary tangles, 
and histopathologic changes are commonly 
used for characterizing this disease from 
dementia because of their association with 
neuronal loss and reduction in volume of 
the brain.[1] This disease starts with loss 
of memory, progressively, in the following 
cognitive functions, getting worse, and 
worse until patients lose their ability 
to remember recent events, and cannot 
recognize very familiar persons and things. 
In the upcoming years, the dominance 
and severity of this disease is expected to 
rise[2] due to the regular growth of the aged 
population all over the world. In this sequel, 
it could be one of the major causes of death 
in the near future. Nevertheless, there is 

not any thorough treatment for AD yet. 
Thus, early diagnosis of AD could be of a 
considerable help in increasing the patients’ 
survival rate. As such, many biomedical 
imaging techniques for early detection of 
AD are well developed and employed by the 
researchers including magnetic resonance 
imaging  (MRI),[3‑5] positron emission 
tomography  (PET),[6,7] and others such as 
cerebrospinal fluid (CSF),[8] AD Assessment 
Scale–Cognitive behavior section,[9] and 
Mini‑Mental State Examination (MMSE).[9]

Machine learning techniques are used on 
medical images of the brain for automatic 
diagnosis of AD in many studies such as 
Acharya et al. in[10] diagnosed AD with 
an accuracy of 99.48% on 33 patients 
and subjects using MRI images from the 
Harvard Brain Atlas. Wang et al. in[11] 
using 196 MRI images half train and half 
test, employed convolutional NN for a 
deep learning method for distinguishing 
AD from normal controls (NCs) and 
achieved 97.65% accuracy. In addition, 
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combined MRI, APOe4 genetic, and cognitive measures 
include.  Furthermore, automatic diagnosis of MCI using 
electroencephalogram spectral features is done.[29]

In this study, the feature extraction and feature combination 
were often performed independently. As investigated in 
the previous studies, there exist inherent relations between 
modalities of MRI and PET.[30] Thus, finding the shared 
feature representation which combines the complementary 
information from modalities  (e.g., PET, MRI, and CSF) is 
useful to enhance the diagnosis performance of AD and 
MCI patients from NCs.

The data used in this article are presented in the next 
section, preprocessing technique, feature selection, 
description of proposed methodology, and classification 
methods, which are shown in the “Experiments and Results” 
section. Proposed method and the experimental results in 
this work are provided in the “Discussion” section. The 
conclusions are presented in the final section.

The dataset was used in this article, which was obtained 
from various sources associated with the ADNI 
database  (adni.loni.usc.edu). The foremost usages of 
determining sensitive and specific biomarkers associated 
with the early progression include the development of 
new treatments with monitoring their effectiveness and 
the reduction in the time and cost of clinical experiments. 
Moreover, it should be noted that the obtained dataset was 
compliant only with the first examination of each patient 
involving 705 patients’ images.

The demographic data of patients are summarized in 
Table 1. The MRI and positron emission tomography (PET) 
data were downloaded from the ADNI. A  detailed 
description of PET protocols and acquisition can be found 
at www.adni‑info.org. The CSF biomarker,[8,31] the personal 
information, and the MMSE scores were downloaded from 
the ADNI website since July 2015.

Materials and Methods
Feature extraction

The features of MRI images were extracted based on 
regions of interest  (ROIs). The MMSE scores, PET 
extracted features, and CSF measures are obtained from 
the ADNI database. The volume and the voxel values of 
specific regions such as hippocampus, entorhinal cortex, 
temporal, parietal lobes, and ventricles are the main 
affected regions of the brain on which AD attacks and 

various approaches based on structural images have been 
proposed. Almost all of these CAD systems have three 
main steps, which are preprocessing, feature extraction, and 
classification. The procedure of the first step sets different 
images from different individuals, with brains of different 
sizes and shapes, at a comparable condition. At the second 
step, feature extraction algorithm converts the input 
data into small vectors.[12] All the relevant information 
of the input data must be in these vectors. The classifier 
determines that the vectors are more similar to mild 
cognitive impairment  (MCI) patient vectors, to AD patient 
vectors, or to NC vectors. Richer information can help to 
improve diagnostic accuracy.

Metrics of the entorhinal cortex have been used to 
discriminate AD patients and NCs,[13] but most of the 
studies on AD have used manual segmentation of the 
hippocampus in MR images.[14‑16] These studies have high 
efficiency in distinguishing between AD patients and 
NCs. Automatic hippocampal volume‑measuring methods 
almost have equal results.[17,18] Hippocampal volumes and 
entorhinal cortex metrics seem to be equally accurate in 
distinguishing between AD patients and NCs.[19] Single 
tissue such as the hippocampus alone is not enough for 
the accurate diagnosis of the disease, and the combination 
of different structures has proven to be more useful for 
distinguishing AD patients from NCs.[20] Therefore, using 
multivariate approaches, many variables simultaneously 
and observation of the essential patterns of different 
regions of the brain data can be analyzed. There were 
different techniques such as principal component 
analysis  (PCA), artificial neural networks, fuzzy neural 
networks, partial least square, and support vector 
machine  (SVM) to classify MRI data according to prior 
studies. Here, the SVM method utilizing autoencoder has 
been used for data analysis.

Combined techniques can use different modalities including 
MRI, PET, and other neurological data to diagnose AD/MCI 
patients from healthy people.[21‑24] Lahmiri and Shmuel[25,26] 
used MRI images from the AD neuroimaging initiative 
(ADNI) dataset for distinguishing AD patients from NCs. 
They reported complete performance (100% accuracy) in 
distinguishing between the two groups. Maqsood et  al.[21] 
reported a multiple classification using transfer learning 
on AD, while Beheshti et  al.[27] classified AD vs. NC with 
a great rate of accuracy using only MRI data. Spasov et 
al.[28] classified progressive MCI vs. static MCI using 

Table 1: Data of patients in the Alzheimer’s disease neuroimaging initiative database
Count Male Female Married Widowed Divorced Never married Average of age Average of MMSE

AD 156 76 80 127 18 8 3 74.89 23.32
NC 211 110 101 142 38 17 14 75.91 29.13
MCI 338 215 123 269 39 24 6 74.51 27.05
Total 705 401 304 538 95 49 23 75.01 26.85
AD – Alzheimer’s disease; NC – Normal control; MIC – Mild cognitive impairment; MMSE – Mini‑Mental State Examination
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hyperbolic tangent function to introduce nonlinearity for 
the network for complex relationships of the model.[36] 
By modifying the number of neurons at each hidden 
layer, we were able to perform the feature dimensionality 
reduction. The hidden layers of sparse autoencoder will 
be trained one at a time, and they will be stacked to form 
a complete neural network by removing the temporary 
output layer.[37]

Classification and evaluation

One of the most common techniques for dimension 
reduction of data is PCA. It maps the data to a lower 
dimension while maintaining the variance of the data. 
Reduction of used storage space and computation time 
and elimination of correlated features are advantages of 
using PCA. Loosing some information of the original 
data, failing when covariance are not enough to define 
data, and indetermination of the number of principal 
components to keep information of data are disadvantages 
of using it.

SVM is one of the widely used classification algorithms 
in neuroimaging data.[4,38,39] Classification efficiency 
of SVM in training high dimensional data has been 
proven. Moreover, SVM has been applied to voice 
activity detection, pattern recognition, classification, and 
regression analysis.[40,41] It is used to separate a set of 
training data with a hyperplane that is maximally distant 
from the two classes. SVM is the most common and 
efficient classifier in binary classification. Here, SVM 
was used to distinguish between AD and MCI patients 
and NCs, pairwise.

One of the well‑known evaluation measures is accuracy 
rate of a classification procedure, which computes the 
ratio between correctly classified samples and total 
samples. Sensitivity and specificity are the other evaluation 
metrics. Other widely used parameters to describe 
the performance of diagnostic procedures are positive 
predictive value  (PPV), negative predictive value  (NPV), 
area under the curve  (AUC), and receiver operating 

destroys several brain cells during the early stages of its 
progression.[32] Figure  1 represents MRI samples of NCs 
and AD patients. The figure shows decreased gray matter 
volume in an AD patient compared.

In Figure 2, the segmented brain and corresponding labels 
containing the aforementioned ROIs are demonstrated. 
The ROIs included candidate input variables for diagnosis 
of Alzheimer's disease, measures of regional cortical 
thickness.[33] The ROI voxels’ values and their volumes 
for every MRI and PET images were extracted using 
SPM toolbox in MATLAB. Overall, the features MMSE, 
personal information, CSF biomarkers, and PET and MRI 
data have been used to classify NCs and MCI and AD 
patients.

Autoencoder neural networks

An autoencoder is a neural network consisting of at least 
three layers: an input layer, a hidden layer, and an output 
layer, as shown in Figure  3  (it can have multiple hidden 
layers though). The Neurons of the first layer represent the 
original input vector. The hidden layer can be seen as a 
high‑level representation of the previous layer. The output 
layer is a specific representation of the input layer with 
the same dimensionality as the input one.[34,35] The input 
layer sends features from MRI, PET, and CSF data to the 
hidden layers. Then, the hidden layer performs nonlinear 
transformations on the received data and imposes some 
optimization procedures to reconstruct the original instance.

The activation signals are propagated forward through 
the network which can be considered sigmoid function or 

Figure 2: Sub-regions of medial surface of the human cerebral cortex
Figure 1: Magnetic resonance imaging sample, (a) a normal control and 
(b) a Alzheimer’s disease patient

ba
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characteristic  (ROC). The accuracy, sensitivity, specificity, 
PPV, and NPV are defined as below:

Accuracy TP TN
TP TN FP FN

� �= +
+ + +

� (1)

Sensitivity TP
TP FN

� �=
+

� (2)

�Specificity TN
TN FP

=
+

�
� (3)

PPV TP
TP FP

=
+

� � (4)

NPV TN
TN FN

� �=
+

� (5)

Where TP stands for the number of true 
positives  (number of correctly classified AD or 
MCI patients). TN is the number of true negatives 
(number of correctly classified NC or MCI patients). 
FP stands for the number of false positives  (number of 
NCs classified as AD or MCI patients or MCI classified 
as AD). FN is the number of false negatives  (number 
of AD or MCI patients classified as MCI patients or 
NCs, wrongly).

Specificity and sensitivity were used to evaluate the rate 
of actual positives or negatives, which were identified 
correctly, for example, the percentage of AD or MCI 
patients or NCs. These measures show the detection 
capability of a method between AD, MCI, and NC 
patterns. These metrics were measured using K‑fold 
cross‑validation  (with k  =  10). K‑fold cross‑validation 
has been used to audit the partial accuracy of different 
multivariate analysis methods applied to the segmentation 
of brain dementia from AD. In the K‑fold method, 
10 selected sets of AD and MCI patients and NCs are 

sampled randomly. It holds out a set for testing purposes 
and trains the classifier with the remaining sets. This has 
to be done for all 10 sets, and an average value of the 
evaluation parameters is calculated. We train the SVM 
classifier until the cross‑validation loss  (error) should be 
less or equal to 0.05.

Proposed method

A method for early detection of AD was proposed. Data 
normalization, replacement of missing data using best 
possibility, and classification of AD, NC and MCI using 
SVM classifier on multimodal data (MRI and PET images 
of brain and CSF biomarker, MMSE scores, age, education, 
gender, and marriage information), and finally, reducing 
dimension of input data was the stages of the proposed 
method. Before doing so, proper features of the interested 
area of the images had to be extracted. Then, missing 
data were replaced using autoencoder  (a type of neural 
network). Finally, classification was done using a SVM 
classifier. Figure  4 displays the diagram of the proposed 
algorithm of this article.

To distinguish between AD and MCI patients and NCs, a 
method for the integration and classification of the baseline 
MRI, PET, MMSE scores, personal information, and CSF 
data has been developed. The composite of extracted 
features has been used in this study. The measurements 
were combined as a long feature vector which was 
considered as the input of the classifier. This is called data 
concatenation. SVM classifier was used to differentiate 
between participants using all features.

In the first step of our work, the feature vector consisting 
of average voxel values from MR images and also volume 
of MR images of ROI using VBM‑SPM were extracted. 
MRI of specific regions such as hippocampus, entorhinal 
cortex, temporal and parietal lobes, and ventricles could 
assess volumetric changes of brain structure and so on. 
They have been identified as ROI for AD diagnosis.

Because of the absence of some PET images and CSF 
measurement, compensating for missing data was necessary. 
One of the usual methods in dealing with missing data is 
filling missed data using average value of existing data. 
In this method, average of existing values of each column 
is computed and placed in every empty cell of vector of 
features in the corresponding column, as in Eq. 6.

MDa
nj

i
j= ∑1

i

n

ED � (6)

Where MDa j
i  refers to missing data element gained from 

average of EDjS , which is existing data column, i is the 
row number of full data matrix, and j is element number 
( , )i j missing data indices set∈{ } .

To find the best value for missing data in each vector, 
after training an autoencoder using complete vectors 

Figure 3: An autoencoder having an input layer (encode), one hidden layer, 
and an output layer (decode)
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of features, missing data can be obtained by sending 
a vector having missing data  (replaced in advance by 
average of the existing data) to the trained autoencoder. 
Then, by replacing the corresponding output cell to 
each cell having missing data, a good replacement for 
missed data could be found. This process can be shown 
in Eq. 7:

MDae MDa AEi i= ×� � � (7)

Where MDai  is ith vector in data matrix containing 
missing data MDaei  and is gained vector after multiplying 
autoencoder weights by MDai .

Then, in Eq. 7, missing data taken from Eq. 6 are replaced 
by corresponding values of Eq. 7.

MDa MDaej
i

j
i= � � (8)

where MDaj
i  is averaged missing data, and MDaej

i  is 
rebuilt missing data from Eq. 7. Therefore, MDa after 
Eq. 8 is the final processed data.

Where MDa is the vector from the Eq. 6, MDaL is the 
obtained vector from natural logarithm (output of logarithm 
on 1 will be 0, and  +1 is to prevent this), and MDaLs is 
scaled MDaL vector to range (0, 1).

In the third step, after data normalization using natural 
logarithm, an autoencoder using complete vectors of 
all data was made. In this step, missing data vectors 
were not used, and the structure was made using only 
perfect vectors of data.

In the fourth step, missing data were replaced using 
output of autoencoder for the corresponding vector.

In the fifth step, the PCA was used to classify patients.

In the final step, classification was done and proposed 
algorithm was evaluated using a 10‑fold cross‑validation 
method. Here, all data were split to 10 approximately equal 
parts. Nine parts were used as a training data set and one 
part was used as a test dataset.

The proposed method can be summarized as below:
1.	 Feature extraction and selection
2.	 Building missing data using the average of existing data
3.	 Normalizing data using natural logarithm
4.	 Making an autoencoder using complete vectors of data
5.	 Missing data imputation using prebuilt autoencoder
6.	 Using PCA to reduce dimension of data as input for 

classifier
7.	 Classification using SVM
8.	 Evaluation using 10‑fold cross‑validation.

Experiments and Results
In this part, experimental results using MRI, PET, MMSE, 
personal information, and CSF data have been represented. 
SVM classifier using linear kernel was evaluated to gain 
higher performance for AD diagnosis. The purpose of 
this work is to distinguish between NCs and MCI and 
AD patients. The method was tested to classify NC and 
AD data first. Then, the method was tested to classify 
NC and MCI data and finally was tested to classify MCI 

Figure 4: Diagram of proposed method
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and AD data. These evaluations were done using only 
MRI data and then using all the data. The performance 
of this method was calculated by means of 10‑fold 
cross‑validation.

SVM on the data has been applied with and without 
missing data imputation and with and without feature 
reduction using autoencoder. Its performance was 
compared with the performance of the standard SVM 
without missing data imputation. After the missing data 
imputation, the accuracy of classification was improved. 
In addition, dimension reduction was done independent of 
the classification procedure.

The proposed method was evaluated to distinguish 
between AD and MCI patients and NCs, and these results 
were compared with other methods. To this end, each 
group of participants is compared pairwise. For this part, 
totally 144 selected features are used  (including 132 
MRI, 1 MMSE, 4 personal information, 3 CSF, and 4 
PET images).

Figure 5: Receiver operating characteristic curves for Alzheimer’s disease 
versus normal control classification

Table 2 demonstrates the performance of proposed 
method for classifying AD and MCI patients and NCs, 
using SVM classifier on various datasets, including whole 
data, averaged missing data, rebuilt missing data, only 
MRI data, only MMSE scores, only demographic data. 
evaluate the performance of the proposed method were 
investigated including classification accuracy  (ACC), 
sensitivity  (SEN), specificity  (SPE), PPV, NPV, and 
AUC. Table  2 meticulously shows that the combined 
data  (took from various sources) achieved remarkably 
higher performance than that on the single dataset case. 
The highest accuracy (95.57%) was for combined data, as 
shown in the table.

From Table  2 and Figures  5‑8, the ROCs, boxplots, and 
AUC values increased after recovering missing data using 
autoencoder. Using the rebuilt missing data method, the 
boxplots compressed inward more than that of the averaging 
method for estimating the missing data. Such compression 
depicts higher stability in the classification model for 
rebuilt missing data method. Moreover, the accuracy of 

Figure  6: Receiver operating characteristic curves for mild cognitive 
impairment versus normal control classification

Table 2: Comparing performance metrics
Data Classes Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC
All data, averaged 
missing data

NC‑AD 95.37 100 92.50 89.23 100 0.9625
MCI‑AD 82.63 72.09 87.86 74.60 86.40 0.7988
NC‑MCI 78.65 65.86 94.06 93.02 69.59 0.7990

All data, rebuilt 
missing data

NC‑AD 95.57 100 92.80 89.67 100 0.9640
MCI‑AD 83.01 72.72 88.08 74.92 86.81 0.8030
NC‑MCI 78.67 93.87 65.83 69.89 92.70 0.7983

Only MRI data NC‑AD 84.46 81.87 86.41 81.79 86.45 0.8407
MCI‑AD 66.84 48.70 82.31 70.11 65.31 0.6539
NC‑MCI 66.97 78.94 55.28 63.29 72.88 0.6707

Only MMSE data NC‑AD 91.83 99.21 87.81 81.59 99.52 0.9351
MCI‑AD 78.92 64.14 88.38 77.81 79.44 0.7613
NC‑MCI 70.26 93.14 56.88 55.81 93.41 0.7499

Only demographic 
data

NC‑AD 60.61 61.82 60.44 21.82 89.76 0.6065
MCI‑AD 66.11 46.54 73.79 41.07 77.86 0.5997
NC‑MCI 55.86 68.43 44.59 52.57 61.14 0.5644

ACC – Classification accuracy; SEN – Sensitivity; SPE – Specificity; PPV – Positive predictive value; NPV – Negative predictive value; 
AUC – Area under the curve; AD – Alzheimer’s disease; NC – Normal control; MIC – Mild cognitive impairment; MMSE – Mini‑Mental 
State Examination; MRI – Magnetic resonance imaging
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NC versus MCI classification with autoencoder increased 
after recovering missing data. Yet, exploiting the average of 
missing data obtained drastically better results in terms of 
distinguishing between MCI and AD patients. Line 6 of the 
table is bold that shows best accuracy and other performance 
measures in distinguishing MCI patients from NCs. As in 
Figure 8, after reducing the dimensionality of the input vector 
for classification, the Boxplots significantly compressed 
compared to that of the averaged missing data, which depicts 
less variance (i.e., higher stability) in the classification. Using 
PPV for missing data is more promising than other methods, 
and showed better prognosis capability with the proposed 
method.

Discussion
Figures  5‑7 and data in Table  2 show that the AUC 
values increased after recovering missing data  (=0.964 

for AD versus NC classification, and 0.803 and 
0.799 values for AD versus MCI and for NC versus 
MCI classification, respectively). The boxplots after 
recovering missing data were clearly more compressed 
than that of the averaged missing data mode, which 
interprets more stability and reliability in the constructed 
classification model.

One important evidence is that utilizing the combination 
of different data sources can dramatically alleviate the 
weaknesses of each dataset. In this study, by combining 
five different data sources, we obtained high accuracy to 
distinguish AD and MCI patients and NCs from each 
other. The weakness can be the dependency of method 
on collecting several data sources and increasing missing 
data, a weakness that was handled well in this article using 
autoencoders.

In Table  3, the proposed method is compared to other 
methods. As shown in the table, proposed method 
outperformed other methods in most aspects of 
performance, and AUC of our method is above other 
methods. Due to normalization using natural logarithm and 
missing data imputation using autoencoder, rebuilt missing 
data method can estimate missed data more effectively. It 
also gained a higher performance in most aspects of AD 
diagnosis evaluation metrics. The true sensitivity rate using 
this method is 100%, which shows a perfect diagnosis of 
AD patients.

AUC  =  1 means that the diagnostic test is perfect 
in the differentiation of diseased and nondiseased 
participants. This happens when the distribution of 

Table 3: Comparison of the proposed method with other methods based on Alzheimer’s disease versus normal control 
classification

Method Indicator, number of samples and 
data source

AD versus NC
Accuracy (%) Sensitivity (%) Specificity (%) AUC

Zhang et al., 2011[42] MRI, PET, CSF, MMSE, 
ADAS‑Cog (202, ADNI)

93.20 93.00 93.30 0.98

Dai et al., 2013[43] MRI (83, OASIS) 90.81 92.59 90.33 0.94
Liu et al., 2016[44] MRI, PET (710, ADNI) 94.65 95.03 91.76 0.95
da Silva Lopes et al., 2010[45] EEG Signal (41,‑) 71.5 82 61 ‑
Beheshti et al., 2017[27] MRI (186, ADNI) 93.01 89.13 96.80 0.935
Mishra et al., 2018[46] MRI (417, ADNI) 89.15 85.06 92.53 0.93
Khedher et al., 2015[47] MRI (818, ADNI) 88.96 92.35 86.24 0.93
Lian et al., 2019[48] MRI (1457, ADNI) 90.00 82.00 97.00 0.95
Ben Ahmed et al., 2014[49] MRI (218, ADNI) 87.00 75.50 100 0.85
Zhou et al., 2018[50] MRI (507, ADNI) 93.75 87.5 100 ‑
Suk et al., 2014[51] MRI, PET, CSF, MMSE, 

ADAS‑Cog (202, ADNI)
93.05 90.86 94.57 0.95

Maqsood et al., 2019[21] MRI (392, OASIS) 89.66 100 82 ‑
Saravanakumar and Thangaraj 2019[52] MRI (‑, ADNI) 92.34 96 87.5 ‑
Proposed method (EL) MRI, PET, CSF, MMSE (705, ADNI) 95.57 100 95.57 0.964
AD – Alzheimer’s disease; NC – Normal control; MRI – Magnetic resonance imaging; PET – Positron emission tomography; CSF – 
Cerebrospinal Fluid; MMSE – Mini‑Mental State Examination; ADNI – Alzheimer’s Disease Neuroimaging Initiative; OASIS – Open 
Access Series of Imaging Studies; ADAS – Alzheimer’s Disease Assessment Scale

Figure 7: Receiver operating characteristic curves for Alzheimer’s disease 
versus mild cognitive impairment classification
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test results for the diseased and nondiseased participants has 

no overlap.[53] As can be seen, the AUC value in the proposed 

method is equal to 0.964 for the diagnosis of AD versus NC, 

which shows near excellent differentiation between diseased 

and nondiseased participants.

Conclusion
A novel method for distinguishing between AD and 
MCI patients and NCs was proposed. This has been 
done by missing data imputation and feature reduction 
using autoencoder, MR and PET images, MMSE scores, 
personal information, and CSF biomarkers using SVM 

Figure 8: Boxplots for recognition of AD, NC, and MCI subjects: (a) AD vs. NC. (b) AD vs. MCI. (c) MCI vs. NC

c

b

a
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with linear kernel. Data normalization was done using 
natural logarithm. The validity of the method was tested 
on the ADNI database. The accuracy of the method is 
tested using K‑fold cross‑validation  (K  =  10). To validate 
the effectiveness of proposed method, several tests are 
done on ADNI database, and it was compared with other 
AD diagnosis methods. The results on 705 baseline 
participants of ADNI show that the proposed method 
using multimodal data achieves a high accuracy for AD 
classification  (accuracy  =  95.57%) and also a significant 
improvement in area under the curve  (AUC  =  0.964). In 
addition, the boxplots are more compressed using rebuilt 
missing data by autoencoder. Using more modalities of 
data can help in improving classification metrics. In this 
article, an advanced method in machine learning, that 
is autoencoders, was used to overcome the limitation of 
small number of available individuals for training and 
testing classifier. It is useful in dealing with missing data 
for classification. The efficiency of this method was proved 
by the results of this article. In this article, only baseline 
data of the participants in ADNI database were used. As 
future work, longitudinal data can be used to predict the 
conversion from MCI to AD by finding the patterns of 
brain atrophy in multiple modalities, specifically in the 
ROI for AD in the MR and PET images.
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