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a b s t r a c t

In many epidemiological and clinical studies, observations on individuals are recorded
longitudinally on a Likert-type scale. In the process of recording, or due to some other
causes, a proportion of outcomes and time-dependent covariates may be missing in one
or more follow-up visits (non monotone missing). Even when the number of patients
with intermittent missing data is small, exclusion of those patients from the study seems
unsatisfactory. This apart, often due to misreporting, miscategorization of response can
occur that results in potentially invalid inference when no correction is made. We propose
a joint mixed model that corrects the likelihood function to account for missing response
and/or covariates and adjusts the likelihood to tackle miscategorization of response.
Under this extreme complex but useful setup, we seek to estimate the parameters of
the proposed model that accounts for baseline and/or time dependent covariates. Monte
Carlo expectation–maximization (MCEM) is a convenient approach for estimating the
parameters in the model. A simulation study was carried out to assess the approach.
We also analyzed Alzheimer’s Disease Neuroimaging Initiative (ADNI) data where some
responses and covariates aremissing and some responses are possiblymiscategorized. Our
investigation reveals that apolipo-protein plays a significant role in Alzheimer’s disease
progression. This was not visible in earlier analyses of ADNI data.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In many research problems related to biological, social and medical sciences, multivariate data arise from repeated
measurements on a sample of subjects over time. To analyze such longitudinal data, one must consider the relationship
between the serial observations made on a given unit and hence it is inappropriate to use a general multivariate model
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for studying covariate effects. A two-stage random-effect model [12] or a generalized linear model [17] can be used in this
situation. Often, the response of interest is measured on an ordinal scale with more than two categories.

Methods for longitudinal ordinal data analysis have been actively pursued in the past; see, e.g., [13,15,20]. Amarginalized
latent variable model could be used to analyze data for this situation. A marginalized model separates the systematic
variation in the data from random variation. Basically it uses two models in conjugation. One is the mean or regression
model for the ordinal responses and the other is the dependence model. A cumulative logit model with proportional
odds assumption is commonly used as the mean model. The covariates used in the regression model may include both
qualitative and quantitative variables, some of which are measured at the baseline visit while others vary over time. In the
dependence model, additional variables are introduced as random components to structure the relation between repeated
measurements. Such a modeling approach was used by Heagerty [8] in the context of binary responses. Lee and Daniels [13]
extended the marginalized latent variable model to accommodate ordinal responses.

The modeling of longitudinal responses through latent variables becomes complex when data on the response and some
covariates gomissing. A simple solution is to ignore themissing observations andperforma complete-case analysis. However
this leads to inefficient inference, especially when the missing mechanism is non-ignorable. Following Little and Rubin [19],
there are three types of missing data processes. Data are said to bemissing completely at random (MCAR) if themissing data
process does not depend on missing or observed data, and the process is said to be missing at random (MAR) if the missing
data process depends on the observed data only.

In this paper we consider a non-ignorable missing data mechanism (MNAR) in which the missing data process depends
on both observed and unobserved data. The MNAR pattern of missing data has been considered by Ibrahim and Lipsitz [10]
in the context of generalized linear models when covariates are missing while Troxel et al. [30] and Ibrahim et al. [9] have
consideredmissing responses.Most of thework onmissing data focuses on eithermissing response or covariate. Stubbendick
and Ibrahim [28,29] adopted a maximum likelihood approach for estimating the model parameters in a longitudinal study
when both response and covariates are missing, but in their case the response belonged to the exponential family. Chen
et al. [2] have considered missing response and covariate in the context of longitudinal binary data when the missing data
mechanism is MAR. Here we have considered non-ignorable missingness in response as well as in a covariate.

Missing data analysis in a longitudinal set up is usually carried out under the assumption that the levels of the ordinal
response are correctly classified. In medical or social sciences, however, the true level of the response is often not identified
correctly. The reason for this misclassification may be misreporting by a subject or faulty diagnostic tests. For example, in
a disease progression longitudinal study, there may be misreporting about a patient’s disease severity at subsequent visits
if the ordinal responses are collected and maintained by semi-experts. Also in the job characteristic data [25], employees
were asked to respond to different aspects of the jobwhichwasmeasured on a five-point ordinal scale ranging from strongly
agree to strongly disagree. The employees’ response is supposed to be misclassified.

Miscategorization of categorical data has been considered by many researchers [4,26]. Espeland and Hui [7], Buonac-
corsi [1], Pepe [24] considered a double sampling procedure to obtain the estimates of misclassification rates for discrete
data, binary data and continuous data, respectively. However, only few studies are available in the literature on ordinal
categorical data. Eickhoff and Amemiya [6] considered a known monotone misclassification pattern in either direction for
polytomous outcome variable. Poon and Wang [25] discussed the use of a surrogate variable while modeling multivariate
ordinal responses. Chen et al. [3] considered a generalized estimating equation approach while dealing with error prone
ordinal responses and covariates.

In this paper we develop a flexible model to account for missing response and covariate which is also adjusted for
misclassification of the observed ordinal response. The study, which is carried out under a longitudinal set up, incorporates
the dynamic nature of the missingness pattern. However, it is assumed that the misclassification pattern remains the same
over the visits.

The paper is organized as follows. In Section 2, we propose a flexible model and discuss the identifiability issues related
with the model parameters. Section 3 describes the estimation methodology implemented via a Monte Carlo Newton–
Raphson Expectation Maximization method. A simulation study is reported in Section 4 to assess the approach. In Section 5,
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data are analyzed and finally, we conclude with some observations in
Section 6.

2. Model formulation

2.1. The response process

Consider a study involving N subjects in which subject i ∈ {1, . . . ,N} is assessed on ni ≤ T occasions. Let Yi =

(yi1, . . . , yini )
⊤ be a vector of L-category ordinal responses for the ith subject. Let also Zi = (zi1, . . . , ziq)⊤ be a vector of

baseline covariates and X̃i1, . . . , X̃ip be p time-varying covariate vectors, where X̃ij = (xi1j, . . . , xitj, . . . , xinij)
⊤ for each

j ∈ {1, . . . , p}. We denote the ni × p matrix of p-time varying covariates for the ith subject by Xi = (̃Xi1, . . . , X̃ip). The
tth row of the matrix Xi contains the subject-specific time-dependent covariates which we denote by Xit = (xit1, . . . , xitp)⊤.

To start with, we assume that the responses and the covariates corresponding to each subject are completely observable
on all occasions. We consider a marginalized latent variable model for the regression set up of the longitudinal ordinal
response. Two separate models are considered in conjugation: the mean (or regression) model and the dependence model.
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The systematic variation in the data is modeled through themeanmodel, whereas the dependencemodel takes into account
the random variation in the data and separates it from the systematic variation. A cumulative logit model with proportional
odds assumption is considered for the mean model, viz.

logit(PM
itℓ) = ln

{
Pr(yit ≤ ℓ | Zi, Xit )

1 − Pr(yit ≤ ℓ | Zi, Xit )

}
= β0ℓ + Z⊤

i βz + X⊤

it βx, (1)

where βz and βx are q × 1 and p × 1 vectors of regression coefficients corresponding to the baseline covariates and time-
dependent covariates, respectively, and for each ℓ ∈ {1, . . . , L−1}, β0ℓ is the intercept in the ℓth logit model. Themonotonic
relationship β01 ≤ · · · ≤ β0L−1 is assumed to hold. We denote the regression parameters of interest by β = (β⊤

0ℓ, β
⊤
z , β

⊤
x )⊤.

To capture the serial dependence among repeated observations (repeated over time), a dependence model is used, viz.

logit(PC
itℓ) = ln

Pr(yit ≤ ℓ | uit )
1 − Pr(yit ≤ ℓ | uit )

= ∆itℓ + uit . (2)

In (2) the correlation among observations is induced via unobserved latent variables uit . Here we assume that conditional
on uit the responses are independent, i.e.,

f (yi1, . . . , yini |Zi, Xit , uit ) =

ni∏
t=1

f (yit |uit , Zi, Xit ).

The parameter ∆itℓ represents a function of the marginal means such that the dependence model in (2) is consistent with
the mean model in (1) and it can be derived from the relation

PM
itℓ =

∫
PC
itℓf (uit )duit , (3)

where f is a generic notation used to denote the probability density function of the random component uit characterized by
the relevant elements ofΣi. As the intercepts in the mean model (1) are monotonic, ∆itℓ is also monotonic in ℓ, i.e.,∆it1 ≤

· · · ≤ ∆itL−1 [14,31]. From (3), ∆itℓ can be obtained in terms of β0ℓ, βz, βx and Σi. We assume that Ui = (ui1, . . . , uini )
⊤ is

Gaussian with mean zero and variance–covarianceΣi. We further structureΣi asΣi = σ 2
i Σ

∗ [14], where σ 2
i is modeled as

a function of baseline covariates as σ 2
i = eZ

⊤
i γ and

Σ∗
=

⎡⎢⎢⎢⎢⎢⎣
1 e−λ e−2λ

· · · e−(ni−1)λ

e−λ 1 e−λ
· · · e−(ni−2)λ

· · · ·

· · · ·

· · · ·

e−(ni−1)λ e−(ni−2)λ e−(ni−3)λ
· · · 1

⎤⎥⎥⎥⎥⎥⎦ , (4)

where γ and λ are unknown parameters that characterize the distribution of the random components. The integral in (3)
cannot be expressed in a closed form and hence a numerical technique is commonly used to evaluate it. However in the
specific case of normally distributed random components and a probit link function, the integral in (3) can be evaluated
analytically [31] and∆itℓ takes a neat form given by

∆itℓ = (β0ℓ + Z⊤

i βz + X⊤

it βx)
√
1 + σ 2

i . (5)

Even in the case of the logit link, an approximation works just as well. The idea is to approximate the logistic by the probit.
For c ∼= 1.70 it is well known that H(ν) = Φ(ν/c), where H andΦ are the cumulative distribution functions of a logistic and
Gaussian distribution, respectively; see, e.g., [11,16,22]. Thus in this case an approximate expression for∆itℓ can be worked
out as

∆itℓ = (β0ℓ + Z⊤

i βz + X⊤

it βx)
√
1 + σ 2

i /c2. (6)

The proof of (5) and (6) is given in Appendix A.1.
Suppressing the parameters, given the random components Ui, the distribution of the multivariate ordinal response is

given by

f (Yi | Xi, Zi,Ui) =

ni∏
t=1

L∏
ℓ=1

(
PC
itℓ − PC

itℓ−1

)1yit (cℓt )
, (7)

where 1yit (cℓt ) takes the value 1 or 0 according as yit = cℓt or not. By integrating out the random components Ui, we can
write the joint distribution of the observed responses as

f (Yi | Xi, Zi) =

∫
Ui

ni∏
t=1

L∏
ℓ=1

(
PC
itℓ − PC

itℓ−1

)1yit (cℓt )f (Ui)dUi. (8)
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2.2. The missing data process

The model in Eq. (8) is based on the assumption that the responses and all covariates are observable. We now consider
the situation where the response and a single time-varying covariate of an individual are missing on some occasions. We
denote the observed and the missing responses for the ith individual by Y (o)

i and Y (m)
i , respectively.

Without loss of generality we assume that the time-dependent covariate X̃i1 is missing on some occasions while
observations on other time varying covariates X̃i2, . . . , X̃ip and the baseline covariates Zi are completely available for
each assessment time and for all study participants. Let us denote the observed covariate values (observed over time)
corresponding to X̃i1 as X̃ (o)

i1 and all the missing values (missing over time) as X̃ (m)
i1 . Further, we denote the matrix of all

observed time-dependent covariates and the observed part of X̃i1 by X (o)
i , i.e.,

X (o)
i = (̃X (o)

i1 , X̃i2, . . . , X̃ip).

To indicate the availability of data, we introduce two indicators Ry
it and Rx

it , where Ry
it takes the value 1 or 0 according as yit

is observed or not. Similarly Rx
it takes the value 1 if xit1 is observed and 0 otherwise.

Now suppressing the parameters, the joint distribution of the multivariate ordinal response and the missing data
indicators can be decomposed as

f (Y (o)
i , Ry

i , R
x
i | X (o)

i , Zi) =

∫
Ui

∫
X̃ (m)
i1

∑
Y (m)
i

f (Ry
i , R

x
i | Y (o)

i , Y (m)
i , X (o)

i , X̃
(m)
i1 , Zi)

× f (Y (o)
i , Y (m)

i | X (o)
i , X̃

(m)
i1 , Zi,Ui)f (̃X

(m)
i1 | X̃ (o)

i1 )f (Ui)dUidX̃
(m)
i1

=

∫
Ui

∫
X̃ (m)
i1

∑
Y (m)
i

(I1 × I2 × I3 × I4) dUidX̃
(m)
i1 , (9)

where I2 is given in Eq. (7), I3 is the conditional density function of X̃ (m)
i1 given X (o)

i , viz. f (̃X (m)
i1 | X (o)

i , τ ), and I4 is the density
function of the random component Ui.

To model the joint distribution of the missing data indicators (I1), we first indicate the histories of missing data processes
by

R̄y
it =

{
Ry
i1, . . . , R

y
it−1

}
and R̄x

it =

{
Rx
i1, . . . , R

x
it−1

}
,

where t ≤ ni. In longitudinal studies, the joint probability Pr(Ry
i = ryi , R

x
i = rxi | Yi, Xi, Zi) is not modeled directly.

Instead, modeling is done by conditioning on the histories of missing data indicators by using probabilities of the type
Pr(Ry

it = ryit , R
x
it = rxit | R̄y

it , R̄
x
it , Yi, Xi, Zi). Such conditional modeling would reflect the dynamic nature of the observation

process over time. The joint model can then be written as

Pr(Ry
i = ryi , R

x
i = rxi | Yi, Xi, Zi) =

ni∏
t=2

Pr(Ry
it = ryit , R

x
it = rxit | R̄y

it , R̄
x
it , Yi, Xi, Zi) Pr(R

y
i1 = ryi1, R

x
i1 = rxi1 | Yi, Xi, Zi). (10)

For modeling the joint conditional probabilities for the pair (Ry
it , R

x
it ) appearing in (10), we adopt marginal logistic regression

models for the mean functions while the association between the missing data indicators in response and covariates is
introduced through the conditional log odds ratio (ψit ). We thus write

µ
y
it = Pr(Ry

it = 1 | R̄y
it , R̄

x
it , Yi, Xi, Zi) =

exp(ν⊤

1itαy)
1 + exp(ν⊤

1itαy)
,

µx
it = Pr(Rx

it = 1 | R̄y
it , R̄

x
it , Yi, Xi, Zi) =

exp(ν⊤

2itαx)
1 + exp(ν⊤

2itαx)
,

ψit =
Pr(Ry

it = 1, Rx
it = 1 | R̄y

it , R̄
x
it , Yi, Xi, Zi) Pr(R

y
it = 0, Rx

it = 0 | R̄y
it , R̄

x
it , Yi, Xi, Zi)

Pr(Ry
it = 1, Rx

it = 0 | R̄y
it , R̄

x
it , Yi, Xi, Zi) Pr(R

y
it = 0, Rx

it = 1 | R̄y
it , R̄

x
it , Yi, Xi, Zi)

,

where ν1it and ν2it are functions of responses and covariates. We keep the treatment general by making the conditional
probabilities of missing data indicators to depend on the observed as well as unobserved responses and covariates. The
missing data mechanism is thus considered to be MNAR. We denote the parameters of the missing data model by α =

(α⊤
y , α

⊤
x )⊤. In case ψit = 1, the missing data indicators for the response and covariates at the tth assessment time are

conditionally independent.
Let pxyit = Pr(Ry

it = 1, Rx
it = 1 | R̄y

it , R̄
x
it , Yi, Xi, Zi) denote the probability for the pair (yit , xit1) to be observed, conditional

on the histories of the indicator variables and the vector of responses and covariates. Following [18], pxyit can be expressed as

pxyit =

⎧⎨⎩
ait − {a2it − 4ψit (ψit − 1)µy

itµ
x
it}

1/2

2(ψit − 1)
if ψit ̸= 1,

µ
y
itµ

x
it if ψit = 1,
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where ait = 1 − (1 −ψit )(µ
y
it +µx

it ). Finally, the joint probability of observing the response and covariate at tth assessment
time denoted by (π xy

11it ) is given by

π
xy
11it = Pr(Ry

it = 1, Rx
it = 1 | Yi, Xi, Zi) =

∑
R̄yit

∑
R̄xit

{
pxyit ×

t−1∏
j=2

(pxyij )
ryij r

x
ij (µy

ij − pxyij )
ryij (1−rxij)(µx

ij − pxyij )
(1−ryij )r

x
ij

× (1 − µ
y
ij − µx

ij + pxyij )
(1−ryij )(1−rxij)

}
.

Here we assume that the covariate and response are observable for all study participants in the first visit, i.e., π xy
11i1 = 1

for all i ∈ {1, . . . , n}. The probabilities π10it = Pr(Ry
it = 1, Rx

it = 0 | Yi, Xi, Zi), π01it = Pr(Ry
it = 0, Rx

it = 1 | Yi, Xi, Zi), π00it =

Pr(Ry
it = 0, Rx

it = 0 | Yi, Xi, Zi) are given in Appendix A.2.
Thus, we can finally write

I1 =

ni∏
t=1

(π11it )r
y
it r

x
it (π10it )r

y
it (1−rxit )(π01it )(1−ryit )r

x
it (π00it )(1−ryit )(1−rxit ). (11)

2.3. The misclassification process

In epidemiological studies, a serious source of error is themisclassification of the ordinal responses. A categorical variable
is said to be subject tomisclassification if the recorded category differs from the true category. Two types ofmisclassification
models are available in literature — one is the classification error model and other is the reclassification model. In the
classification error model, the observed responses aremodeled as functions of true responses whereas in the reclassification
model, the distribution of the true category given the observed category is specified. In this paper, the classification error
model is considered. When the response is subject to misclassification, a surrogate version ỹit is obtained instead of the true
response yit . Let ỹi1 = c̃k1, . . . , ỹini = c̃kni denote the multivariate ordinal data on the surrogate response. Further suppose

Pr(̃yi1 = c̃k1, . . ., ỹini = c̃kni | yi1 = ck1, . . ., yini = ckni ) =

ni∏
t=1

Pr(̃yit = c̃kt | yit = ckt ) =

ni∏
t=1

ϵitckt c̃kt . (12)

The above conditional independence assumption over the different occasions is meaningful in many practical situations. Let
δit = ((ϵitr̃r )), where r, r̃ ∈ {0, . . . , L− 1}, denote the L× Lmatrix of misclassification rates. Clearly the correct classification
is obtained when r = r̃ . Thus corresponding to each (i, t), there are L × (L − 1) misclassification rates. We capture all the
misclassification rates in a parameter δ. Writing Ỹi = (̃yi1, . . . , ỹini )

⊤, suppressing the parameters, the distribution of the
surrogate response is given by

f (̃Yi | Xi, Zi) =

∫
f (Ui)

∑
Yi

{
f (̃Yi | Yi)f (Yi | Xi, Zi,Ui)

}
dUi,

where the first term within the curly brackets is the density function for the misclassification process derived from (12).

2.4. The joint model

We consider themodeling of longitudinal ordinal response in the presence of a non-ignorable missingnessmechanism in
covariate and responses alongwith the fact that the observed responses are imperfect versions of the true state of responses.
To propose the parameter vector θ = (β⊤, γ , λ, α⊤, δ, τ )⊤, we propose a joint model which corrects the likelihood function
in case ofmissing response and/or covariate and responsemiscategorization. Suppressing the parameters, wewrite the joint
distribution of the surrogate response and missing data indicators given the observed covariates as follows:

f (̃Y (o)
i , Ry

i , R
x
i | X (o)

i , Zi) =

∑
Y (o)
i

∑
Y (m)
i

∫
Ui

∫
X̃ (m)
i1

f (̃Y (o)
i , Ry

i , R
x
i , Y

(o)
i , Y (m)

i ,Ui, X̃
(m)
i1 | X (o)

i , Zi)dX̃
(m)
i1 dUi

=

∑
Y (o)
i

∑
Y (m)
i

∫
Ui

∫
X̃ (m)
i1

f (Ry
i , R

x
i | Y (o)

i , Y (m)
i , X (o)

i , X̃
(m)
i1 , Zi)f (Y

(o)
i , Y (m)

i | Ui, X
(o)
i , X̃

(m)
i1 , Zi)

f (̃X (m)
i1 | X (o)

i )f (Ui)f (̃Y
(o)
i | Y (o)

i ) dX̃ (m)
i1 dUi

=

∑
Y (o)
i

∑
Y (m)
i

∫
Ui

∫
X̃ (m)
i1

(I1 × I2 × I3 × I4 × I5) dX̃
(m)
i1 dUi, (13)

where I1 is given in (11) and I2–I4 are as in Eq. (9) and I5 comes from Eq. (12).
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2.5. Identifiability and extra data

Identifiability is amajor practical issue formisclassification problems aswell as for non-ignorablemissing data processes.
While simultaneously estimating the regression parameters, the misclassification rates and the parameters of the missing
data model, often a very large sample is needed to achieve convergence of an algorithm. In most situations, extra data in
the form of multiple measurements, instrumental variables or validation studies are needed to resolve the identifiability
issue.

In this paper, we use validation data to estimate the parameters of themisclassificationmodel.We suppose that out of the
cohort of N individuals who are followed up over time, nt individuals appear at the tth visit. The response and time-specific
covariate values of the absentees therefore automatically gomissing.Wemake the practical assumption that all the subjects
appearing at the tth visit will have their response variable measured, though some of their visit-specific covariate values
might not be recorded. We select a random sample of nvt subjects for whom the response variable is re-measured using
special efforts, the values of which are considered as the gold standard. In doing so, the missing covariate values if any,
of those individuals are also recorded. Thus these nvt individuals have their gold standard response and all visit-specific
covariate values recorded in addition to their surrogate response values. The remaining nnvt = nt − nvt individuals who
form the non-validation group may or may not have their covariate values recorded in addition to their recorded surrogate
response values. The non-validation group size is usually much larger than the validation group size, since cost of data
collection per unit in the validation sample is much higher than unit cost in the non-validation sample.

3. Estimation: MCEM approach

For estimation of the parameters arising in the model given by (13), we adopt a Monte Carlo EM approach [21]. Let Svt
and Snvt denote the validation and non-validation group at the tth visit, respectively. An individual qualifies to be in Svt if
he/she appears for the tth visit and subsequently gets selected in the random draw, while all other participants who may
not be present or who may be present but not selected in the random draw will form the non-validation group for the
tth visit. Let us denote the observed data for the validation group and non-validation group by Dov = {Yv, Ỹv, Zv, Xv} and
Donv = {̃Y (o)

nv , Znv, X
(o)
nv , R

y
nv, Rx

nv}, respectively. Suppressing the parameters the likelihood function is built up as follows:

ℓ(θ ) =

∑
t

∑
i∈Svt

ln f (yitv, ỹitv, ziv, Xitv) +

∑
t

∑
i∈Snvt

ln f (̃yitnv, R
y
itnv, R

x
itnv, zinv, X

(o)
itnv) = ℓov(θ ) + ℓonv(θ ), (14)

where ℓov(θ ) and ℓonv(θ ) are the log-likelihood functions corresponding to the validation and non-validation data sets,
respectively. These are further decomposed as

ℓov(θ ) =

∑
t

∑
i∈Svt

ln f (̃yitv | yitv) +

∑
t

∑
i∈Svt

ln
∫
uitv

f (yitv | ziv, Xitv, uitv)f (uitv)duitv

= ℓov1(δ) + ℓov2(β, γ , λ),

ℓonv(θ ) =

∑
t

∑
i∈Snvt

ln f (̃y(o)itnv, R
y
itnv, R

x
itnv, zinv, X

(o)
itnv)

=

∑
t

∑
i∈Snvt

ln

{∑
y(o)itnv

f (̃y(o)itnv | y(o)itnv)
∫
uitnv

∫
x̃(m)
it1

∑
y(m)
itnv

f (y(o)itnv, y
(m)
itnv | zinv, X

(o)
itnv, x

(m)
it1nv, uitv)

f (Ry
itnv, R

x
itnv | y(o)itnv, y

(m)
itnv, X

(o)
itnv, x

(m)
it1nv)f (x

(m)
it1nv | X (o)

itnv)f (uitnv)dx
(m)
it1nvduitnv

}
.

Maximizing ℓ(θ ) given in (14) is a challenging task because of the summation and multidimensional integrals appearing
inside the logarithms. To circumvent this difficulty, we adopt a Monte Carlo based EM approach which derives the
maximum likelihood estimates depending on the complete data log-likelihood function. We denote the complete data
corresponding to the validation set by Dcv = {Yv, Ỹv, Zv, Xv,Uv} and that corresponding to the non-validation set by
Dcnv = {̃Y (o)

nv , Y
(o)
nv , Y

(m)
nv , Znv, X

(o)
nv , X

(m)
nv , R

y
nv, Rx

nv,Unv}. Thus the complete data log-likelihood function can be decomposed as

ℓc(θ ) = ℓcv(θ ) + ℓcnv(θ ),

where ℓcv(θ ) denotes the likelihood contribution from all subjects belonging to the validation set which can further be
decomposed as

ℓcv(θ ) =

∑
t

∑
i∈Svt

ln f (̃yitv | yitv; δ) +

∑
t

∑
i∈Svt

ln f (yitv | ziv, Xitv, uitv;β, γ , λ) +

∑
t

∑
i∈Svt

ln f (uitv; γ , λ)

= ℓcv1(δ) + ℓcv2(β) + ℓcv3(γ , λ),
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while ℓcnv(θ ) denotes the likelihood contribution from all subjects belonging to the non-validation set which can be further
partitioned as

ℓcnv(θ ) =

∑
t

∑
i∈Snvt

ln f (̃y(o)itnv | y(o)itnv; δ) +

∑
t

∑
i∈Snvt

ln f (y(o)itnv, y
(m)
itnv | zinv, X

(o)
itnv, x

(m)
it1nv, uitnv;β)

+

∑
t

∑
i∈Snvt

ln f (Ry
itnv, R

x
itnv | y(o)itnv, y

(m)
itnv, X

(o)
itnv, x

(m)
it1nv, zinv;α) +

∑
t

∑
i∈Snvt

ln f (x(m)
it1nv | X (o)

itnv; τ )

+

∑
t

∑
i∈Snvt

ln f (uitnv; γ , λ)

= ℓcnv1(δ) + ℓcnv2(β) + ℓcnv3(α) + ℓcnv4(τ ) + ℓcnv5(γ , λ).

The estimation is carried out in two steps. In the first step, the misclassification rates are estimated from the validation sam-
ple. In the next step, the structural parameters alongwith the parameters ofmissing datamodel are estimated using both val-
idation andnon-validation data after plugging in the estimates ofmisclassification rates. The score functions are given below:

Sv(δ) =
∂ℓcv(θ )
∂δ

=
∂ℓcv1(θ )
∂δ

,

S(α) = EY (o),Y (m),X (m)

(
∂ℓcnv3(α)
∂α

⏐⏐⏐ Ry, Rx, Ỹ (o), X (o), Z
)
, (15)

S(β) = EU

(
∂ℓcv2(β)
∂β

⏐⏐⏐ Y (o), X (o), Z
)

+ EU,Y (o),Y (m),X (m)

(
∂ℓcnv2(β)
∂β

⏐⏐⏐ Ỹ (o), X (o), Z, Ry, Rx
)
, (16)

S(γ ) = EU

(
∂ℓcv3(γ , λ)

∂γ

⏐⏐⏐ Y (o), X (o), Z
)

+ EU

(
∂ℓcnv5(γ , λ)

∂γ

⏐⏐⏐ Ỹ (o), X (o), Z, Ry, Rx
)
,

S(λ) = EU

(
∂ℓcv3(γ , λ)

∂λ

⏐⏐⏐ Y (o), X (o), Z
)

+ EU

(
∂ℓcnv5(γ , λ)

∂λ

⏐⏐⏐ Ỹ (o), X (o), Z, Ry, Rx
)
, (17)

S(τ ) = EX (m)
1

(
∂ℓcnv4(τ )
∂τ

⏐⏐⏐ Ỹ (o), X (o), Z
)
. (18)

The expectations in (15)–(18) cannot be evaluated analytically because of multidimensional integrals or summations.
To circumvent this difficulty, Metropolis–Hastings algorithm (MH) is used to produce random draws from conditional
distributions. The details are given in Appendix A.3. The expectations are then approximated using Monte Carlo sums
and score equations are solved iteratively by one-step Newton–Raphson method. For the parameter vector θ , the updated
estimate at the (t + 1)th step is given by

θ (t+1)
= θ (t) − Ψ (t)−1

S(θ (t)),

where S(θ (t)) is the score function at the parameter estimate θ (t) and Ψ (t)
=

∂S(θ )
∂θ

|θ (t) .

4. Simulation study

We consider a simulation setting with N = 400 study participants each assessed on T = 6 occasions. We generate
the longitudinal ordinal response having L = 4 categories using the mean model and conditional model as described in
Section 2.1. Here we briefly describe the different steps of data generation.

Step 1: For each i ∈ {1, . . . ,N}, the base line covariate z1i is generated from multinomial distribution with the probability
vector (0.4, 0.3, 0.3). For each i ∈ {1, . . . ,N} and t ∈ {1, . . . , T }, the time varying covariate xit is generated from N (0, 1).
The random component Ui = (ui1, . . . , uiT )⊤ is simulated from T -variate Gaussian distribution with zero mean vector and
dispersion matrixΣi = σ 2

i Σ
∗, where σ 2

i = exp(z2iγ ), with γ = 0.4 and z2i is a binary covariate with success probability 0.5
which is not included in the response model. MoreoverΣ∗ is as given in Eq. (4) with λ = 0.2.

Step 2: For each i ∈ {1, . . . ,N}, t ∈ {1, . . . , T } and ℓ ∈ {0, . . . , L − 1}, we compute PM
itℓ from the equation

PM
itℓ =

exp(β0ℓ + β1z1i + β2xit )
1 + exp(β0ℓ + β1z1i + β2xit )

,

where β0 = (−1, 0, 1)⊤, β1 = −0.5, and β2 = 0.5.

Step 3: We compute ∆itℓ from Eq. (6). For c = 1.70, ∆itℓ = (β0ℓ + β1z1i + β2xit )
√
1 + σ 2

i /c2, and hence we compute the
conditional probabilities given by

PC
itℓ =

exp(∆itℓ + uit )
1 + exp(∆itℓ + uit )

.
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Step 4: For each i ∈ {1, . . . ,N}, t ∈ {1, . . . , T } and ℓ ∈ {0, . . . , L − 1} we compute P̃itℓ = PC
itℓ − PC

itl−1 and generate
(ηit1, . . . , ηitℓ)⊤ from amultinomial distribution with parameters (̃Pit1, . . . , P̃itℓ) and ηit1 +· · ·+ηitℓ = 1. Now if ηitℓ = 1 we
declare yit = ℓ.

Step5: For themisclassification processwemake the simplifying assumption that themisclassification rates are independent
of covariates or random components. We consider two schemes for the misclassification process, viz.

Scheme I.

P =

⎛⎜⎜⎝
1 − 3ϵ ϵ ϵ ϵ

ϵ 1 − 3ϵ ϵ ϵ

ϵ ϵ 1 − 3ϵ ϵ

ϵ ϵ ϵ 1 − 3ϵ

⎞⎟⎟⎠ .

Scheme II.

P =

⎛⎜⎜⎝
1 − ϵ − ϵ2 − ϵ3 ϵ ϵ2 ϵ3

ϵ 1 − 2ϵ − ϵ2 ϵ ϵ2

ϵ2 ϵ 1 − 2ϵ − ϵ2 ϵ

ϵ3 ϵ2 ϵ 1 − ϵ − ϵ2 − ϵ3

⎞⎟⎟⎠ .

Scheme I implies that chances ofmisclassification are equally likely in all the cells while Scheme II implies that chances of
misclassification decays as the observed categorymoves away from the true category. Different choices of ϵ were considered
for both the misclassification schemes. Here we only report the results for ϵ = 0.1 for Scheme I and ϵ = 0.2 for Scheme II.

Step 6:Wegenerate themissing data indicators Ry
it , R

x
it using themarginalmodels and the conditional odds ratio. Specifically

we choose

µ
y
it = Pr(Ry

it = 1 | Ry
it−1, yit−1, yit ) =

exp(αy0 + αy1 r
y
it−1

yit−1 + αy2yit )

1 + exp(αy0 + αy1 r
y
it−1

yit−1 + αy2yit )
,

µx
it = Pr(Rx

it = 1 | Rx
it−1, xit−1, xit ) =

exp(αx0 + αx1 r
x
it−1

xit−1 + αx2xit )

1 + exp(αx0 + αx1 r
x
it−1

xit−1 + αx2xit )
,

where, αy0 = 1.5, αy1 = 0.2, αy2 = 0.2, αx0 = 2, αx1 = 0.2, αx2 = 0.2. Such a configuration results in an overall 10%
missing response and 12%missing covariate. For all practical purposes we chooseψit = ψ and carry out the analysis for four
different choices of ψ namely 2, 4, 7 and 10. However, only the results for ψ = 2 are reported in Table 1.

Step 7: On the basis of the data generated in Steps 1–6, three different likelihoods are fitted. These are:

(i) The naivemodel (M1): A complete case (CC) analysis is carried out by ignoring themiscategorization in response, thereby
treating the surrogate response as the true values. The likelihood function in this case is given by

ℓN =

N∏
i=1

∫ ∏
t∈Si

L∏
ℓ=1

(PC
itℓ − PC

itl−1)
Ĩyit (cℓt )f (Ui)dUi,

where Si contains the pairs of all observable response and covariates for the ith study participant.

(ii) The missing data model (M2): Here the likelihood is built up after incorporating the missing data mechanism, but
ignoring the misclassification in response. The likelihood contribution of the ith individual is specified in Eq. (9) with Y (o)

i
simply replaced by Ỹ (o)

i .

(iii) The proposedmodel (M3): Here the likelihood is built up after incorporating themissing datamechanism and adjusting
for miscategorization as well. The likelihood contribution of the ith individual is given by Eq. (13).

Estimation is done using Monte Carlo Metropolis–Hastings Newton–Raphson (MCMHNR) method, where the data on
random components are generated by Metropolis–Hastings algorithm. For simplicity and to save time, the MH sample
size was chosen to be 500. The number of iterations needed in the Newton–Raphson method within Metropolis–Hastings
algorithm was prefixed to be 30. The simulation was repeated R = 100 times. The validation sample at each visit comprises
randomly selected 25% of the total subjects who have appeared in that particular visit.

For a generic parameter ξ , the parameter estimate is given by ξ̂ = (ξ̂1 + · · · + ξ̂R)/R, where ξ̂t is the estimate at the tth
simulation, with t ∈ {1, . . . , R}. The accuracy of the estimates is assessed by the bias and the precision of the estimator is
assessed by MSE, viz.

Bias(ξ̂ ) =
1
R

R∑
t=1

⏐⏐⏐ξ̂t − ξ

⏐⏐⏐ , MSE(ξ̂ ) =
1
R

R∑
t=1

(ξ̂t − ξ )2.
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Table 1
Table showing Bias and MSE of the estimates for the three models corresponding to two different misclassification patterns.

Misclassification Scheme I Misclassification Scheme II

M1 M2 M3 M1 M2 M3

β01 Bias 0.04113 0.01477 0.00750 0.12728 0.08478 0.03175
MSE 0.01484 0.00383 0.01259 0.03045 0.01112 0.01383

β02 Bias 0.03277 0.02471 0.01444 0.07385 0.04638 0.01113
MSE 0.01149 0.00383 0.01011 0.01954 0.00553 0.01150

β03 Bias 0.02783 0.03634 0.00272 0.01534 0.01591 0.06571
MSE 0.01279 0.00465 0.01318 0.01588 0.00429 0.01925

β1 Bias 0.18555 0.17557 0.05569 0.07493 0.06316 0.02206
MSE 0.04177 0.03311 0.00765 0.01197 0.00585 0.00666

β2 Bias 0.20157 0.18707 0.00497 0.07522 0.07441 0.01113
MSE 0.04405 0.03633 0.00380 0.00943 0.00718 0.00334

γ Bias 0.04965 0.01903 0.00997 0.01269 0.00718 0.01521
MSE 0.00680 0.00110 0.00124 0.00698 0.00108 0.00154

λ Bias 0.00382 0.00152 0.00103 0.00114 0.00071 0.00122
MSE 0.00005 0.00001 0.00001 0.00006 0.00001 0.00001

ϵ Bias – – 0.00073 – – 0.00072
MSE – – 0.00004 – – 0.00009

αy0 Bias – 0.52626 0.53326 – 0.44331 0.48541
MSE – 0.29204 0.29451 – 0.21740 0.24482

αy1 Bias – 0.08043 0.13189 – 0.02468 0.13227
MSE – 0.01025 0.01922 – 0.00559 0.01889

αy2 Bias – 0.22898 0.19319 – 0.22525 0.16937
MSE – 0.05336 0.03785 – 0.05225 0.02921

αx0 Bias – 0.00148 0.00961 – 0.01103 0.00903
MSE – 0.00423 0.00412 – 0.00440 0.00579

αx1 Bias – 0.00693 0.01152 – 0.00367 0.00134
MSE – 0.00720 0.00506 – 0.00710 0.00318

αx2 Bias – 0.10903 0.12333 – 0.08172 0.06073
MSE – 0.01279 0.01706 – 0.00806 0.00443

The bias and the MSE of the estimators under the mis-specified modelsM1–M2 and the proposed modelM3 are reported
in Table 1 for the two misclassification schemes.

The result from Table 1 reveals that on the whole bias and MSE of the parameter estimates are smaller in the proposed
model M3 compared to the mis-specified models M1 and M2. Especially the parameter of interest, namely the covariate
effects, are estimated with high accuracy and precision in the proposed model compared to the naive models. However,
some isolated instances of slight poor performance in M3 are observed. Model M2, i.e., the model incorporating the missing
datamechanism, is always better than the complete casemodel (M1). For instance inmisclassification pattern 2, the estimate
of the intercept gives the bias and MSE as 0.06571 and 0.01925, respectively, under the corrected model M3; these figures
are higher than their respective counterparts in both models M1 and M2. The performance of M2 and M3 with respect to
missing data model parameters is also almost at par, though in some instances model M2 outperforms the proposed joint
model M3. This is natural since the proposed model is the most complicated one and involves the maximum number of
parameters compared to the naive models. It is also observed that the parameters arising in the distribution of random
component are not much affected by model misspecification. The misclassification rate is accurately estimated under both
the misclassification schemes.

Table 2 presents the parameter estimates, simulated standard errors S.E. (sim) and coverage probabilities CP (Sim) for
the regression parameter of interest for the modelsM1–M3 corresponding to both the misclassification patterns. The results
reveal thatM3 recovers the parameter estimates well at the cost of increased standard error. This is natural sinceM3 involves
a larger number of parameters. ModelM1 performs poorly with respect to standard errors as well as coverage. The coverage
probabilities under the correct modelM3 are always close to the nominal levels. Figs. 1–2 represent the convergence graphs
of the parameters of interest for the proposed model under Misclassification Scheme I and Misclassification Scheme II,
respectively.

5. Data study

Alzheimer’s disease Neuroimaging Initiative (ADNI) is an ongoing longitudinal long-term non-treatment study in which
more than 800 participants aged 55 to 90 were recruited from across more than 50 sites in the US and Canada. It includes
approximately 200 patients diagnosed with early progression of Alzheimer’s disease (AD). AD is the most common form of
dementia which worsens with age. Usually it is diagnosed in people over 65 years of age but early onset of the disease can
occur much earlier. The data used in this study were obtained from the ADNI database (http://adni.loni.ucla.edu). We have
used the data from ADNI 1 for our investigation.

AD is characterized by a slow deterioration in cognitive and functional ability assessed by various clinical, biomedical,
imaging and genetic biomarkers. The clinical dementia rating scale sumof boxes (CDRSB) score is a valuable tool for outcome

http://adni.loni.ucla.edu
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Table 2
Table showing parameter estimate, S.E. (sim) and coverage probability CP (sim) of the regression parameters for the three models under two different
misclassification patterns.

Misclassification Scheme I Misclassification Scheme II

M1 M2 M3 M1 M2 M3

Est −1.04113 −1.01477 −1.00750 −1.12728 −1.08478 −0.96825
β01 S.E. (Sim) 0.11522 0.06040 0.11253 0.11997 0.06300 0.11384

CP (Sim) 93 96 95 84 75 94
Est −0.03277 −0.02471 −0.01444 −0.07385 −0.04638 −0.01113

β02 S.E. (Sim) 0.10259 0.05704 0.10000 0.11929 0.05841 0.10725
CP (Sim) 95 94 94 93 88 98
Est 0.97217 0.96366 0.99728 1.01534 1.01591 0.93429

β03 S.E. (Sim) 0.11016 0.05795 0.11533 0.12572 0.06383 0.12285
CP (Sim) 95 92 93 92 94 88
Est −0.31445 −0.32443 −0.55569 −0.42507 −0.43684 −0.52206

β1 S.E. (Sim) 0.08610 0.04808 0.06780 0.08014 0.04338 0.07899
CP (Sim) 41 7 88 83 70 93
Est 0.29843 0.31293 0.49503 0.42478 0.42559 0.48887

β2 S.E. (Sim) 0.05879 0.03670 0.06172 0.06173 0.04080 0.05700
CP (Sim) 6 0 96 77 51 98

Fig. 1. Convergence graph under misclassification Scheme I.

indicator to assess both cognitive and functional impairment. Although AD develops differently for every individual, there
aremany common symptoms. Samtani et al. [27]modeled the baseline disease severity as a function of influential covariates.

Following the previous studies, we chose gender, apolipoprotein (APOE) ϵ4 genotype and hippocampal volume (HIPV)
as the potential covariates. Among these, HIPV is considered as an important covariate in AD [5]. The hippocampus is a
region of the brain that is associated primarily with memory. It is located in the inner (medial) region of the temporal lobe,
forming part of the limbic system, which is particularly important in producing emotion. Individuals who suffer damage
to the hippocampus experience significant memory loss or amnesia. This condition is marked by an inability to create new
long-term memories. HIPV is affected by head size, age and sex, and it significantly drops in the elderly.

Data from the first six visits of ADNI 1 are considered to illustrate the methodology developed in this paper. As our
missing data modeling demands that response and covariates should not be missing on the first visit, we omitted those
study participants whose baseline CDRSB score and/or HIPV data were missing. We thus carried out the analysis with 376
individuals for whom CDRSB scores and/or HIPV data is missing for some occasions, while complete data on the remaining
covariates are available. The study reveals 30% missing data on the covariate while approximately 14% data on the response
are missing.
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Fig. 2. Convergence graph under misclassification Scheme II.

Fig. 3. Longitudinal plot of CDRSB scores.

For the available data, CDRSB scores of the study participants are plotted over the six visits in Fig. 3. The thick line gives
the mean CDRSB scores which reveal an increasing trend of the disease status over time. Fig. 4 displays a bar plot of the
average hippocampal volumewhich shows a decreasing pattern over time as is expected of patients with progression of AD.

Motivated by the work of Sid O’Bryant et al. [23], the ordinalized CDRSB scores have been categorized as 0–3with respect
to the disease status NIL, LMCI, early AD and severe AD, respectively. At the baseline visit, the CDRSB scores of all patients
range between 0 and 9 indicating the absence of severe AD patients initially. In addition wework with the transformed time
dependent covariate (HIPV−MHIPV )/SDHIPV , whereMHIPV and SDHIPV are themean and standard deviations of HIPV datawhich
were equal to 6615 and 1172, respectively. The baseline covariate (APOE) ϵ4 genotype used in the study is a nominal variable
with three categories. The random componentUi = (ui1, . . . , ui6)⊤ is assumed to follow amultivariate Gaussian distribution
with zero mean vector and dispersion matrixΣi = σ 2

i Σ
∗, whereΣ∗ is as given in Eq. (4) and σ 2

i = exp(Ziγ ), where Zi = 1,
if the ith individual is a male and 0 otherwise. The nuisance parameters arising in the distribution of the random component
are estimated along with the regression parameters. For the readers’ convenience, we provide a variable list in Table 3.
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Fig. 4. Bar plot of mean hippocampal volume for 6 visits.

Table 3
Variables used in ADNI study.

Type Variables Description

Response (Ordinal) CDRSB Clinical dementia rating scale sum of boxes
Covariate (Baseline & binary) Gender 1: Male and 0: Female
Covariate (Baseline & nominal) APOE4 Apolipo protein genotype taking values 0, 1, 2
Covariate (Time-dependent & continuous) HIPV Hippocampal volume

Table 4
Misclassification matrix.

Ordinalized CDRSB score

0 1 2 3

Baseline disease status

NIL 0.99537 0.00463 0 0
LMCI 0.02767 0.78063 0.1917 0
Early AD 0 0.02062 0.97938 0
Severe AD 0 0 0 1

Table 5
The estimates, standard error of estimates and the t-statistic of the analysis of ADNI data.

Covariates Complete case analysis (M1) Missing data analysis (M2) Proposed joint model (M3)

Estimate S.E. t statistic Estimate S.E. t statistic Estimate S.E. t statistic

Int1 −3.0825 0.2396 −12.8659 −2.5685 0.0902 −28.5963 −1.9066 0.0724 −26.3300
Int2 2.5143 0.2010 12.5088 1.7783 0.0719 24.7434 1.4160 0.0663 21.3652
Int3 4.4876 0.4197 10.6912 3.6189 0.1146 31.5815 3.7319 0.1177 31.7126
APOE4 −0.2054 0.1618 −1.2691 −0.3896 0.0605 −6.4413 −0.2538 0.0560 −4.5331
HIPV 0.6895 0.1308 5.2725 0.5441 0.0411 13.2402 0.7433 0.0385 19.3228

Considering the data provided byADNI as the gold standard,we observe that there are somemismatches in categorization
due to discretization of the CDRSB scores. However, misclassification is prominent in the nearby categories only. We further
assume that the misclassification pattern at baseline visit is carried forward in all other future visits and severe AD patients
are not misclassified. The misclassification matrix is given in Table 4.

The analysis is carried out for the three models M1–M3 as discussed in Section 4, with known misclassification rates as
given in Table 3. The ADNI data further reveal a strong association between the missing data indicators of HIPV and CDRSB
scores. Driven by the data, the analysis is carried out with a known value of the association parameter chosen as Ψ = 7.

Table 5 reports the estimated values of the covariate effects along with their standard errors and Student t statistics for
models M1–M3. The results indicate that the standard errors in the proposed model are lesser than that in the naive model.
This is in contradiction to the simulation study findings. However, this is expected since in the simulation study, the number
of nuisance parameterswas larger compared to the present case,wheremisclassification rates and the association parameter
of the missing data model are treated as known constants, chosen from the data themselves. The factor ‘‘Apolipo protein’’,
though insignificant in the naive model, is highly significant in modelsM2 andM3. This illustrates the utility of missing data
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adjustedmodels and the proposed joint model in lieu of naive analysis. The HIPV though significant in all three models gives
extremely low p-values in the corrected modelsM2 andM3, compared to the naive modelM1.

6. Concluding remarks

The primary intention in this articlewas to develop amodel that helps us analyze amarginal cumulative logit proportional
model with missingness and miscategorization duly accounted for. Certainly the likelihood becomes complex. We consider
an MCNREM approach to estimate the parameters appearing in the model. The computing time indeed depends on the
dimension of the parameters. In fact as the missingness pattern is MNAR, the likelihood part involving model parameters
cannot be factored out and hence we need to estimate all structural and nuisance parameters together. One possibility may
be through MCMC (Markov Chain Monte Carlo) that can deal with this kind of high-dimensional situation.

Semiparametric studies are common in this kind of longitudinal framework and it would be of interest to see how
the longitudinal effect can be well approximated by a non-linear function of time. Furthermore, some of the covariates
(in this study may be HIPV) are often measured erroneously. Obviously, this then affects the inference in the study. It
seems worthwhile to investigate situations where some of the covariates under study are subject to measurement error.
In longitudinal studies, we often come across individuals who drop out from the study. Incidentally, we did not consider this
here. Intermittent missing and dropout along with the miscategorization are common in medical studies. We are currently
looking into this problem.
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Appendix A

A.1. Proof of Eqs. (5) and (6)

In the specific case of normally distributed random component and probit link function,

PM
itℓ =

∫
PC
itℓf (uit )duit ⇒ Φ(β0ℓ + z⊤

i βz + x⊤

it βx) =

∫
Φ(∆itℓ + uit )f (uit )duit .
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where τitℓ = zitℓ − uit , τitℓ ∼ N (0, 1 + σ 2
it ). Therefore,∫
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it
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.

Using the approximating relation between logit and probit, we get,
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it βx)
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A.2. Detailed expression of π10, π01 and π00

Suppose, pr3r4r1r2 it
= Pr(Ry

it = r1, Rx
it = r2 | Ry

it−1 = r3, Rx
it−1 = r4, Yi, Zi, Xi) for all r1, r2, r3, r4 ∈ {0, 1}. Then the

unconditional probabilities unconditional on previous histories become

π11it = p1111it .π11it−1 + p1011it .π10it−1 + p0111it .π01it−1 + p0011it .π00it−1,

π10it = p1110it .π10it−1 + p1010it .π10it−1 + p0110it .π01it−1 + p0010it .π00it−1,

π01it = p1101it .π11it−1 + p1001it .π10it−1 + p0101it .π01it−1 + p0001it .π00it−1,

π00it = p1100it .π11it−1 + p1000it .π10it−1 + p0100it .π01it−1 + p0000it .π00it−1.

A.3. Metropolis–Hastings algorithm

The details of the data generation scheme using Metropolis–Hastings (MH) algorithm in Section 3 are given below.

Generating X (m)(k) from the conditional distribution of X (m)
| Donv,U
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nv ).

Let us choose the proposal density for X (m) as h(X (m)). Let X (m)(k − 1) and X (m)(k) respectively denote the previous draw
and the new values from the proposal distribution. The probability of accepting X (m)(k) as a potential observation from the
proposal density at the kth step is given by
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In case we choose h = f , the acceptance function takes a neat form and is given by
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Choosing the proposal density of U to be the same as f (U), the probability of accepting a potential new value U(k) as
opposed to the previous value U(k − 1) is given by
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Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2018.02.004.
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