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a b s t r a c t 

We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean 

motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of 

Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large defor- 

mations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient 

allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape 

populations accessible through longitudinal and multi-site imaging studies providing increased statisti- 

cal power. Additionally, as planar configurations form a submanifold in shape space, our representation 

allows for effective estimation of quasi-isometric surfaces flattenings. We evaluate the performance of 

our model w.r.t. shape-based classification of hippocampus and femur malformations due to Alzheimer’s 

disease and osteoarthritis, respectively. In particular, we outperform state-of-the-art classifiers based on 

geometric deep learning as well as statistical shape modeling especially in presence of sparse training 

data. To provide insight into the model’s ability of capturing biological shape variability, we carry out an 

analysis of specificity and generalization ability. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Statistical shape models (SSMs) have become an essential tool 

or medical image analysis with a wide range of applications such 

s segmentation of anatomical structures, computer-aided diagno- 

is, and therapy planning. SSMs describe the geometric variabil- 

ty in a population in terms of a mean shape and a hierarchy of 

ajor modes explaining the main trends of shape variation. Based 

n a notion of shape space, SSMs can be learned from a database 

f consistently parametrized instances from the object class under 

tudy. The resulting models provide a shape prior that can be used 

o constrain synthesis and analysis problems. Moreover, their pa- 

ameter space provides a compact representation that is amenable 

o learning algorithms (e.g. classification or clustering), evaluation, 

nd exploration. 
∗ Corresponding author. 
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Standard SSMs treat the space of shapes as a Euclidean 

ector space allowing for linear statistics to be applied (see 

.g. Heimann and Meinzer (2009) and the references therein). Lin- 

ar methods, however, are often inadequate for capturing the high 

ariability in biological shapes ( Davis et al., 2010 ). Nonlinear ap- 

roaches have been developed based on geometric as well as phys- 

cal concepts such as Hausdorff distance ( Charpiat et al., 2006 ), 

lasticity ( Rumpf and Wirth, 2011 ; von Tycowicz et al., 2015 ; 

hang et al., 2015 ), and viscous flows ( Fuchs et al., 2009 ;

randt et al., 2016 ; Heeren et al., 2018 ). In general, these meth- 

ds lack numerical robustness as well as fast response rates lim- 

ting their practical applicability especially in interactive applica- 

ions. To address these challenges, one line of work models shapes 

y a collection of primitives ( Fletcher et al., 2003 ; Freifeld and 

lack, 2012 ; Ambellan et al., 2019b ) that naturally belong to Lie 

roups and effectively describe local changes in shape. Perform- 

ng intrinsic calculus on the uncoupled primitives allows for fast 

omputations while, at the same time, accounting for the nonlin- 

arity in shape variation. However, solving the inverse problem, i.e. 

apping from primitives back to surface meshes, is generally non- 

rivial. Recently, von Tycowicz et al. (2018) presented a physically 

https://doi.org/10.1016/j.media.2021.102178
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102178&domain=pdf
mailto:ambellan@zib.de
mailto:zachow@zib.de
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Fig. 1. Relations between reference shape S̄ (left) and shape S = φ( ̄S ) , a deformation thereof (right), s.t. D i := ∇φ| T̄ i . Note that each frame F i = R i ̄F i is defined solely on the 

respective triangle T i and all neighboring frames are connected across the shared edge of their underlying triangles via F i C i j = F j . 
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otivated approach based on differential coordinates for which the 

nverse problem is well-known and can be solved at linear cost. 

espite their inherent nonlinear structure, the employed represen- 

ations are not invariant under Euclidean motion and, thus, anal- 

sis thereon suffers from bias due to arbitrary choices. While the 

ffect of rigid motions can be removed between pairs of shapes 

sing alignment strategies, non-transitivity thereof prevents true 

roup-wise alignment. 

A related concept is to exploit the homogeneous structure of 

he ambient space and to encode displacements of points in terms 

f (e.g. rigid or affine) transformations ( Gilles et al., 2011 ; Arsigny 

t al., 2003, 2009 ; McLeod et al., 2015 ). Exploiting the redundancy 

f such representations present e.g. in articulated motion, these 

pproaches provide low-dimensional encodings of deformations. 

onsidering the limit case of triangle-wise supported polyaffine/- 

igid deformations is similar to simplicial maps underlying the 

onstruction in ( Freifeld and Black, 2012 ; von Tycowicz et al., 2018 ;

mbellan et al., 2019b ) as well as our setup. However, the lat- 

er employ differential characterizations of such maps that remove 

ranslational components and put local geometric variability into 

ocus. 

This work presents a novel shape representation based on dis- 

rete fundamental forms that is invariant under Euclidean mo- 

ion. We endow this representation with a Lie group structure 

hat admits bi-invariant metrics and therefore allows for consis- 

ent analysis using manifold-valued statistics based on the Rie- 

annian framework. Furthermore, we derive a simple, efficient, ro- 

ust, yet accurate (i.e. without resorting to model approximations) 

olver for the inverse problem that allows for interactive applica- 

ions. Beyond statistical shape modeling the proposed framework 

s amenable for surface processing such as quasi-isometric flatten- 

ng. A publicly available implementation of the proposed model is 

iven in the Morphomatics 4 library. 

Although in computer graphics and vision communities, rota- 

ion invariant differential coordinates have also been successfully 

mployed for geometry processing applications, e.g. Kircher and 

arland (2008) ; Hasler et al. (2009) ; Gao et al. (2016) , these ap-

roaches fall short of a fully intrinsic treatment (e.g. due to lack of 

i-invariant group structure and linearization) and have not been 

dapted to the field of SSMs. A recent string of contributions inves- 

igates functional characterizations of intrinsic and extrinsic geom- 

try ( Rustamov et al., 2013 ; Corman et al., 2017 ; Wang et al., 2018 )

o obtain shape descriptors. While the underlying functional map 

ramework alleviates the requirement on point-to-point correspon- 
4 morphomatics.github.io . 

m

D

s

2 
ences, the reduced function spaces are based on low-frequency 

ariations and, thus, prone to insensitivity for localized shape vari- 

bility (such as osteophyte formation during the course of os- 

eoarthritis). 

. Rotation invariant surface representation 

In this section, we derive a discrete surface representation 

ased on concepts from differential geometry of smooth surfaces. 

his representation’s key feature, its invariance under Euclidean 

otion and hence well-suitedness for shape analysis purposes, 

rises directly from discretization of surface theoretical results. 

inally, the proposed representation setting exhibits a Lie group 

tructure that we endow with a bi-invariant metric in order to 

nsure structural unity between Riemannian and Lie group frame- 

ork (see e.g. Pennec and Lorenzi (2020) ). 

.1. Fundamental forms and surface theory 

To every smooth surface there uniquely exist two smoothly 

ointwise varying and symmetric bilinear forms on the tangent 

lane, the so called fundamental forms . The first fundamental form 

 (a.k.a. metric tensor) is positive-definite and allows for angle, 

ength and area measurement. The second fundamental form II de- 

cribes the curvature of the surface. A prominent result in clas- 

ical mathematics, the Fundamental Theorem of Surface Theory ac- 

ording to Bonnet ( ≈1860, e.g. do Carmo (1976) Sec. 4.3), states 

hat if given two symmetric bilinear forms (one of them positive- 

efinite), s.t. for both certain integrability conditions hold (viz. the 

auß–Codazzi equations), then they (locally) determine uniquely, 

p to global rotation and translation, a surface embedded in three 

imensional space with these two as its fundamental forms. There- 

ore, a discrete description of the fundamental forms is an excel- 

ent candidate for a rotation-invariant surface representation. In 

he following, we will denote our proposed shape model as the 

undamental coordinate model (FCM). 

.2. Discretization 

We consider shapes that belong to a particular population of 

natomical structures, s.t. each digital shape S can be described 

s a left-acting deformation φ of a common reference shape S̄ 

iven as triangulated surface. Let deformation φ be affine on each 

riangle T̄ i of S̄ , then the deformation gradient ∇φ is the 3 × 3 

atrix of partial derivatives of φ and constant on each triangle 

 i := ∇φ| T̄ i (see e.g. Botsch et al. (2006) for detailed expres- 

ions). Note that transition from deformation to deformation gra- 

http://morphomatics.github.io
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Fig. 2. Non-flat surface S̄ is employed as reference within the deformation setup. Flat surface S is determined via deformation of S̄ by φ, s.t. metric distortion, i.e. U i , is close 

to identity and R i is determined by means of C i j that are normal vector fixing modifications of C̄ i j . 
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ient provides invariance under translations. Assuming φ to be 

n orientation-preserving embedding of S̄ , we can decompose D i 

niquely into its rotational R i and stretching U i components by 

eans of the polar decomposition D i = R i U i . Note that U i furnishes

 complete description of the metric distortion of T̄ i and is defined 

n reference coordinates, hence invariant under rotation of S. In- 

eed, we can obtain a representation of the first fundamental form 

y restricting the stretches to the tangent plane. To this end, we 

efine an arbitrary but fixed element-wise field { ̄F i } of orthonor- 

al frames on S̄ , s.t. the last column of each frame is the normal

f the respective element. Then, we represent the metric in terms 

f reduced stretch 

˜ U i := [ ̄F T 
i 

U i ̄F i ] 3 , 3 = I | 1 / 2 
T̄ i 

, where [ · ] 3 , 3 denotes the

ubmatrix with the third row and column removed. 

As for the second fundamental form, we note that at a point 

p ∈ S it is determined by the differential of the normal field N, 

iz. II p (v , w ) = I p (−dN p (v ) , w ) for tangent vectors v , w . For a trian-

ulated surface, the differential dN is supported along the edges. 

n order to derive a representation thereof, we induce the frame 

eld { F i } on S consistent to { ̄F i } using the rotational part of the

eformation gradient, i.e. F i = R i ̄F i . This allows us to define tran- 

ition rotations F i C i j = F j for each inner edge (incident to triangles 

 i , T j ) that fully describe the change in normal directions. Note that, 

hile both the frames { F i } and the rotations { R i } are equivariant,

he transition rotations { C i j } are invariant under global rotations of 

and S̄ . Further details hereon are depicted in Fig. 1 . 

.3. Group structure 

In order to perform intrinsic statistical analysis, we derive a dis- 

ance that is compatible with the underlying representation space. 

n particular, we endow the space with a Lie group structure to- 

ether with a bi-invariant Riemannian metric for which group and 

iemannian notions of exponential and logarithm coincide. This al- 

ows us to exploit closed-form expressions to perform geodesic cal- 

ulus yielding simple, efficient, and numerically robust algorithms. 

e recommend chapter two of Alexandrino and Bettiol (2015) to 

eaders interested in deeper insight into bi-invariant metrics on Lie 

roups. Especially regarding their existence and the geometric con- 

equences thereof. 

Our shape representation consists of transition rotations 

 i j ∈ SO (3) (one per inner edge) and tangential stretches 

˜ 
 ∈ Sym 

+ (2) (one per triangle), where SO (3) is the Lie group 
i 

3 
f rotations in R 

3 and Sym 

+ (2) the space of symmetric 

nd positive-definite 2 × 2 matrices. Following the approach 

n Arsigny et al. (2006) , we equip U, V ∈ Sym 

+ (2) with a mul-

iplication U ◦ V := exp ( log (U) + log (V )) , s.t. Sym 

+ (2) turns into

 commutative Lie group. It now allows for a bi-invariant met- 

ic induced by the Frobenius inner product yielding distance 

 Sym 

+ (2) (U, V ) = ‖ log (V ) − log (U) ‖ F . Note that this structure and 

etric do not exhibit the swelling effect of determinants in interpo- 

ation ( Goh et al., 2011 ). SO (3) as a compact Lie group also admits

 bi-invariant metric induced by the Frobenius inner product with 

istance d SO (3) (Q, R ) = 

∥∥log (Q 

T R ) 
∥∥

F 
, s.t. we define our represen- 

ation space as the product group G := SO (3) n × Sym 

+ (2) m and 

, n the number of triangles and inner edges. Finally, we define 

he distance of two shapes S, T based on the respective group 

epresentation s = s (S) , t = t(T ) ∈ G as 

 

2 
ω (s, t) = 

ω 

3 

Ā E 

∑ 

(i, j) ∈E 
Ā i j d 

2 
SO (3) 

(
C s i j , C 

t 
i j 

)
+ 

ω 

Ā 

m ∑ 

i =1 

Ā i d 
2 
Sym 

+ (2) 

(
˜ U 

s 
i , 

˜ U 

t 
i 

)
, (1) 

here ω ∈ R 

+ is a weighting factor, E is the set of inner edges,
¯
 i is the area of triangle T̄ i , Ā i j = 

1 / 3 ( ̄A i + Ā j ) , Ā E = 

∑ 

(i, j) ∈E Ā i j ,

nd Ā = 

∑ m 

i =1 Ā i . The area terms hereby provide invariance un- 

er refinement of the mesh as well as simultaneous scaling of 
¯
 , S, T , whereas ω allows for commensuration of the curvature and 

etric contributions in analogy to the Koiter thin shell model 

e.g. Ciarlet (2005) Sec. 4.1). 

. Shape analysis and processing 

.1. Statistical shape modeling 

The derived representation carries a rich non-Euclidean struc- 

ure calling for manifold-valued generalizations for first and second 

oment statistical analysis. By virtue of the bi-invariant metric, 

he proposed representation allows for consistent analysis within 

he Riemannian framework for which statistics are well-developed, 

hile at the same time providing closed-form, group theoretic 

xpressions for geodesic calculus ( von Tycowicz et al., 2018 ). In 

articular, we employ the Riemannian center of mass that pro- 

ides a rigorous notion of a mean μ of elements { s = s (S ) } and
i i i 
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Fig. 3. Left: Example for a flattened femoral articular cartilage region. Right: Flattened femoral cartilage with gray value coded cartilage thickness. The top row shows healthy 

subjects whereas the subjects in the bottom row exhibit denuded areas within the cartilage region. 
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an be efficiently computed using the Gauss-Newton descent algo- 

ithm ( Pennec, 2006 ; Arsigny et al., 2006 ): 

k +1 = exp 

( ∑ 

i 

log 
(
s i · (μk ) −1 

)) 

· μk . 

As our representation space comprises a symmetric positive- 

efinite and a rotational part the algorithm’s respective behavior 

an be assessed separately. Since Sym 

+ (2) is abelian and flat (in- 

eed a vector space) the algorithm converges after exactly one 

tep ( Pennec, 2006 ). In contrast, SO (3) features a less trivial struc- 

ure exhibiting, e.g. a non-empty cut locus . However, as long as 

he data is located within some ε-ball, with ε smaller than the 

njectivity radius of the exponential map, the existence and (lo- 

al) uniqueness of the mean can be guaranteed ( Pennec, 2020 ) 

nd thus convergence of the algorithm. Note that this assump- 

ion is only violated for transition rotations differing by more than 

π , what can be practically ruled out. (cf. Appendix B ). As frame- 

ork for second order statistics we employ (linearized) Principal 

eodesic Analysis ( Fletcher et al., 2004 ) at μ that is an extension 

f the common Principal Component Analysis to Riemannian man- 

folds allowing for covariance analysis. In particular, we solve 

 p = arg max ϑ∈ T μ G 

∑ 

i 

g 
μ
ω 

(
ϑ, log μ (s i ) 

)2 
, 

s.t. g 
μ
ω (ϑ p , ϑ l ) = δpl , f or 1 ≤ l ≤ p 

or the main modes of variation ϑ p , where g ω is the metric as-

ociated to distance d ω ( Eq. 1 ). The solution is found algorithmi- 

ally by eigendecomposition of the Gram matrix C = (c i j ) i j , with 

 i j = g 
μ
ω 

(
log μ (s i ) , log μ (s j ) 

)
(cf. Younes (2010) E.2.2). In order to 

void a systematic bias due to the choice of reference shape S̄ , we 

equire it to agree with the mean of the training data ( ̄S = S̄ (μ) )

s proposed in Joshi et al. (2004) . Details on how to determine a

hape for given representation parameters are given in Section 4 . 

.2. Quasi-isometric surface flattening 

Apart from shape analysis, the proposed representation pro- 

ides an effective framework for processing operations. In this 

ection, we derive an approach for the calculation of a quasi- 

sometric surface chart, i.e. a low-distortion immersion of a given 

urface into the two dimensional Euclidean space. Since flatten- 

ng techniques provide a way to access problems of three di- 

ensional context in a two dimensional fashion, such an ap- 

roach facilitates practically relevant applications like visualization 

nd deep learning based assessment of knee cartilage thickness 

 Fig. 3 ). For a broader overview on application examples we re- 

er to Kreiser et al. (2018) , who published a survey on flattening- 

ased medical visualization techniques. The key idea behind our 

attening approach is to consider the set of flat immersions of 

he reference shape S̄ as a submanifold in shape space. This sub- 
4 
anifold has a particularly convenient characterization in our rep- 

esentation space G allowing for a simple, isometric projection: 

e fix the metric part { U i = I Sym 

+ } as identity (no metric distor-

ion) and choose transition rotations s.t. they act as identity on 

he normals (zero curvature). In particular, the latter are given by 

 C i j = F −1 
i 

· R N 
ji 

· F j } , where R N 
ji 

unfolds triangle T̄ j to the plane of tri-

ngle T̄ i . Phrasing it in the group setting this means we project the 

ransition rotations to SO (2) (embedded in SO (3) ) since all fea- 

ible flat shape representations necessarily have to be elements 

f SO (2) n × Sym 

+ (2) m . See Fig. 2 for a schematic overview. Note 

hat the obtained projection corresponds to a realizable deforma- 

ion, iff the input shape S̄ is isometric to the plane. In general, a 

ear-isometric flattening can be efficiently computed using our re- 

onstruction (cf. next section). 

. Efficient numerics 

In this section, we propose an efficient numerical algorithm to 

olve for the inverse problem of mapping a point in representation 

pace G to a corresponding shape S = φ( ̄S ) . If the corresponding

otations { R i } were known, φ could be obtained as the minimizer 

f 
∑ m 

i =1 Ā i ‖ D i − R i U i ‖ 2 F by solving the well-known Poisson equation 

see e.g. Botsch et al. (2006) ; von Tycowicz et al. (2018) ). However,

n our representation the rotations are only given implicitly in 

erms of the transition rotations. In particular, an immediate 

omputation shows that R j = R i ̄F i C i j ̄F 
T 
j 

=: R i → j for an integrable 

eld { C i j } . Based on this condition, for each triangle T i we can

ormulate a residual term ε i (φ, { R i } ) = 

∑ 

j∈N i 
1 / | N i | 

∥∥D i − R j→ i U i 

∥∥2 

F 
n terms of the rotations of neighboring triangles (indexed by 

 i ). Then, the objective for the inverse problem is given as 

(φ) = min { R i ∈ SO (3) } E(φ, { R i } ) , where E(φ, { R i } ) = 

∑ m 

i =1 Ā i 

 i (φ, { R i } ) . Although E(φ) is a nonlinear function calling for

terative optimization routines, it exhibits a special structure 

menable to an efficient alternating minimization technique. 

pecifically, we employ a block coordinate descent strategy that 

lternates between a local and a global step: 

Local step: First, we minimize E(φ, { R i } ) over the rotations { R i }
eeping φ (hence D i ) fixed. Each summand in ε i depends on a 

ingle rotation R j , s.t. the problem decouples into individual low- 

imensional optimizations that can be solved in closed-form and 

llow for massive parallelization. Note that the problem reduces to 

he well-known orthogonal Procrustes problem. Further details are 

iven visually and formally in Appendix A . 

Global step: Second, we minimize E(φ, { R i } ) over φ with ro- 

ations { R i } fixed leading to a quadratic optimization problem 

or which the optimality conditions are determined by a Poisson 

quation. As the system matrix is sparse and depends only on 

he reference shape, it can be factorized once during the prepro- 

ess allowing for very efficient global solves with close to linear 

ost. 
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Fig. 4. Mean shape of healthy distal femora overlaid with (larger) mean shape of 

the diseased femora wherever the distance is larger than 1.45mm, colored accord- 

ingly. 

Fig. 5. Mean shape of diseased right hippocampi overlaid with mean shape of the 

healthy hippocampi wherever the distance is larger than 0.6mm, colored accord- 

ingly. 
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Fig. 6. OA classification experiment for the proposed FCM, 

PDM ( Cootes et al., 1995 ) and DCM ( von Tycowicz et al., 2018 ). 

Fig. 7. Alzheimer’s classification experiment for the proposed FCM, 

MeshCNN ( Hanocka et al., 2019 ) and PDM ( Cootes et al., 1995 ). 
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5 nda.nih.gov/oai . 
6 adni.loni.usc.edu . 
7 code online available: cs.technion.ac.il/ ∼mirela/code/fmap2p2p.zip . 
Note that the objective is bounded from below and that both 

ocal and global steps feature unique solutions that are guaran- 

eed to weakly decrease the objective making any numerical safe- 

uards unnecessary. This contrasts with classical approaches that 

equire precautions, such as line search strategies and modification 

chemes for singular or indefinite Hessians, to guarantee robust- 

ess. 

Initialization To provide the solver with a warm start, we com- 

ute an initial guess for the rotation field { R i } . To this end, we em-

loy the local integrability condition R j = R i → j to propagate an ini- 

ial rotation matrix from an arbitrary seed along a precomputed 

panning tree of the dual graph of S̄ . Note, that this strategy re- 

overs the rotation field exactly for integrable { C i j } . In case of non-

ntegrable fields, one advantage of the Poisson-based reconstruc- 

ion (global step) is that it distributes errors uniformly s.t. local in- 

onsistencies are attenuated. More details on the initialization pro- 

edure can be found in Appendix A . 

. Experiments and results 

Except where stated otherwise all experiments are performed 

mploying a fixed metric commensuration weight ω = 10 that em- 

irically shows the best performance in our knee osteoarthritis 

lassification experiment (cf. Appendix C ). 

.1. Data 

We employ four different datasets to ensure a qualitative and 

uantitative as well as a technical and application-oriented assess- 

ent of the proposed FCM. 
5 
(i) OAI - Right distal femora (see Fig. 4 ) from the Osteoarthri- 

is Initiative 5 (OAI) database. All subjects are rated w.r.t. knee os- 

eoarthritis using the Kellgren and Lawrence score (0, healthy → 

, severely diseased) ( Kellgren and Lawrence, 1957 ). The dataset 

onsists of 58 severely diseased (grade 4) and 58 healthy sub- 

ects (grade 0,1) that were also used for evaluation in von Ty- 

owicz et al. (2018) to which we refer for further details on the 

ata, especially with regards to the arrangement of correspondence 

8988 vertices, 13,776 triangles). We added a list of patient ids to 

ppendix D since the underlying segmentation masks are publicly 

vailable as part of publication ( Ambellan et al., 2019a ). 

(ii) ADNI - Right hippocampi (see Fig. 5 ) from the Alzheimer’s 

isease Neuroimaging Initiative 6 (ADNI) consisting of 60 subjects 

howing Alzheimer’s disease and 60 cognitive normal controls. We 

repared this dataset using imaging data from the ADNI database 

hat contains, among others, 1632 brain MRI scans collected on 

our different time points with segmented hippocampi. We estab- 

ished surface correspondence (2280 vertices, 4556 triangles) in a 

ully automatic manner employing the deblurring and denoising 

f functional maps approach ( Ezuz and Ben-Chen, 2017 ) 7 for iso- 

urfaces extracted from the given segmentations. The dataset was 

andomly assembled from the baseline shapes for which segmen- 

ations were simply connected and remeshed surfaces were well- 

pproximating ( ≤ 10 −5 mm root mean square surface distance to 

he isosurface). Similar as for the OAI dataset we added a list of 

http://nda.nih.gov/oai
http://adni.loni.usc.edu
http://cs.technion.ac.il/~mirela/code/fmap2p2p.zip
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Fig. 8. Visualization of the discriminating direction η and separating hyperplane η⊥ for OA classification showing a 2-dimensional projection (right) and corresponding 

shapes (left) equidistantly sampled within the interval containing the input data (note that projections onto η and the visualizing plane do not commute causing the interval 

to appear smaller). Point-wise distance to the middle shape colored using -0.5mm 0.5mm with neutral window (i.e. rosy color) from -0.15mm to 

0.15mm . 

Fig. 9. Visualization of the discriminating direction η and separating hyperplane η⊥ for Alzheimer’s classification showing a 2-dimensional projection (right) and correspond- 

ing shapes (left) equidistantly sampled within the interval containing the input data (note that projections onto η and the visualizing plane do not commute causing the 

interval to appear smaller). Point-wise distance to the middle shape colored using -2.5mm 2.5mm with neutral window (i.e. rosy color) from -0.5mm 

to 0.5mm . 
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can ids to Appendix D since the used hippocampus segmentations 

re publicly available as part of the ADNI database. 

(iii) FAUST - A male human body in two poses being part of 

he anthropological, open-access Fine Alignment Using Scan Tex- 

ure (FAUST) ( Bogo et al., 2014) ) dataset of whole body scans fea-

uring high-quality, dense correspondences (6890 vertices, 13,776 

aces). We chose two poses of the same (male) person, lifting the 

rms up and down alongside its body ( Fig. 10 , right). 

(iv) PIPE - A pair of synthetic pipe surfaces , one in a cylindri-

al and one in a helical configuration consisting of 1220 triangles 

nd 612 vertices as can be seen in Fig. 10 (left). 

Throughout the manuscript we will refer to the datasets using 

he above acronyms relating to the data origin or content. 

The datasets OAI and ADNI will be used for quantitative analysis 

nd comparison to other shape models, whereas FAUST and PIPE 

erve for qualitative assessment of the proposed model. 

.2. Disease classification 

To assess the sensitivity of the proposed FCM for degenerative 

hape changes and compare to different other explicit shape mod- 

ling approaches, we will perform two binary disease classification 

xperiments, one regarding knee osteoarthritis on the distal femur 

nd one concerning Alzheimer’s disease w.r.t. the right hippocam- 

us. Although these diseases are very different and not compara- 

le in a direct way we will make use of the same classification 

ipeline for both of them assessing the generalization potential of 

he proposed FCM regarding classification tasks. To this end, we 

rain a support vector machine (SVM) with linear kernel on feature 

ectors comprising shape weights, i.e. coefficients of the basis rep- 

esentation in terms of the principal modes for every input shape. 

y construction this representation is exact for all input shapes and 

very shape model type. The coefficients hence forthrightly reflect 

he underlying model approach to gauge variation. The classifier is 

rained on a balanced set of feature vectors for different shares of 
6 
ata varying from 10% to 90% with testing on the respective com- 

lement. To address the randomness in our experimental design, 

e perform a Monte Carlo cross-validation drawing 10,0 0 0 times 

er partitioning. 

.2.1. Knee osteoarthritis classification 

Osteoarthritis (OA) is a degenerative disease of the joints that is 

.a. characterized by changes of the bone shape (see Fig. 4 ). Here, 

e investigate the proposed FCM’s ability to classify knee OA for 

he OAI dataset of distal femora. Since our test set contains 58 

ealthy and 58 diseased cases the SVM classifier is trained on 115- 

imensional feature vectors. We compare to the popular point dis- 

ribution model ( Cootes et al., 1995 ) (PDM) as well as to the differ-

ntial coordinates model ( von Tycowicz et al., 2018 ) (DCM), which 

ecently achieved highly accurate classification results. Fig. 6 shows 

he results in terms of average accuracy and standard deviation. 

ote that solely the FCM achieves an accuracy of over 90% in case 

f sparse (10%) training data. 

.2.2. Alzheimer’s classification 

There is a substantial body of work confirming the well-known 

onnection between hippocampal volume loss and Alzheimer’s 

rogression ( Köhler et al., 1998 ; de Toledo-Morrell et al., 20 0 0 ;

onner-Jackson et al., 2015 ). In line with these findings, we ob- 

erve ≈ 1 / 4 volume loss between the FCM-based mean shapes of 

he diseased subjects to the one of the healthy controls. This moti- 

ates a classification experiment regarding the shape of right hip- 

ocampi and the disease state to further evaluate the descriptive- 

ess of our shape representation. For this experiment we employ 

he commensuration parameter ω = 0 . 98 that empirically performs 

est w.r.t. classification accuracy, i.e. metric and curvature related 

ifferences are weighted almost equally within the shape analysis. 

ince our test set contains 60 cognitive normal and 60 diagnosed 

lzheimer’s cases the SVM is trained on 119-dimensional feature 

ectors. 
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Fig. 10. Interpolating geodesic (mean highlighted) for the pipe surface (left) and FAUST (right) data within (f.l.t.r.) the DCM ( von Tycowicz et al., 2018 ), the proposed FCM, 

and PDM ( Cootes et al., 1995 ), each. 
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Given the coarse discretization of the hippocampal sur- 

ace (other than the OAI data) and, thus, moderate hard- 

are requirements, we can perform a direct comparison to 

eshCNN ( Hanocka et al., 2019 , i.e. a state-of-the-art surface-based 

lassifier from the field of geometric deep learning. Specifically, we 

mployed the implementation of the authors 8 performing train- 

ng on an Nvidia GTX 980 TI graphics card (6GB memory). Due 

o the lack of proper stopping criteria (no option for a valida- 

ion set), we report the best test accuracy attained in the first 

00 epochs, which is rather an upper bound for the classifica- 

ion performance. Due to the high computational cost ( > 2 hours 

or training) we restrict to 10 samples per partitioning during 

onte Carlo cross-validation, which increases variability as evi- 

ent by the lack of monotonicity of the estimated dependency of 

he accuracy on the training size. Partitioning is carried out analo- 

ously to the SVM classifier and training employs the Adam op- 

imizer ( Kingma and Ba, 2014 ) with weight decay β1 = 0 . 9 and

2 = 0 . 999 . 

Figure 7 shows the obtained classification accuracies for 

eshCNN as well as our FCM-based and (for reference) PDM- 

ased SVM. Note that the FCM reaches average accuracies ranging 

rom 75.6% (10% training) up to 80.8% (90% training) with values 

bove 80% for all data shares ≥50%. Remarkably, the FCM-based 

lassifier not only outperforms the PDM one but is also superior 

o MeshCNN especially in presence of sparse training data. Note, 

hese results have to be understood in the context of data used, 

amely the shape of one single anatomy. Higher classification ac- 

uracy is possible if more data is utilized, as e.g. 3D MRI scans of 

he whole brain in Seo et al. (2016) . 

.2.3. Transparency 

The proposed classifier exposes a high degree of interpretabil- 

ty and explainability due to the generative character of statistical 

hape models and the linearity of the employed SVM. In particu- 

ar, the discriminating direction underlying the SVM corresponds 

o a geodesic in representation space that directly encodes the sin- 

le type of morphological variation that determines the classifier’s 

rediction. We provide a visualization of the discriminating direc- 

ion for both experiments (OAI and ADNI) in Figs. 8 and 9 based 

n SVM instances with average classification accuracy obtained 

or 40%/60% training/testing split. In addition to shapes sampled 

long the discriminating direction, we provide a 2-dimensional vi- 

ualization using orthogonal projection onto the plane spanned 

y the two principal geodesic modes that retain the highest 

lassification accuracy, viz. ϑ 1 , ϑ 3 and ϑ 1 , ϑ 2 for ADNI and OAI,

espectively. 
8 github.com/ranahanocka/MeshCNN . 

p

n

l

c

7 
.3. Validity 

Frequently, datasets feature a high nonlinear variability that are 

haracterized by large rotational components, which are insuffi- 

iently captured by linear models like PDM. While DCM treats 

he rotational components explicitly, it requires them to be well- 

ocalized, s.t. the logarithm is unambiguous. This assumption may 

ot be satisfied for data with large spread in shape space. Contrary, 

ur model overcomes this limitation by utilizing a relative encod- 

ng via transition rotations, which will never exceed ±π in practi- 

al scenarios (cf. Appendix B ). In Fig. 10 we illustrate the validity 

f our model for two extreme examples in comparison to PDM and 

CM. 

.4. Computational performance 

We compare our framework in terms of computational effi- 

iency to two state-of-the-art approaches: The large deformation 

iffeomorphism metric mapping (LDDMM) using the open-source 

eformetrica ( Durrleman et al., 2014 ) software, and the recent 

CM. To this end, we compute the mean shape on 100 randomly 

ampled pairs from the OAI dataset. Overall, the LDDMM approach 

equires 172.8s ( ±44.8s) in average whereas the proposed FCM fea- 

ures an average runtime of only 2.3s ( ±1.9s), hence a two or- 

ers of magnitude speedup. In comparison to the highly efficient 

CM—requiring 1.1s ( ±0.3s) in average—our model achieves run- 

imes within the same order of magnitude, despite the added non- 

inearity in the inverse problem. 

.5. Specificity, generalization ability, compactness 

We perform a quantitative comparison with PDM and DCM us- 

ng standard measures (detailed in Davies et al. (2008) ) w.r.t. a 

hysically-based surface distance W ( Heeren et al., 2018 ) as pro- 

osed in von Tycowicz et al. (2018) . Specificity ( Fig. 11 middle) 

valuates the validity of the model generated instances in terms 

f their distance to the training shapes. We estimate it using 10 0 0 

andomly generated instances according to the discrete distribu- 

ion of the respective model. Generalization ability ( Fig. 11 left) as- 

esses how well a model represents unseen instances. It is calcu- 

ated in a leave-one-out study. Compactness ( Fig. 11 right) measures 

he relative amount of variability of the training set captured by 

very mode in an accumulated manner. The results show that the 

CM is more specific than PDM and DCM. In terms of generaliza- 

ion ability, the FCM is superior to PDM, yet inferior to DCM. Fi- 

ally, the FCM is less compact than PDM and DCM. Note that com- 

actness is calculated for each model w.r.t its own metric, hence 

ot directly comparable. In particular, we found that decreasing ω
eads to increased compactness, albeit at the possible expense of 

lassification accuracy (cf. Appendix C ). 

http://github.com/ranahanocka/MeshCNN
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Fig. 11. Generalization ability (left, lower ∼better), specificity (middle, lower ∼more specific) and compactness (right, higher ∼more compact) of the proposed FCM, 

PDM ( Cootes et al., 1995 ), and DCM ( von Tycowicz et al., 2018 ) on the OAI dataset. 
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9 The Osteoarthritis Initiative is a public-private partnership comprised of five 

contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01- 

AR-2-2262) funded by the National Institutes of Health, a branch of the Department 

of Health and Human Services, and conducted by the OAI Study Investigators. Pri- 

vate funding partners include Merck Research Laboratories; Novartis Pharmaceuti- 

cals Corporation, GlaxoSmithKline; and Pfizer, Inc. Private sector funding for the OAI 

is managed by the Foundation for the National Institutes of Health. This manuscript 

was prepared using an OAI public use dataset and does not necessarily reflect the 

opinions or views of the OAI investigators, the NIH, or the private funding partners. 
10 Data collection and sharing for this project was funded by the ADNI (Na- 

tional Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of 

Defense award number W81XWH-12-2-0012). ADNI is funded by the National In- 

stitute on Aging, the National Institute of Biomedical Imaging and Bioengineer- 

ing, and through generous contributions from the following: AbbVie, Alzheimer’s 

Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, 

Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan 

Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche 

Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO 

Ltd.;Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & 

Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck 

& Co., Inc.;Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technolo- 

gies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; 

Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Insti- 

tutes of Health Research is providing funds to support ADNI clinical sites in Canada. 

Private sector contributions are facilitated by the Foundation for the National In- 

stitutes of Health ( www.fnih.org ). The grantee organization is the Northern Cali- 

fornia Institute for Research and Education, and the study is coordinated by the 

Alzheimer’s Therapeutic Research Institute at the University of Southern California. 

ADNI data are disseminated by the Laboratory for Neuro Imaging at the University 

of Southern California. 
. Conclusion and future work 

In this work, we presented a novel nonlinear SSM based on 

 Euclidean motion invariant—hence alignment-free—shape repre- 

entation with deep foundations in surface theory. The rich struc- 

ure of the derived shape space assures valid shape instances even 

n presence of strong nonlinear variability. Moreover, we demon- 

trated that the proposed shape representation can be used to 

ffectively calculate quasi-isometric flat immersions to the plane. 

e performed manifold-valued statistics in a consistent Lie group 

etup allowing for closed-form evaluation of Riemannian opera- 

ions. Furthermore, we devised an efficient and robust algorithm 

o solve the inverse problem that does not require any numerical 

afeguards. 

We showed that FCM yields highly differentiating shape de- 

criptors that promote state-of-the-art performance for shape- 

ased disease state classification: (1) In comparisons based on 

 simple classifier (viz. linear SVM) our descriptors are superior 

o the recent Riemannian DCM ( von Tycowicz et al., 2018 ) as 

ell as the popular linear PDM ( Cootes et al., 1995 ) based de-

criptors; (2) Remarkably, the FCM-based SVM significantly out- 

erforms the state-of-the-art, geometric deep learning approach 

eshCNN ( Hanocka et al., 2019 ). 

We would like to remark that our approach guarantees defor- 

ations to be only locally diffeomorphic (i.e. immersions) but not 

lobally. However, we did not observe any non-diffeomorphic in- 

tances in our experiments (e.g. all FCM-derived shapes shown in 

his article are embeddings). Indeed, the FCM correctly captures 

onlinear deformations with large rotational components that vio- 

ate well-localizedness assumptions of previous approaches. On the 

ther hand, in comparison to shape spaces based on diffeomorphic 

apping, FCM allows for fast processing of large-scale shape col- 

ections and is invariant under Euclidean motion, hence, not sus- 

eptible to any bias due to misalignment. 

One possible and interesting way to proceed in the future 

s to replace the log-Euclidean metric with the affine-invariant 

ne, which can be considered the natural metric on the sym- 

etric positive-definite matrices. Another interesting line of fu- 

ure work is to explore the feasibility of fully automatic computer- 

ided diagnostics based on advanced machine learning, e.g. by 

ombining our shape representation with the approach in von Ty- 

owicz (2020) or utilizing the proposed flattening approach to 

ransform three-dimensional problems into the well-known two- 

imensional image-based deep learning setup. 
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Fig. A.2. Neighboring relations employed in the local step of the integration proce- 

dure. Rotations R i are connected by transition rotations C i j . 
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ents for Fig. 3 . The present article is an extended version of 

mbellan et al. (2019c) presented at MICCAI 2019. 

ppendix A. Shape reconstruction - Initialization and Local 

tep 

Efficient shape reconstruction as outlined in Section 4 is an es- 

ential part of this work and consists of an initialization and an 

teration of global and local step until a solution is reached. Since 

he global step is basically solving a Poisson problem and also ex- 

mplified in von Tycowicz et al. (2018) we will omit it here. To 

ase deeper inside on how to initialize the reconstruction algo- 

ithm and how to do the local step we provide two schematic visu- 

ls and explicitly determine the solution of the local step through 

irect calculation. 

Initialization. To initialize the algorithm we fix the pose of an 

rbitrarily chosen triangle i 0 by fixing its rotation R i 0 relative to 

eference shape S̄ . Starting from triangle i 0 a spanning tree is de- 

ermined to define a path through the dual graph, passing every 

riangle exactly once. 

R i 0 is propagated along this path employing the local integrabil- 

ty condition, viz. R j := R i → j = R i ̄F i C i j ̄F 
T 
j 

. Finally this procedure pro-

ides a field of extrinsic rotations { R i } to initialize the local/global 

olver. Note that the algorithm will stop right after the first itera- 

ion, if the { C i j } form an integrable system. In that case the initial-

zation is additionally invariant w.r.t. the choice of the fixed trian- 

le and spanning tree. Fig. A.1 provides a schematic overview on 

he initialization process. 

Local step. Within the local step of the reconstruction algo- 

ithm the deformation φ of S̄ and hence the deformation gradi- 

nt is fixed. We aim to find R i for every triangle i , s.t. it, medi-

ted through { C i j } , locally optimally accompanies φ. »Local« hereby 

as to be understood as the one-ring triangle-neighborhood. This 

roblem has a closed-form solution that we will work out within 

he following proposition via direct calculation on the optimization 

arget. 

Proposition. The local step within the shape reconstruction al- 

orithm targeting the optimization problem: 

 i = arg min R ∈ SO (3) 

∑ 

s ∈N i 

∥∥∇φ| T̄ s − R ̄F i C is ̄F 
T 

s U s 

∥∥2 

F 
, 
ig. A.1. Initialization procedure propagating an initial rotation R i 0 along a pre- 

omputed spanning tree across the data. The superscript digits indicate the number 

f propagation steps needed to reach a certain point. 
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9 
here N i is the set of indices belonging to edge neighbors of tri- 

ngle i , can be solved in closed form and the solution is unique. 

roof. For the sake of simplicity let D s = ∇φ| T̄ s . We carry out a

irect calculation utilizing the definition 〈 A, B 〉 F := tr (A 

T B ) and the 

race’s invariance under cyclic permutations: 

 i = arg min R ∈ SO (3) 

∑ 

s ∈N i 

∥∥D s − R ̄F i C is ̄F 
T 

s U s 

∥∥2 

F 

= arg min R ∈ SO (3) 

∑ 

s ∈N i 
‖ 

D s ‖ 

2 
F ︸ ︷︷ ︸ 

const. 

−2 

〈
D s , R ̄F i C is ̄F 

T 
s U s 

〉
F 

+ 

∥∥R ̄F i C is ̄F 
T 

s U s 

∥∥2 

F ︸ ︷︷ ︸ 
const. 

= ar g max R ∈ SO (3) 

∑ 

s ∈N i 
tr 

(
D 

T 
s R ̄F i C is ̄F 

T 
s U s 

)
= arg max R ∈ SO (3) 

∑ 

s ∈N i 

〈
D s U 

T 
s F̄ s C 

T 
is F̄ 

T 
i , R 

〉
F 

= arg max R ∈ SO (3) 

〈
D N i , R 

〉
F 

ince D N i is a nonsingular and orientation-preserving matrix it can 

e uniquely decomposed via polar decomposition to R N i U N i , where 

 N i ∈ SO (3) and U N i ∈ Sym 

+ (3) s.t. 

 N i = arg max R ∈ SO (3) 

〈
D N i , R 

〉
F 
. �

Figure A.2 schematically illustrates the underlying neighboring 

elations framing the local integrability constraints. 

ppendix B. Rotational logarithm and relative transition 

otations 

As with other non-Euclidean approaches, existence and unique- 

ess of the intrinsic mean is only ensured for well-localized data. 

n particular, for our representation this concerns the rotational 

omponents describing the changes in curvature. We would like 

o remark that this is a rather academic discussion as we did not 

ncounter any example with critical disparity. Indeed, even for the 

ynthetic PIPE dataset representing a severe nonlinear deformation 

he relative transition rotations are located in a small neighbor- 

ood of radius 5 π/ 23 , see Fig. B.1 . However, the following propo- 

ition explains how to (theoretically) control the relative transition 

otations and thus how to avoid ambiguities regarding the rota- 

ional logarithm. 

Proposition. For any given n shapes S 1 , . . . , S n there exists a 

ommon discetization and a frame field, such that all relative tran- 

ition rotations exhibit angles in (−π, π) . 
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Fig. B.1. Histogram of angles between transition rotations of the PIPE shapes. The 

angles are all relatively small and far away from the critical region of angles larger 

than ±π . 

Fig. B.2. Schematic summary of the argumentation to proof the proposition on rel- 

ative transition rotations. The given construction allows to separate relative transi- 

tion rotations into normal (I) and tangential (II) type. 
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roof. We poof the result for two shapes S̄ and S since the ar- 

umentation naturally extends to the whole n shapes. At first we 

ave to control change in normal direction in regions of high cur- 

ature. We therefore simultaneously refine the triangulations un- 

il the angle between normals of any two neighboring triangles 

ies in ( −π/ 2 , π/ 2 ) . Form this point onwards the argumentation is 

dditionally summarized in Fig. B.2 . The basic idea of the follow- 

ng construction is to separate normal from tangential difference 

nd to argue independently on each. We now subdivide every tri- 

ngle T̄ l of S̄ (analogously for T l of S) into three parts T̄ l 0 , T̄ l 1 , T̄ l 2 
y means of the incenter and the bisecting lines of the angles. 

ithout loss of generality we can assume that T̄ j 0 is neighbor- 

ng T̄ i 0 (thus T̄ j was already neighboring T̄ i ). We fix a frame F̄ i 0 
n T̄ i 0 ensuring alignment of the first basis vector to the edge 

hared with T̄ j 0 . Frame F̄ j 0 is now defined by rotating F̄ i 0 around 

he common edge. This directly implies that C̄ i 0 j 0 realizes an an- 

le with absolute value smaller than 

π/ 2 . The same holds for C i j 
0 0 

Fig. C.1. Classification accuracy and compactness 

10 
ince F l = R l ̄F l preserves alignment of the frames with the under- 

aying triangles and through the initial refinement we already en- 

ured normal differing of less then ±π . We analogously define F̄ i k 
f T̄ i k has neighbors, if not, we simply set F̄ i k = F̄ i 0 . This construc- 

ion allows to explicitly differentiate two different types of rela- 

ive transition rotations: type (I) that comes from normal differ- 

nces like C i 0 j 0 C̄ 
−1 
i 0 j 0 

and type (II) like C j 0 j 1 C̄ 
−1 
j 0 j 1 

that is induced by 

angential change. Since F j 0 = R j ̄F j 0 and F j 1 = R j ̄F j 1 we see imme- 

iately that C j 0 j 1 = F̄ −1 
j 0 

R −1 
j 

R j ̄F j 1 = C̄ j 0 j 1 and thus C j 0 j 1 C̄ 
−1 
j 0 j 1 

= I 3 . To

larify (I) we strip some notation, more precisely, let C 1 , C 2 be two

ransition rotations with angles −θ1 , θ2 and axes −v 1 , v 2 , respec- 

ively realizing normal change only. Then, the relative transition ro- 

ation is given by C 12 = C 2 · (C 1 ) −1 and of type (I). Now, assuming
1 , θ2 ∈ ( −π/ 2 , π/ 2 ) and in light of 

os 

(
θ12 

2 

)
= cos 

(
θ1 

2 

)
cos 

(
θ2 

2 

)
− sin 

(
θ1 

2 

)
sin 

(
θ2 

2 

)〈
v 1 , v 2 

〉
cf. e.g. Altmann (2005) ), it follows that the angle θ12 of the 

omposite rotation does not exceed (−π, π) , hence is well- 

ocalized. �

ppendix C. Classification with varying commensuration 

arameter 

As we are on the one hand applying shape models for disease 

lassification purposes and on the other hand are in general inter- 

sted in rather compact models, we did vary the metric commen- 

uration parameter ω (cf. Section 2.2 ) since it directly affects both. 

e studied the connection between choice of ω, classification ac- 

uracy and model compactness. 

OAI - OA Classification. As can be seen in Fig. C.1 the dis- 

ase classification accuracy increases as ω increases. Looking at 

q. (1) this means putting higher weight on the rotational, thus 

urvature related term leads to higher classification accuracy. Ad- 

itionally all examined choices of ω give FCM classification results 

ith a superior performance compared to PDM. However, the de- 

elopment of model compactness is contrary to the classification 

ccuracy as shown in Fig. C.1 . The larger ω gets, the less compact 

s the shape model and none of the examined commensuration pa- 

ameter choices leads to a compactness as high as for the PDM. 

ADNI - Alzheimer’s Classification. A similar experiment for 

lzheimer’s classification reveals a rather different dependency on 

he commensuration parameter, see Fig. C.1 . For values ω � 10 the 

lassification accuracy lies below the one achieved by the PDM. For 

 ≈ 0 . 98 the peak performance is reached and for values below 

e note again slight decrease in performance. The compactness in- 

tead, as can be seen in Fig. C.1 , develops very similar as for the

AI dataset and is still for all ω below that of the PDM. As con- 

lusion to this section we conjecture, that comparison of compact- 

ess might be interesting for models that are build on the same 

hape representation but it becomes less meaningful if different 
for varying commensuration parameter ω. 
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epresentations are compared. Furthermore, we find that the most 

ompact models do not (necessarily) give the best classification ac- 

uracy. It appears that complex shape variation as it emerges from 

ertain diseases tends to require a less compact encoding for an 

xpressive but specific description. 

ppendix D. Data identifiers 

The data used within the given classification experiments is 

ublicly available, we thus aim to facilitate reproduction of and 

omparison to our results. To this end we compiled labeled iden- 

ifier lists of the data used in our experiments ( Table D.1 and D.2 ).

Table D.1 

List of unique patient ids from the OAI database used in the OA classification 

experiment. 

Healthy (KL 0/1) Diseased (KL 4) 

9008561 9258563 9510418 9246518 9391984 9631713 

9013798 9304351 9517914 9256759 9393987 9638953 

9017909 9331053 9582487 9263504 9413071 9642550 

9036770 9333574 9601162 9266394 9414291 9660708 

9036948 9341699 9617689 9267719 9421492 9672573 

9039744 9341903 9645577 9271965 9422381 9680800 

9089627 9355112 9655592 9284505 9430102 9689922 

9108461 9383004 9718992 9287216 9439428 9691663 

9116298 9391372 9750072 9301332 9457359 9695135 

9120941 9394136 9854269 9326657 9467278 9700341 

9132486 9397088 9876530 9331465 9469318 9710479 

9141244 9397976 9878765 9340139 9470313 9745458 

9153509 9433408 9879069 9349261 9475286 9750090 

9171766 9440417 9907090 9364366 9477175 9760079 

9184495 9460287 9916140 9365968 9477358 9781749 

9189553 9474901 9967815 9375317 9508335 9858216 

9207016 9486748 9973322 9379276 9517311 9895555 

9211049 9488834 9978579 9389580 9557454 9933836 

9245519 9501871 9988421 9391061 9568504 9943227 

9504627 9604541 

Table D.2 

List of unique scan ids from the ADNI database used in the 

Alzheimer’s classification experiment. 

Cognitive Normal Alzheimer’s Diagnosed 

10312 13681 17207 10064 14974 22310 

10605 13717 17232 10468 15001 22938 

10813 13737 17487 10568 15145 23375 

10835 13893 17527 10764 15287 23446 

10883 14104 18109 11633 15315 24659 

10960 14488 18236 12000 15935 24672 

11006 14513 18321 12365 16313 25082 

11161 14559 18450 12375 16924 25357 

11314 14818 18827 12381 17191 25455 

11584 14959 18909 12402 17337 25763 

11594 14991 18917 12468 18077 26038 

11928 15079 19971 12583 18094 26136 

11974 15527 20352 12836 18151 26143 

12081 15727 20753 12952 18189 26314 

12419 15789 21817 13839 18373 26431 

12485 16048 22439 13976 18390 27061 

12563 16099 24338 13990 19296 27414 

12992 16553 25680 14199 19386 27584 

13191 16759 25829 14629 19395 27673 

13556 17131 26899 14699 21207 28133 

egarding the OA classification all cases can be found as segmenta- 

ion masks accompanying the publicly available OAI-ZIB dataset 11 , 

hereas the Alzheimer’s classification experiment relies on hip- 

ocampus segmentation masks that can be accessed as part of 
12 
DNI database. 

11 https://doi.org/10.12752/4.ATEZ.1.0 . 
12 adni.loni.usc.edu . 
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