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Abstract
In this study we present a novel fully automated Hippocampal Unified 
Multi-Atlas-Networks (HUMAN) algorithm for the segmentation of the 
hippocampus in structural magnetic resonance imaging. In multi-atlas 
approaches atlas selection is of crucial importance for the accuracy of the 
segmentation. Here we present an optimized method based on the definition 
of a small peri-hippocampal region to target the atlas learning with linear and 
non-linear embedded manifolds. All atlases were co-registered to a data driven 
template resulting in a computationally efficient method that requires only one 
test registration. The optimal atlases identified were used to train dedicated 
artificial neural networks whose labels were then propagated and fused to 
obtain the final segmentation. To quantify data heterogeneity and protocol 
inherent effects, HUMAN was tested on two independent data sets provided 
by the Alzheimer’s Disease Neuroimaging Initiative and the Open Access 
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Series of Imaging Studies. HUMAN is accurate and achieves state-of-the-art 
performance (Dice = ±0.929 0.003ADNI  and Dice 0.869 0.002OASIS = ± ). It is 
also a robust method that remains stable when applied to the whole hippocampus 
or to sub-regions (patches). HUMAN also compares favorably with a basic 
multi-atlas approach and a benchmark segmentation tool such as FreeSurfer.

Keywords: hippocampus segmentation, machine learning, multi-atlas

Online supplementary data available from stacks.iop.org/PMB/60/8851/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

The hippocampus is a brain structure of great importance for the pathogenesis of a number 
of neurodegenerative diseases. Hippocampal atrophy is an established primary biomarker in 
Alzheimer’s disease (Sabuncu et al 2011, Chincarini et al 2013). The gold standard for hippo-
campal segmentation is manual tracing, which is time consuming, and subject to protocol and 
rater variability. This, along with the intrinsic difficulty of the task, has generated the need for 
automated segmentation techniques. Several methodologies have been put forward, including 
the state-of-the-art multi-atlas approaches, which are based on the non-linear co-registration 
of the target image with expert-segmented examples ( atlases).

Several studies have demonstrated that multi-atlas accuracy is significantly related to the 
‘similarity’ between the target image and the training atlases (Aljabar et al 2009, Lötjönen  
et al 2010, Kim et al 2013, Kwak et al 2013), but an objective definition of the optimal simi-
larity is lacking. In the initial studies such similarity was based on demographic and intensity 
based criteria after linear (Leung et al 2010) or a non-linear registration (Klein et al 2008). 
More recently, non parametric manifold strategies, such as Isomap or Laplacian Eigenmaps, 
were investigated for atlas selection (Wolz et al 2010, Duc et al 2013). However, in some 
cases, parametric techniques, such as the Stochastic Neighbor Embedding, perform better 
than non-parametric ones (Van der Maaten and Hinton 2008). Overall, it is fair to say that an 
optimal atlas selection strategy is yet to be established, which is why we performed a compari-
son of different strategies to evaluate their effectiveness.

Multi-atlas approaches have some intrinsic drawbacks. First of all, errors during the  
registration phase, in the warp estimation or the label resampling can limit the reliability of the 
results (Pipitone et al 2014). In general, registration strategies incorporating tissue classification 
information can limit these issues, at the expense of increased processing times (Heckemann et 
al 2010). In addition, as multi-atlas accuracy depends on the similarity between training and test 
sets, large training sets (‘complete’ in a mathematical sense), requiring a vast amount of com-
putational resources, are necessary to avoid poor performance. In principle, machine learning 
approaches can overcome these issues by generalizing the models learned by training samples. 
However, so far classification-based approaches (Morra et al 2010, Maglietta et al 2015, Tangaro 
et al 2013, 2014) have not attained performances comparable to multi-atlas methods. An effective 
combined strategy would seem a natural and elegant solution, as suggested by recent work (Wang 
et al 2011, Hao et al 2014). Interestingly, these studies show how voxel-wise learning can effec-
tively introduce shape or context information in the segmentation process, improving its accuracy. 
Nonetheless, they have focused on label fusion, a particular aspect of multi-atlas approaches.

In general the comparison of different segmentation algorithms is arduous, due to the fact 
that most studies have different data sources or validation techniques. Also, when dealing 
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specifically with hippocampal segmentation the differences in segmentation protocols repre-
sent a particularly limiting constraint (Bellotti and Pascazio 2012, Bruno et al 2012, Nestor 
et al 2013). Although in recent years a considerable effort has been invested in the creation 
of a unified segmentation protocol (Frisoni and Jack 2011, Frisoni et al 2015), consensus has 
not been reached. Therefore, a segmentation algorithm with the ability to adapt to different 
protocols is very desirable.

Based on the previous considerations, in this paper we present a novel and fully automated 
hippocampal segmentation algorithm, named HUMAN (Hippocampal Unified Multi-Atlas-
Networks), which combines in a unified framework the accuracy of multi-atlas methods with the 
robustness of artificial neural networks classification. The performance of this methodology was 
assessed with two independent test sets, segmented with two independent protocols. The first 
set was provided by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the second 
one by the Open Access Series of Imaging Studies (OASIS). Different manifold strategies for 
atlas selection were explored in order to identify an optimal setup for learning. The performance 
of HUMAN when applied to sub-regions ( patches) of the hippocampus was then investigated. 
Finally, HUMAN was compared to the publicly available segmentation tool FreeSurfer (Fischl 
2012) and to a basic multi-atlas pipeline, consisting of registration and label fusion.

2. Materials

A data set of 100 T1 MRI scans from the ADNI database (1.5 T and 3.0 T), including nor-
mal control (NC), mild cognitive impairment (MCI) and Alzheimer’s disease (AD) subjects, 
was used in preparation of this article. The relative hippocampal labels were provided by the 
EADC-ADNI harmonized segmentation protocol7 (Boccardi et al 2015a, 2015b). The ADNI 
images were divided in two data sets matched for size and demographic features. The first 
one ADNIT , consisting of 45 images, was used for training and parameter tuning. The second 
one ADNID , of 55 images, was used as a test set. ADNIT  and ADNID  shared common acquisition 
characteristics and the same harmonized segmentation protocol.

A further evaluation was performed on an independent OASISD  set, consisting of 35 T1 
MRI scans (1.5 T), provided by the OASIS initiative8 (Marcus et al 2007) in occasion of the 
MICCAI SATA challenge workshop 20139 with the relative labels provided by the brain-
COLOR protocol10 (Klein et al 2010). Both the ADNI and OASISD  sets consisted of MPRAGE 
MRI brain scans with a resolution of 1 1 1× ×  mm3(in the following paragraphs voxels and 
mm3 are interchangeably used).

Data size, clinical status, age and gender information for the three sets ADNIT , ADNID  and 
OASISD  are summarized in table 1. Left and right hippocampal volume averages are reported 

with the relative standard deviations. The age range for OASISD  is consistently broader then 
ADNID  as the OASIS project was not limited to elderly subjects. However, this difference does 

not affect the reliability of the results.
Clinical and gender information for the OASISD  set was not available. ADNIT  and ADNID  were 

matched in terms of demographic and clinical composition. The volume distributions in the 
training set and test set were also matched, thus excluding any volume-based bias in the analy-
sis. The image processing and the learning phases were carried out blindly to subject status.

7 www.hippocampal-protocol.net
8 www.oasis-brains.org
9 https://masi.vuse.vanderbilt.edu/workshop2013
10 www.braincolor.org
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3. Methods

The rationale underlying the HUMAN approach is to emulate the manual segmentation of 
a human expert within a multi-atlas framework. It cannot be considered a machine learning 
segmentation method, as its goal is not the generalization of models learned from training 
examples, nor a label fusion strategy, as the core of the method is the generation of putative 
segmentations and not the fusion of propagated labels. The novel algorithm combines multi-
atlas and classification approaches and involves three main phases:

 • Nonlinear registration. MRI scans are intensity normalized and non-linearly registered 
with a data driven template. The goal of this processing step is to increase the similarity 
among the scans as far as possible. Volumes of Interest (VOIs) are extracted from each 
warped scan to define a peri-hippocampal region of interest.

 • Atlas selection. The VOIs and the displacement fields resulting from non-linear registra-
tion are used to perform linear and non-linear similarity measurements between the test 
image and the training scans. Accordingly this step defines which atlases should be used 
as base of knowledge for subsequent learning and classification.

 • Classification. VOIs of selected atlases undergo a feature extraction process, the resulting 
statistical and textural features are then used to train a voxel-based classifier for each VOI. 
A test VOI undergoes the same feature extraction process then the selected classifiers are 
used to estimate whether a voxel belongs or not to the hippocampus. The hippocampal 
segmentation in the test images is finally obtained by label fusion.

Figure 1 shows a synthetic overview of the algorithm. The full method is illustrated in the 
following and further methodological aspects are discussed in the supplementary material 
(stacks.iop.org/PMB/60/8851/mmedia).

3.1. Nonlinear registration

Since registration is sensitive to the initial conditions, the intensities of the brain scans were 
normalized and the bias field removed with the improved N3 MRI bias field correction algo-
rithm (Tustison et al 2010). After pre-processing, one image av was repeatedly extracted from 
the ADNIT  set to perform a leave-one-out analysis. The healthy controls from the remaining 
training set tD  were used to build a data driven template tM  (see figure 2) to facilitate data 
registration using the advanced normalization tools11 (ANTs) (Avants et al 2009, 2011). 
Leave-one-out was adopted for template construction in order to faithfully reproduce the seg-
mentation process of test scans and maximize the computational efficiency of the method, not 
requiring a dedicated template for each test scan.

Table 1. Group size, age range, gender, hippocampal volumes (mean and standard 
deviation) and clinical composition (normal control NC, mild cognitive impairment 
MCI and Alzheimer’s disease AD subjects) of the training and test data sets.

Data Size
Age 
(years) M/F

Right Vol. 
(mm3) Left Vol. (mm3) Subjects

TADNI 45 60–90 24/21 ±3780 660 ±3693 634 15 NC–15 MCI–15 AD
DADNI 55 63–88 32/23 ±3597 578 ±3559 593 14 NC–19 MCI–22 AD
DOASIS 35 18–90 N/A ±3788 436 ±3577 426 N/A

Note: The groups are matched for hippocampal volume averages and relative standard deviations.

11 http://picsl.upenn.edu/software/ants/
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For each cross-validation round, the tD  brain scans and the validation image av were line-
arly registered to the tM  template with FSL-FLIRT (Jenkinson et al 2012). Then, a non-linear 
registration (Klein et al 2009) was performed with ANTs, and the warp fields iF  were stored 
for later use.

After registration a gross peri-hippocampal region VOI i( )ω  and the corresponding field 
VOI i( )F  were extracted, from both training and test, using FAPoD (Amoroso et al 2012, 

Tangaro et al 2014) (a fully automated hippocampal shape analysis algorithm). The VOI i( )ω  
contained a probable hippocampal region of about 17 000 voxels, and laid in a rectangu-
lar region of interest of dimensions 50 70 70× ×  mm3. VOI i( )ω  and the relative warp field 

VOI i( )F  were used for the subsequent atlas selection.

3.2. Atlas selection

Two different strategies were adopted in order to select the optimal atlases. In the first strat-
egy, as suggested by previous studies (Gerber et al 2010), we used embedding techniques 
to project the peri-hippocampal VOI i( )ω  voxel intensities, and the related voxel-wise warp 
displacements VOI i( )F  (accounting for  ∼17 000 voxels), into low dimensional manifolds. 
Subsequently, the k atlases nearest to the volume of interest of the validation image VOI v( )ω  

Figure 1. Synthetic overview of the proposed method. Healthy subjects of the training 
set are used to build a data driven template, then all training scans are non-linearly 
registered and hippocampal volumes of interest (VOI) extracted. Warped atlases and 
warping fields are stored for later use. A test MRI scan is warped to the template and the 
most similar examples are selected according to a similarity metric. Each optimal atlas 
is used to train a dedicated classifier and to obtain a putative segmentation. Finally, the 
test segmentation is obtained by averaging the putative segmentation according to the 
adopted similarity metric.

N Amoroso et alPhys. Med. Biol. 60 (2015) 8851
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were selected as optimal. Several parametric and non-parametric techniques were explored 
for this task: Sammon mapping (SAM) (Sammon 1969), Isomap (ISO) (Tenenbaum et al 
2000), locally linear embedding (LLE) (Roweis and Saul 2000), Laplacian Eigenmaps (LAP) 
(Belkin and Niyogi 2001), stochastic neighbor embedding (SNE) (Hinton and Roweis 2002) 
and its improved version (t-SNE) (Van der Maaten and Hinton 2008). The second strategy 
consisted in using the Pearson’s correlation to measure directly the similarity among the peri-
hippocampal regions VOI i( )ω  and VOI v( )ω .

For each dimensionality reduction technique different parameter configurations were con-
sidered, resulting in the selection of different atlases. In particular, for each manifold we 
explored the number of atlases to be selected, ranging from 1 to 30, and the embedding mani-
fold dimension. This range was chosen based on the fact that multi-atlas performances usually 
degrade when using more than 15 20∼  atlases (Aljabar et al 2009). The Dice similarity index 
(see section 3.3) was used to evaluate the leave-one-out best configuration.

3.3. Classification and segmentation

The hippocampal VOI i( )ω  belonging to the k selected optimal atlases underwent a statistical 
and textural feature extraction process (Tangaro et al 2015). For each voxel Haralick, Haar-like 
and statistical features such as, average, standard deviation, kurtosis, skewness and gradients 
were computed. The relationships between each voxel and the voxels surrounding it were taken 
into account using varying size windows centered on the examined voxel with dimensions 
ranging from 3 3 3× ×  voxels to 9 9 9× ×  voxels, for a whole set of 315 features (Tangaro  
et al 2014), thus each scan was described as a matrix of approximate dimensions 17 000 315× .

Subsequently, a k-tuple of neural network classifiers k1,...,{ }C  was trained. Since the aim of 
this approach is to use warping to increase as much as possible the similarity between the test 
scan and the training images, we trained the networks iC  to exactly represent the correspond-
ing training data VOI i( )ω . We also investigated whether the classification performance was 
locally robust when training the k1,...,{ }C  on hippocampal sub-regions, called ‘patches’. These 
patches were introduced by subdividing the VOI i( )ω  regions in equally spaced 10 10 10× ×  
voxel windows, thus obtaining 245α =  patches. In this case, we trained the classifiers k1,...,{ }

αC  

Figure 2. The MNI152 non-linear T1 weighted template (left) is qualitatively compared 
with a data-driven template Mt obtained by averaging only healthy subjects (middle) 
showing a sagittal slice containing the right hippocampus. The right panel shows (top) a 
magnified view of the MNI152 peri-hippocampal region and the corresponding region 
for the Mt template (bottom).

N Amoroso et alPhys. Med. Biol. 60 (2015) 8851
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for each α hippocampal local patch instead of considering the whole peri-hippocampal region 
VOI i( )ω , thus resulting in a geometrical pruning of the feature space. The classification per-

formances were measured with the Dice similarity index:

A B

A B
Dice

2 
=

| ∩ |
| |+| |

with A and B representing the regions being compared and cardinalities A| |, B| | intended as the 
measured volumes.

The best classification results were obtained with artificial neural networks, trained with 
the backpropagation algorithm, consisting of one hidden layer with ten neurons and standard 
sigmoid activation functions. With this design, the networks achieved Dice indexes ranging 
from 0.98 to 1.00. Networks trained with a lower number of neurons could not achieve such 
performances, while no significant improvement could be obtained with higher numbers of 
neurons. Each atlas was used simultaneously as a training and testing scan, in order to build a 
model of the atlas itself; then these trained models were used to generate putative segmenta-
tions of the test scans. The same configuration was maintained for the networks trained on 
the hippocampal patches. In the HUMAN approach the test images are processed to increase 
the similarity with the training atlases. Therefore, the training of the classifier was aimed to 
model the atlases rather than generalize to unseen data samples, this is why we chose to adopt 
a more versatile classifier (artificial neural networks) instead of a more robust classifier, such 
as Random Forests. The trained models were finally stored.

For each validation scan, the segmentation was obtained by propagating the putative seg-
mentations, as obtained from each network, onto the native target image space through the 
displacement inverse field t

1−F  and finally fusing the putative labels. More in detail, for each 
voxel the relative label was calculated as a weighted average of the k predicted labels, the 
weight being the pairwise distance between the selected atlases and the target image.

Several studies have shown that majority voting strategies for label fusion can yield hip-
pocampal volumes significantly minor than those obtained by manual segmentation (Sabuncu 
et al 2010, Khan et al 2011, Wang et al 2011). This is mainly caused by the monotonic 
decrease of signal to noise ratio when moving from inner to outer hippocampal regions and 
consequently by an unbalanced error rate in favor of false negatives. To overcome this system-
atic error we used an adaptive threshold in the voxel classification phase, based on the Bayes 
theorem. We used the probability assigned by FAPoD Tangaro et al (2014) to each voxel to 
belong or not to the hippocampus as a priori probabilities P(H). For a two class problem, 
given the average training sensitivity S, the classifier probability to correctly label hippocam-
pal voxel P h H( )| , and specificity s, the classifier probability to correctly label background 
voxel P h H( )¬ |¬ , the probability of a voxel to be assigned to the hippocampus is:

P h P h H P H P h H P H

S P H s P H

* *
* 1 * 1

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ( ))

= | + |¬ ¬
= + − −

Following the Bayes theorem the a posteriori probability for a voxel to belong to the hippo-
campus when positively labeled P H h( )|  is given by:

P H h
P h H P H

P h
S P H

S P H s P H

*

*

* 1 * 1

( )
( ) ( )

( )
( )

( ) ( ) ( ( ))

| =
|

=
+ − −
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This probability is then used as decision threshold. Accordingly, inner voxels which have 
higher a priori probability to belong to the hippocampus are assigned lower thresholds then 
outer ones, as a consequences the probability to have false negatives and the statistical error in 
the hippocampal volume evaluation are both reduced.

3.4. Computational infrastructure

This method requires a complex software framework, involving processing tools developed 
with different languages and in different environments. This could hinder the diffusion of its 
use in clinical or research settings lacking strong technological background. To overcome 
these challenges we developed a user friendly environment exposing Human as a Service,  
a schematic overview is presented in figure 3.

The computational resources for this study were provided by the ReCaS computer 
center (Bari, Italy)12, a computing infrastructure, consisting of about 5000 CPU and allow-
ing up to 2.2 PB storage. The data processing and monitoring was performed by exploiting 
a dynamic job submission tool (JST) facility (Amoroso et al 2014). JST is a job manage-
ment tool particularly useful to manage the submission and monitoring of applications, 
when a large number of independent executions are needed to solve the required tasks. 
Different distributed infrastructures are suitable for HUMAN analyses, such as computer 
grids or clouds.

Hence this approach is flexible and easy to be implemented on dedicated destination 
machines. Moreover, the necessary software can be easily interfaced with web portals or com-
mon workflow manager tools. The HUMAN pipeline is also available, like a web service/
cloud solution at the following link: https://recasgateway.ba.infn.it.

Figure 3. The user data are processed with a continuous Web Distributed Authoring 
and Versioning (WebDAV) protocol linked to the execution host. Different distributed 
infrastructures, such as computer grids or clouds, can be exploited according to user 
requirements.

12 www.recas-pon.ba.infn.it
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4. Results

4.1. Results for atlas selection

To identify the best atlas selection method the embedding techniques listed in section  3.2 
were compared to a Pearson’s correlation with a leave-one-out analysis. The best results, in 
terms of Dice index, were achieved by HUMAN using the Pearson’s correlation between 
the training and the validation VOI i( )ω . For the left hippocampi, the median Dice index was 
0.910 0.004± , and for the right hippocampi 0.914 0.004± . The analysis was performed using 
the optimal configuration found with a basic multi-atlas approach, previously defined as a 
multi-atlas consisting of just registration and label fusion.

The performance of the basic-multi atlas was never as good as that of HUMAN. The best 
results, obtained in this case with Pearson’s correlation, indicated for the left hippocampi a 
median Dice index 0.869 0.006±  and for the right hippocampi 0.873 0.005± . Once estab-
lished that the best method for atlas selection was the use of Pearson’s correlation for the 
similarity measurements, we explored how the number of selected atlases would affect the 
segmentation performance.

In figure 4, the Dice index is represented as a function of the number of atlases. The best 
outcome was achieved with  ∼10 atlases, after which a plateau was reached, with no signifi-
cant difference (Wilcoxon p  >  .05). As a consequence further analyses were carried out con-
sidering only the best ten atlases.

4.2. Segmentation results for ADNI scans

The ADNID  test set shared appearance features and segmentation protocol with the training set 
ADNIT . Moreover, they were matched in terms of demographic and clinical composition. To 

assess the method performances and the relative segmentation quality, a Bland–Altman analysis 
(Bland and Altman 1995) was performed (see figure 5) along with the Dice index measurements.

Segmented volumes and manual tracings showed a very high correlation (0.95 and 0.96 for 
respectively left and right hippocampi). The 95% confidence interval limits were almost the same 
for both left and right hippocampi [−400, 400]. These values along with the high correlation suggest 
good agreement between segmented and manual volumes. Moreover we evaluated the manual versus 

Figure 4. The figure  shows how the Dice index performances vary with number of 
atlases for both left (a) and right (b) hippocampi. Best performances were achieved 
with about 10 atlases.
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segmented volume difference distribution obtaining a mean value of 12.6 207− ±  voxels, which did 
not significantly differ from zero. It is evident that no significant bias affected the segmented vol-
umes. The segmentation agreement was also measured in terms of Dice index, 0.926 0.003±  and 
0.931 0.002±  for left and right hippocampi respectively (0.929 0.003±  on average).

The performance on the test set ADNID  was also compared with the multi-atlas segmenta-
tion procedure described in section 4.1 and FreeSurfer segmentations. Also in this case the 
optimal configuration determined in training was adopted. The results of this comparison are 
presented in the following table 2.

4.3. The segmentation protocol effect on MICCAI scans

The performance of HUMAN was evaluated with the protocol independent test set OASISD  
provided, as previously mentioned, by OASIS in occasion of the MICCAI SATA challenge 
workshop 2013. As described in section 4.2 the method was assessed with a correlation and a 
Bland–Altman analysis. The results for both left and right segmentations are shown in figure 6.

The correlation between the volumes segmented with HUMAN and those segmented 
manually was high (left correlation is 0.83, right 0.79) even if lower than in the former case. 
Bland–Altman analysis showed a quite broad 95% confidence interval with similar values 
for both hippocampi  ∼[−500,500], nevertheless satisfactory levels of accuracy in terms of 
median Dice index were achieved (0.856 0.002±  and 0.862 0.002±  respectively for left and 
right hippocampi; on average 0.869 0.002± ). For the left difference distribution (manual—
segmented volumes) we found on average 82 222− ±  voxels, for right hippocampi 26 296− ± ; 
for both cases no significant bias was detected.

HUMAN performances were also significantly better than those achieved by multi-atlas 
and FreeSurfer. A summary of the results is presented in table 3.

4.4. HUMAN scale robustness

In the final phase of this work, we explored the performance of HUMAN within a patch-based 
segmentation framework. In this case, the goals of the analysis were twofold: to investigate 

Figure 5. The figure  shows the DADNI results obtained for left (a) and right (b) 
hippocampi. The Bland–Altman plots show the agreement between the manual tracings 
and the automated segmentations within the 95% confidence level.
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whether the classification would be affected by local hippocampal shape effects, and to inves-
tigate whether HUMAN performances would be uniformly distributed over the whole hip-
pocampal shape.

This involved segmenting each α test patch with the most correlated k1,...,{ }
αC  models. Also in 

this case, the final prediction was obtained by averaging the scores obtained by the k optimal 
classifiers, i.e. those trained on the patches better correlated with the patch to be segmented. 
The final segmentation was obtained by merging the patch segmentations.

The results confirmed the robustness of HUMAN throughout the whole hippocampus for 
both ADNID  and OASISD . This is illustrated in figure 7, where each patch is color-coded accord-
ing to the relative dice obtained by averaging the ADNID  and OASISD  patch-based results.

Table 2. Median Dice indexes and corresponding standard errors for HUMAN, Multi-
atlas and FreeSurfer segmentations.

HUMAN Multi atlas FreeSurfer

Left hippocampus ±0.926 0.003 ±0.861 0.006 ±0.707 0.006
Right hippocampus ±0.931 0.002 ±0.869 0.004 ±0.715 0.006
Left volumes (mm3) ±3562 664 ±3528 420 ±3337 752
Right volumes (mm3) ±3640 631 ±3610 458 ±3320 557

Note: The segmented volumes for both left and right hippocampi are also shown.

Figure 6. The figure  shows the DOASIS results obtained for left (a) and right (b) 
hippocampi. For both cases a 95% level confidence agreement is shown through the 
Bland–Altman plots.
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Table 3. Median Dice indexes and standard errors for HUMAN, Multi-atlas and 
FreeSurfer, and the segmented volumes for both left and right hippocampi (average and 
standard deviation of the distribution).

HUMAN Multi atlas FreeSurfer

Left hippocampus ±0.856 0.002 ±0.825 0.003 ±0.797 0.005
Right hippocampus ±0.862 0.002 ±0.832 0.003 ±0.808 0.004
Left volumes (mm3) ±3834 368 ±3414 435 ±4200 448
Right volumes (mm3) ±4024 397 ±3530 453 ±4150 409
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In particular, for ADNID  we were able to obtain a small but significant ( p  <  .05 for both 
left and right hippocampi) improvement. The Dice index increased from 0.905 0.004±  
to 0.910 0.003±  and from 0.913 0.003±  to 0.922 0.003± , respectively for left and 
right hippocampi. For OASISD  the Dice index remained constant for the left hippocampi 
(0.847 0.003± ) and increased from 0.852 0.003±  to 0.857 0.003±  ( p  <  .05) for the right 
hippocampi. Significance was assessed also in this case with a Wilcoxon test.

The poorest results were obtained for patches situated at the head of the hippocampus. 
Figure 8 shows a qualitative comparison among segmentations for 12 randomly sampled sub-
jects (from ADNID ): 4 NC, 4 MCI and 4 AD subjects.

5. Discussion and conclusion

In this study we presented a novel segmentation algorithm—HUMAN—based on a combined 
multi-atlas and machine learning strategy. HUMAN produced accurate segmentation on two 
independent test sets. In the first test set, ADNID , with manual labels traced with the same proto-
col of ADNIT , the segmentation results were excellent with median Dice index 0.929 0.003= ±  
for both left and right hippocampi. In the second test set OASISD , with tracings obtained with a 
different protocol, the performance of HUMAN (Dice index 0.869 0.002± ) were less impres-
sive, but yet satisfactory if compared with other recently reported studies (Cardoso et al 2013, 
Kim et al 2013, Kwak et al 2013, Pipitone et al 2014). While the best performing methods of 
MICCAI SATA challenge reported Dice indexes approaching 0.90 median values, based on 
its performance on OASISD , HUMAN would have still placed itself among the best five per-
forming algorithms13. Besides, one should take into account that the performances reported 
(Iglesias et al 2012, Wang and Yushkevich 2013, Zikic et al 2013) were achieved with training 
and test sets sharing the same segmentation protocol, while HUMAN was trained with a dif-
ferent hippocampal segmentation protocol.

In addition, we tried to tackle the following questions: (i) can machine learning strategies 
bring a substantial improvement to state-of-the-art segmentation strategies, such as the multi-
atlas approaches? (ii) to which degree are machine learning strategies affected by the use of 

Figure 7. The figure shows the patch wise Dice distribution for both left (a) and right 
(b) hippocampi. The color-bars show the median Dice index values. Only few patches, 
related to hippocampal head and tail, show dice indexes smaller than 0.7.

13 http://masi.vuse.vanderbilt.edu/submission/leaderboard_final.html
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different segmentation protocols? (iii) how much are machine learning strategies affected by 
local, or patch based, training?

We demonstrated that multi-atlas could be significantly improved if combined with a 
machine learning strategy. Moreover this improvement was robust to segmentation protocol 
differences between training and test. In fact, for both test sets ADNID  and OASISD , a significant 
improvement (of about 5.5%) was found. The differences in protocol, as expected, affected 
the method accuracy. In particular, this could be observed with a loss of correlation between 
manual and HUMAN segmentations. As expected FreeSurfer performances resulted lower 
than those achieved by HUMAN, however FreeSurfer is trained with a different segmentation 
protocol and so this comparison biased against it. Nonetheless, it is interesting to note that 
HUMAN performances showed a greater stability with a variation of about 6.4% against the 
11.4% of FreeSurfer. Finally, the use of local training (patch based) demonstrated the robust-
ness of the method when dealing with sub-hippocampal regions. With this latter patch-based 
method the segmentation performances resulted slightly improved and almost uniformly dis-
tributed over the hippocampus. The results also confirmed the heads of the hippocampus are 
the regions presenting more difficulties in terms of segmentation.

In our previous work (Tangaro et al 2014, Inglese et al 2015) we discussed an entirely 
machine learning based segmentation procedure. In particular, we used a peri-hippocampal 
region to actively determine a set of training images, which were then used to train a unique 
classifier. In this work we propose a complete change of paradigm. HUMAN exploits intensity 
and spatial normalization techniques to best fit the test data to the training set and to define an 
optimal base of knowledge (putative segmentations) to be combined in a multi-atlas framework.

As previously remarked, other recent work has already shown interesting results on this 
approach (Hao et al 2014). However, the fundamental difference between the method here 
described and the above mentioned combined label fusion strategies, is that they introduce 

Figure 8. Human segmentations (first row and third row) with the corresponding 
manual tracings (second row and fourth row) of 4 randomly chosen examples for 
controls (NC), mild cognitive impairment subjects (MCI) and Alzheimer’s disease 
subjects (AD). Some segmentation errors are also underscored for the hippocampal 
head ((a), (b)), tail (c) and body (d).
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voxel-wise machine learning strategies for label fusion, while our method uses machine learn-
ing to determine new putative atlases, obtaining the label fusion through a weighted majority 
voting procedure.

The slight performance deterioration on OASISD  confirmed that segmentation protocols play 
a key-role when it comes to multi-center studies. To the best of our knowledge, this was the 
first study directly addressing the effects of two independent segmentation protocols on fully 
automated segmentation techniques.

It is worthwhile to note that the proposed method is fully automated (it does not require 
user intervention) and computationally efficient, requiring a processing time of about 10 min 
per test image. The possible exploitation of cloud infrastructures implies that it could be 
adopted for large clinical trials. A limitation of the study lies in the absence of clinical evalu-
ation, which was outside the goals of this work. Recent literature has shown that hippocampal 
sub-regions could be important as quantitative bio-markers for a number of neurodegenerative 
diseases, and especially Alzheimer’s disease. Bland–Altman plots, Dice index and correlation 
measurements all confirm that HUMAN segmentation are consistent with the manual trac-
ings. The adoption of a Bayesian strategy for adaptive thresholding has consistently improved 
the segmentation performance, nonetheless a further improvement of the presented method 
could consider the exploration of more refined label fusion strategies. Another refinement of 
the method could eventually investigate which features contribute the most to an optimal label 
combination.

In terms of future developments, we plan to apply HUMAN to a clinical data set with the 
aim of assessing its validity as a tool aiding the diagnosis of Alzheimer’s disease, as we did 
in our previous work on pattern recognition (Amoroso et al 2014, Sensi et al 2014, Bron et al 
2015). Both the high Dice index and correlation values, especially obtained for ADNID  scans, 
would suggest HUMAN applicability to both studies based on changes of volume due to dis-
ease progression and group-wise comparisons with fixed reference volumes, for example for 
MCI-AD transition.
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