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A B S T R A C T

Understanding the sequence of biological and clinical events along the course of Alzheimer's disease provides
insights into dementia pathophysiology and can help participant selection in clinical trials. Our objective is to
train two data-driven computational models for sequencing these events, the Event Based Model (EBM) and
discriminative-EBM (DEBM), on the basis of well-characterized research data, then validate the trained models
on subjects from clinical cohorts characterized by less-structured data-acquisition protocols.

Seven independent data cohorts were considered totalling 2389 cognitively normal (CN), 1424 mild cognitive
impairment (MCI) and 743 Alzheimer's disease (AD) patients. The Alzheimer's Disease Neuroimaging Initiative
(ADNI) data set was used as training set for the constriction of disease models while a collection of multi-centric
data cohorts was used as test set for validation. Cross-sectional information related to clinical, cognitive, imaging
and cerebrospinal fluid (CSF) biomarkers was used.

Event sequences obtained with EBM and DEBM showed differences in the ordering of single biomarkers but
according to both the first biomarkers to become abnormal were those related to CSF, followed by cognitive
scores, while structural imaging showed significant volumetric decreases at later stages of the disease pro-
gression. Staging of test set subjects based on sequences obtained with both models showed good linear cor-
relation with the Mini Mental State Examination score (R2

EBM = 0.866; R2
DEBM = 0.906). In discriminant analyses,

significant differences (p-value ≤ 0.05) between the staging of subjects from training and test sets were observed
in both models. No significant difference between the staging of subjects from the training and test was observed
(p-value > 0.05) when considering a subset composed by 562 subjects for which all biomarker families (cog-
nitive, imaging and CSF) are available.
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Event sequence obtained with DEBM recapitulates the heuristic models in a data-driven fashion and is
clinically plausible. We demonstrated inter-cohort transferability of two disease progression models and their
robustness in detecting AD phases. This is an important step towards the adoption of data-driven statistical
models into clinical domain.

1. Introduction

Alzheimer's disease (AD) is a complex multifactorial neurodegen-
erative condition characterized by deposition of abnormal protein-ag-
gregate, synaptic dysfunction, and eventually neuronal loss in the brain
(Braak and Braak, 1991). While progression of the disease invariably
results in dementia, it has been estimated that clinically-overt mani-
festations are preceded by a latent phase with no measurable cognitive
dysfunction lasting approximately 15–20 years (Sperling et al., 2011).
As AD onset remains insidious in terms of clinical manifestations, bio-
markers are the most accurate approach to track disease onset and
progression (Sperling et al., 2011).

A variety of biomarkers have been proposed to describe the different
phases of the disease, each mirroring different biochemical, functional,
or structural changes as the disease develops and progresses. The cor-
rect sequence of biomarker transitions to abnormality would allow an
appropriate characterization of the different clinical and preclinical
disease stages. In addition, this approach could inform the development
of individualized treatments in the context of precision medicine or the
identification of individuals at-risk of dementia for secondary preven-
tion strategies (Ten Kate et al., 2018a,b).

While the recently published research criteria (Albert et al., 2011;
Dubois et al., 2014) for the definition of AD stages outlined robust
principles (Jack et al., 2010, 2013, 2016), their operationalization in
mathematical models and out-of-the-box algorithms has recently
begun.

The event-based model (EBM) (Fonteijn et al., 2012; Young et al.,
2014) and the discriminative event-based model (DEBM)
(Venkatragahvan et al., 2019) are two among an increasing number
(Oxtoby and Alexander, 2017) of probabilistic data-driven methods
developed to understand evolution of biomarkers as disease develops
and progresses (Oxtoby et al., 2018; Jedynak et al., 2012; Donohue
et al., 2014; Lorenzi et al., 2017). Their assumption is that the disease is
characterized by an irreversible and monotonic change of biomarkers
towards abnormality, which might track disease progression. Both al-
gorithms are cross-sectional statistical models that use no strong a
priori assumptions regarding the relationship among the different bio-
markers or pre-defined cut-offs separating their normal and abnormal
values. Both models estimate disease progression as a single average
sequence, albeit in slightly different ways: the EBM estimates the
maximum-likelihood sequence over all individuals, whereas the DEBM
calculates the optimal event sequence as an average of estimations of
patient-specific orderings.

Previous works demonstrated the EBM's capability to order bio-
markers and stage subjects with a fine-grained ability in classification of
Cognitively normal (CN) and AD subjects as well as to predict conver-
sion from Mild Cognitive Impairment (MCI) to AD or from CN to MCI
(Fonteijn et al., 2012; Young et al., 2014).

So far, statistical models have been tested and validated exclusively
on a few well-characterized research data sets, such as: Alzheimer's
Disease Neuroimaging Initiative (ADNI) (Fonteijn et al., 2012; Young
et al., 2014; Venkatragahvan et al., 2019), Magnetic Resonance in
Multiple Sclerosis (MAGNIMS) (Eshaghi et al., 2018), GENetic Fronto-
temporal dementia Initiative (GENFI) (Young et al., 2018) and TRACK-
HD study of Huntington's disease (Wijeratne et al., 2018), or on syn-
thetic data. This work focusses on transferability of the models to
clinical data in AD and provides new evidence that supports widespread
clinical adoption of the EBM and DEBM.

Key steps in the validation for the adoption of this kind of models

are: (i) ability to build robust disease models on the basis of well-
phenotyped research data sets, such as ADNI; (ii) consistency of the
disease models on less well-phenotyped clinical data sets in terms of
model stability and subjects' staging; (iii) clear end-user interfaces to
make model results accessible by clinicians.

In the next sections, we addressed the aforementioned points to-
wards the definition of two valid models for disease progression. Our
goal was to assess the transferability of EBM and DEBM's optimal se-
quence of biomarkers on independent clinical data coming from six
different multi-centric initiatives spanning the entire AD spectrum.

2. Material and methods

2.1. Participants

A total of 4556 subjects (CN = 2389; MCI = 1424; AD = 743) from
different cohorts were selected for this study. The initiatives and pro-
jects included in this study are described in Table 1. Each cohort had
different proportions of subjects in different AD stages depending on the
scope of the study. Each study was approved by the local medical ethics
committee. Participants for our study were selected using of the fol-
lowing criteria: 1) availability of information on syndromic diagnosis at
baseline; 2) availability of T1-weighted Magnetic Resonance Imaging
(MRI) scans obtained by either 1.5 T or 3 T scanners at baseline; 3)
absence of any other major neurological, psychiatric or somatic dis-
orders that could cause cognitive impairment at baseline.

Subjects were divided in two subsets (Table 2): training set, used to
define the event sequences that serve as disease model, and test set,
used for the validation of the disease models (Table 2). The training set
was composed of 1488 subjects from the ADNI data set of which 468
were CN, 753 were MCI and 267 were AD. The test set was formed by
3068 subjects from six independent data sets of which 1921 were CN,
671 were MCI and 476 were AD. Subjects from ADNI and Amsterdam
Dementia Cohort (ADC) with a diagnosis of subjective memory com-
plaints (SMC) were assimilated to CN group, since Mini Mental State
Examination (MMSE) score of these individuals was 28.1 ± 1.6. Sig-
nificant differences in demographical (age, sex and education) and
genetic (carriers of Apolipoprotein E ε4 (APOE4)) information between
diagnostic groups were observed for both training and test sets. Dif-
ferences were observed in the estimated Total Intracranial Volume
(eTIV) only in the training set. All demographic and genetic data of
training set subjects were significantly different (p-value ≤ 0.05) from
demographic and genetic data of test subjects in the similar diagnostic
group and for the totality of the populations (see Table 3 for full de-
mographical information).

2.2. Biomarkers

When available, multimodal biomarkers collected at baseline
tracking different aspects of disease biology were retrieved, i.e. (i) re-
sults of neuropsychological tests, (ii) cerebrospinal fluid (CSF) markers
and (iii) imaging markers. All the selected subjects had imaging bio-
markers, but some missed the results of neuropsychological tests and/or
did not undergo lumbar puncture depending on the study cohort; in the
latter case staging was performed on the basis of the available markers.

Cognitive biomarkers included MMSE, Alzheimer's Disease
Assessment Scale - Cognitive (ADAS-Cog) and Rey's Auditory Verbal
Learning Test - Immediate Recall (RAVLT).

The CSF concentrations of Amyloid-β 1,42 (Aβ1,42) (Blennow and
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Hampel, 2003; Blennow et al., 2010; Bombois et al., 2013), total Tau (t-
Tau) and phosphorylated Tau (p-Tau) proteins (Blennow and Hampel,
2003; Blennow et al., 2010; Bombois et al., 2013) were collected, and
the ratio between the concentrations of Aβ1,42 and p-Tau was calculated
(Bombois et al., 2013).

The selected imaging biomarkers were: volumetric measures of the
hippocampus, entorhinal cortex, fusiform gyrus, middle-temporal gyrus
and precuneus, together with whole brain volume and ventricles
(Vemuri and Jack, 2010; Frisoni et al., 2010). Imaging biomarkers were
estimated from MRI 3D-T1 sequences analysed with FreeSurfer soft-
ware v5.3 cross-sectional stream (http://surfer.nmr.mgh.harvard.edu)
and outputs were visually checked. We assumed a symmetric pattern of
atrophy in AD and selected imaging biomarkers were averaged between
the left and right hemisphere.

Imaging biomarkers and cognitive scores were available for the
totality of subjects from the training set, while CSF biomarkers were
available for 72% of these individuals. Imaging biomarkers were
available for the totality of test subjects while cognitive scores were
available for 84% of test subjects. Within the test set, ADAS-Cog and
RAVLT scores were available only for subjects from the PharmaCog
data set. CSF biomarkers were available for 18% of test subjects. See
Table 2 for full information on biomarker availability.

CSF biomarkers were obtained with different assays across different
cohorts, i.e. Multiplex xMAP Luminex platform with Innogenetic im-
munoassay kit–based reagents (Kang et al., 2012) for ADNI subjects and
Enzyme Linked Immunosorbent Assay (ELISA) (Butler, 2000) for sub-
jects from all other cohorts, which led to different CSF biomarkers
distributions. In order to tackle this issue and to correct for possible
acquisition-related differences across datasets, all biomarkers (cogni-
tive scores, CSF, imaging) from subjects from ADC, ARWiBo (Alzhei-
mer's disease Repository Without Borders), EDSD (European DTI Study
on Dementia), OASIS (Open Access Series of Imaging Studies),

PharmaCog and ViTA (Vienna Transdanube Aging) cohorts were re-
scaled to match the mean and standard deviation of biomarkers dis-
tribution of ADNI subjects. In order to ensure Gaussianity, we per-
formed a log-transformation of p-tau and t-tau as their values were non-
normally distributed.

All biomarkers from the training and test sets were regressed against
age, education and sex and the effects of these factors were corrected to
compensate inter cohort demographic variability (Gale et al., 2007);
imaging biomarkers were additionally regressed and corrected against
eTIV (Kiraly et al., 2016; Gur et al., 1991) to compensate for head size.
Correction of biomarkers was performed separately for training set and
test set.

The comparison of the selected biomarkers in this study among the
three clinical groups and the seven data cohorts considered in this study
are shown in Supplementary Material SF1.

2.3. Mathematical modelling

Development of EBM and DEBM was based on the fundamental
work of Fonteijn et al. (Fonteijn et al., 2012). According to these ap-
proaches, each biomarker is considered as either normal or abnormal
and its probabilistic transition from the normal to the abnormal state is
defined as event. The aim is to define in a data-driven manner the se-
quence of events that describe the most probable ordered cascade that
characterizes the transition of a subject from the healthy state to the
full-blown disease spectrum (Young et al., 2014). For this work, we
employed python module pyebm (https://github.com/EuroPOND/
pyebm), where both algorithms are implemented.

In the EBM (Fonteijn et al., 2012; Young et al., 2014) possible event
sequences are sampled via a Markov Chain Monte Carlo (MCMC) pro-
cess aimed at finding the sequence that best fits the biomarker ob-
servations from all subjects. At each Monte Carlo step a new sequence is

Table 3
Demographics and clinical characteristics.

MCI AD P-value Total

Training set Age 73.9 ± 6.7 72.5 ± 7.3 73.9 ± 7.9 3.22·10[‐]−4 73.2 ± 7.0
Years of education 16.4 ± 2.7 15.9 ± 2.8 15.2 ± 2.9 1.09·10[‐]−6 15.9 ± 2.8
eTIV (cm3) 1510 ± 180 1540 ± 160 1530 ± 160 4.20·10[‐]−3 1530 ± 160
MMSE 29.1 ± 1.2 27.6 ± 1.8 23.2 ± 2.0 2.2·10[‐]−16 27.3 ± 2.6
Sex (% of females) 52% 42% 48% 1.43·10[‐]−3 46%
APOE4-carrier 34% 49%* 66% 2.2·10[‐]−16 49%

Test set Age 56 ± 17 70.6 ± 7.7 73.7 ± 8.1 2.2·10[‐]−16 62 ± 16
Years of education 10.8 ± 4.8 9.0 ± 4.5 8.7 ± 4.5 2.2·10[‐]−16 10.2 ± 4.8
eTIV (cm3) 1450 ± 160 1460 ± 170 1470 ± 170 0.157 1460 ± 160
MMSE 28.7 ± 1.4 26.5 ± 2.4 21.0 ± 4.7 2.2·10[‐]−16 26.6 ± 3.9
Sex (% of females) 61% 49% 63% 1.50·10[‐]−5 58%
APOE4-carrier 21% 43% 49% 2.2·10[‐]−16 43%

Data are expressed as mean values ± standard deviations. Acronyms: eTIV: estimated total intracranial volume; MMSE: Mini Mental State Examination; APOE4:
apolipoprotein E ε4; CN: cognitively normal; MCI: mild cognitive impairment; AD: Alzheimer's disease. P-values were calculated via chi square test for dichotomic
variables and via ANOVA for non-dichotomic variables. Values of training set denoted with * are not significantly different from their corresponding values derived
from the test subjects (p-value > 0.05).

Table 2
Diagnoses and biomarker availability.

Data set CN MCI AD Sub-Total MRI CSF Cognitive scores

Training set ADNI 1/GO/2 468 753 267 1488 100% 72% 100%
Test set ADC 125 80 129 334 100% 83% 99%

ARWiBo 1399 169 152 1720 100% 3% 59%
EDSD 179 138 151 468 100% 19% 97%
OASIS 177 122 42 341 100% NA 100%
PharmaCog 0 147 0 147 100% 99% 100%
ViTA 41 15 2 58 100% NA 100%
Total 2389 1424 743 4556 100% 36% 77%

The number of cognitively normal (CN), mild cognitive impairment (MCI), Alzheimer's disease (AD) and total subjects is reported for each data set. Biomarker
availability is expressed as percentage related to the total subjects in each data set. No CSF biomarker is available for OASIS and ViTA data sets.
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sampled as a random swap between two biomarkers of the current
benchmark sequence. If the new sequence is a better fit than the
benchmark sequence, which is determined mathematically by the
likelihood, then the new sequence is considered as the benchmark se-
quence for the following MCMC step.

The probability of an event for each biomarker is determined by a
Gaussian mixture model (GMM) where the normal and abnormal
components are modelled by Gaussian distributions. In EBM (Young
et al., 2014), distributions of normal and abnormal biomarkers are in-
itialized as the distributions of biomarkers from the CN and AD sub-
jects, respectively. The mixture model distribution for each biomarker
is then found as the sum, weighted on the mixing parameters, of the two
aforementioned distributions that best fits to biomarker values from all
subjects. Optimization of the GMM function is performed along the
Gaussian parameters and the mixing parameters and in order to avoid
the possibility that biomarkers will not show a clear bimodal distribu-
tion, the standard deviations for normal and abnormal components in
the GMM are constrained to be no greater than the standard deviations
of CN and AD subjects, respectively.

The approach of DEBM model (Venkatraghavan et al., 2017, 2019)
for the calculation of the central ordering, on the other hand, is a two-
step process where first (i) a specific ordering is calculated for each
subject by sorting the posterior probability that each biomarker has
become abnormal and then (ii) the central ordering is calculated as the
event sequence that minimizes the sum of probabilistic Kendall's tau
distances between itself and all the subject-wise orderings. As the
posterior probability is influenced by the physiological variability of
biomarkers, DEBM assumes that single subject orderings are noisy es-
timates of the central ordering (Venkatragahvan et al., 2019).

The original formulation of DEBM (Venkatragahvan et al., 2019)
also contains a specific mixture model, for which an initial estimate of
the distributions of non-diseased and diseased subjects for each bio-
marker is performed using values from subjects at the opposite ends of
the disease spectrum, as defined by a Bayesian classifier which is
trained to remove outliers and wrongly labelled data. This allows effi-
cient separation of the two Gaussian distributions of normal and ab-
normal values for each biomarker. The biased distributions are then
refined including data from all subjects via a GMM that has constraints
based on the aforementioned relationships between the expected and
the biased distributions. The same objective GMM function as for EBM
is optimized alternatively along the Gaussian parameters and the
mixing parameters until the latter converge.

Optimal sequences were calculated as averages of orderings ob-
tained from 50 bootstrapped iterations for both EBM and DEBM.
Furthermore, in EBM the number of MCMC steps was set to 50.000 to
ensure convergence of the likelihood. In practice convergence was ty-
pically observed before the 15.000-th MCMC step.

See Supplementary Material SS1 for detailed mathematical model-
ling.

2.4. Model validation & statistical analysis

Validation of the models is performed by staging subjects from the
training and test sets on the basis of the event sequences built on the
basis of biomarkers from subjects from the training set. Specific
methods for staging subjects are available in the original works for both
the EBM (Young et al., 2014) and DEBM (Venkatragahvan et al., 2019).
For the sake of simplicity, and in order to have a common staging
system for both models, the method from Young et al. (2014) was
employed in this work. This method assigns each subject a position of
the central event sequence, resulting in a number of stages that is equal
to the number of biomarkers considered for the sequence plus one, as it
is necessary to add stage 0 where no biomarker is abnormal. The stage
of each subject is calculated as the k-th step of the event sequence that
maximizes the probability that all events up to k have already occurred
and events from k+ 1 to the end of the sequence are yet to occur. In

case of missing biomarkers, the probability of the biomarkers to be
abnormal was set to 0.5 (Young et al., 2015). Assuming that clinical
diagnoses of all subjects are made through a biomarker-based assess-
ment, it is expected that each subject, either from the training or test
set, is staged at the earlier positions of the event sequences if CN and at
the later positions if AD.

Measures of area under curve (AUC), sensitivity, specificity and
balanced accuracy at optimal threshold kT were calculated for all
pairwise comparisons among clinical groups, i.e. (i) AD vs. CN, (ii) AD
vs. MCI, and (iii) MCI vs. CN. In order to assess significant differences
between receiver operating characteristic (ROC) curves, the DeLong
test (DeLong et al., 1988) was performed.

To assess the validity of the EBM and DEBM central orderings we
explored the linear correlation between subjects' model stages and
MMSE scores. The MMSE is the most widely used screening tool to
assess cognitive functions in both routine clinical practice and research
settings and its score correlates with the different phases of AD pro-
gression (Tombaugh and McIntyre, 1992). In order to avoid circularity
MMSE scores were excluded from the initial calculation of the event
sequences. Moreover, in order to mitigate the ceiling effect typical of
MMSE (Hoops et al., 2009), the lower limit for the linear regression
analysis was set as the model stage that provides the optimal threshold
for separating CN and MCI subjects.

To explore how much the missing biomarkers of test subjects
(Table 2) affected the classification performances in both models, sta-
ging was also performed for a special subset of test subjects having at
least one CSF measurement, MMSE score and imaging biomarkers.
These restriction criteria reduced the original test subjects from 3068 to
562 (104 CN,331 MCI, 127 AD) and the number of events considered in
our original simulation from 13 to 12 as ADAS-Cog and RAVLT were
excluded since they were available only for the PharmaCog data set,
while MMSE was included.

Statistical analysis was performed with R version 3.5.1.

3. Results

3.1. Events ordering

Central event sequences and their variances were generated from
biomarkers of training subjects for both EBM and DEBM and were
plotted as positional variance diagrams (Fig. 1).

The event sequence obtained with the DEBM algorithm showed that
amyloid related biomarkers became abnormal first. The abnormalities
of Aβ1,42 protein and Aβ1,42/p-Tau ratio are at the very first positions
followed by cognitive scores, Tau protein-related biomarkers, and fi-
nally imaging markers of AD-relevant brain regions. Averaged volumes
between left and right hemisphere of hippocampus and precuneus are
respectively the first and the last brain areas to become abnormal while
the medial temporal lobe is in between. The enlargement of the ven-
tricles and the atrophy of the whole brain were in the last two positions.

In EBM, CSF biomarkers are the first to show abnormality, although
with a different pattern with respect to DEBM. Tau related biomarkers
became abnormal earlier and often before amyloid-related biomarkers.
The sequence obtained with EBM followed a similar ordering for the
cognitive scores although the specific order of RAVLT and ADAS scores
is swapped.

The enlargement of the ventricles is placed at the fourth position of
the ordering although the positional variance showed that this event
has nonzero probability of occurring in the first or last position of the
sequence. Volumetric measures of the grey matter of the fusiform gyrus
and precuneus are placed at the very last positions of the EBM bench-
mark sequence. Both EBM and DEBM showed good positional stability
(see Fig. 1), and in the case of DEBM no event occurs far from the
diagonal.
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3.2. Staging of individuals across the AD spectrum

Subjects from both training and test set were staged on the basis of
the event sequences derived from the training set. For the training set,
in both EBM and DEBM cases, > 60% of CN subjects were staged at
position 0 where no abnormalities have occurred yet (Fig. 2 (a) & (b)).
Similarly, the majority of AD were staged at positions 12–13 (of 13
total) of both sequences. Most of the remaining CN subjects were spread
across stages 1–6 in EBM and 1–4 in DEBM. The majority of the re-
maining AD individuals were staged across stages 7–11 for EBM and

stages 5–12 for DEBM.
For the test set, staging of subjects obtained with EBM and DEBM is

shown in panels (c) and (d) of Fig. 2 respectively. In this case > 70% of
AD subjects was staged at positions 12–13 and > 60% of CN subjects
were staged at position 0, but the strong separation between CN and AD
observed in the training set was not reproducible in the test set for 30%
of CN subjects were staged at positions 6–13. These test CN subjects
belonged to two different phenotypic classes:

(1) subjects whose eTIV was very large or very small compared to the

Fig. 2. Subject staging based on the sequences obtained with EBM and DEBM methods. Staging of subjects from all diagnostic categories (Cognitively normal (CN) in
blue, mild cognitive impairment (MCI) in orange, Alzheimer's disease (AD) in red) are shown for (a) training subjects on EBM sequence, (b) training subjects on
DEBM sequence, (c) test subjects on EBM sequence and (d) test subjects on DEBM sequence. Histograms are normalized for each diagnostic category. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 1. Positional variance diagrams of event orderings obtained with EBM and DEBM. Both diagrams show the number of times each biomarker occurred in a
specific position from a batch of 50 independent bootstrapped sequences generated using biomarkers of training subjects with EBM (left) and DEBM (right) methods.
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eTIV of the CN population. Indeed, the eTIV of these subjects
showed a bimodal distribution with peaks at ± 1.1 standard de-
viations apart from the average of the test CN population;

(2) subjects aged 76.2 ± 8.7 on average, whose MMSE score was on
average 29.11, but whose hippocampal normalized volume was
significantly smaller compared to the hippocampal normalized vo-
lume for the test CN subjects ((2.1 ± 0.4) × 10−3 vs.
(2.7 ± 0.4) × 10−3).

In each case, the distribution of MCI stages overlapped with the
distribution of stages for CN and AD, but a considerable amount, always
between 30% and 40%, was staged at position 0 in both EBM and DEBM
models (Fig. 2). MCI subjects staged at position 0 had an average MMSE
score of 28.2 ± 2.1 for training set and 27.0 ± 2.1 for test set.

Staging of the subjects from each data set on the basis of EBM and
DEBM sequences shows a good separation between CN and AD subjects
in each case, and generally few subjects are staged at positions 1–7 for
EBM and 1–5 for DEBM as these stages correspond to CSF and cognitive
biomarkers (see Supplementary material SF2). Linear regression of
DEBM stage vs EBM stage resulted in slopes < 1 for both the training
and test set, meaning that on average EBM stage is always greater than
DEBM stage (see Supplementary material SF3).

3.3. Staging vs MMSE correlation

Average and standard deviation of the MMSE scores of the training
and test sets at each stage is shown in Fig. 3. The plot showed de-
creasing MMSE scores in the latter stages in both EBM and DEBM.

Linear regression of the MMSE scores of all subjects excluding the
initial ceiling effect showed correlation between the decrease in MMSE
score and patient staging of training subjects for both EBM (R2=0.896)
and DEBM (R2=0.860). The limit of the initial ceiling was set as the
model stage threshold that optimally separates CN and MCI subjects,
that is stage 6 for EBM and stage 5 for DEBM in the case of the training
set. Good linear correlation between MMSE scores and subject staging
was observed for individuals from the test set (R2=0.866 for EBM and
R2=0.906 for DEBM), although the ceiling effect thresholds were dif-
ferent from the thresholds of the training set (stage 1 for both EBM and
DEBM).

3.4. Prediction of clinical diagnosis

Clinical diagnosis classification of each individual from both
training and test data sets was computed. All the possible combinations
were assessed, i.e. AD vs. CN, AD vs. MCI and MCI vs. CN. The balanced
accuracy and AUC values of the classification obtained on both training

Fig. 3. Correlation between MMSE score and subjects staging for (a) training set subjects on EBM sequence, (b) training set subjects on DEBM sequence, (c) test set
subjects on EBM sequence, (d) test set subjects on DEBM sequence. Average and standard deviation of MMSE score of training and test subjects staged on the basis of
EBM and DEBM sequences are shown. Coefficients of determination (R2) of the linear regression of MMSE score vs disease stage are reported.
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and test sets were comparable to other state-of-the-art classification
approaches (Young et al., 2014). In the case of AD vs. CN, balanced
accuracy and AUC of the ROC curve, alongside measures of sensitivity
and specificity, are > 0.93 in the training set and > 0.81 for test set for
both models (see Table 4). The comparison of the AUC showed sig-
nificant differences (p-value ≤ 0.05) between EBM and DEBM in both
training and test sets. For AD vs. MCI subjects, balanced accuracy and
AUC in both training and test sets were always > 0.71. No significant
differences were registered between the AUC of EBM and DEBM. In the
case of MCI vs. CN subjects, balanced accuracy and AUC values were
between 0.62 and 0.73 without significant differences between EBM
and DEBM. In both models, a significant difference (p-value ≤ 0.05)
between training and test sets was observed in two of the three classi-
fication tasks: (i) AD vs. CN; (ii) MCI vs CN. The maximum balanced
accuracy threshold (kT) used in the classification increases across the
disease spectrum in both models with the exception of DEBM on ADNI
subjects where the threshold is constant for all classifications. This is
compatible with the idea that EBM and DEBM produce event sequences
that track disease progression.

To fully explore the capabilities of the two models and to perform a
fair head to head comparison we run similar analyses in the training
and test sets considering all the 14 biomarkers (see Supplementary
Material SF4, SF5). On average, the general performance in dis-
criminating subjects from the test set improved by 2 and 4 percentage
points respectively for DEBM and EBM (see Supplementary Material
ST2). This improvement is achieved by the inclusion of the MMSE
score, which is available for a large portion of test subjects.

Results of the case where all test subjects do not have missing bio-
markers showed improvement in the performances for all the computed
metrics. In the test set, on average, DEBM showed an increase of 4.3%

in balanced accuracy and an increase of 3.0% in AUC compared with
the metrics obtained from the complete 13 biomarker sequences.
Similarly, EBM showed an increase of 7.2% in balanced accuracy and
an increase of 5.5% in AUC. Generally, no statistically significant dif-
ferences between staging of training and test subjects were observed (p-
value > 0.05) for all groups in both models. Detailed results are re-
ported in Table 5.

3.5. Sequence consistency

In order to ensure consistency of the benchmark sequence generated
from the training set, a disease model was also built on the basis of the
test set (i.e.: ADC, ARWiBo, EDSD, OASIS, PharmaCog, ViTA) using
both EBM and DEBM. ADAS-Cog and RAVLT cognitive scores were not
included since these specific tests were available only for MCI subjects
from the PharmaCog data set. MMSE was included so that all biomarker
families (cognitive, CSF and imaging) were represented.

In both sequences obtained with the EBM, CSF biomarkers occupy
the first positions of the sequences (Fig. 4(a)) but the second halves of
the sequences differ considerably, especially in the position of ven-
tricles and hippocampus. In total, 23 swaps between adjacent bio-
markers are needed in order to turn the sequence obtained from the test
set into the sequence obtained from the training set.

In DEBM, the event sequences obtained from training and test sets
are similar. Only 11 swaps between adjacent events are needed to turn
the test set sequence into the benchmarked training set sequence
(Fig. 4(b)). With the exception of t-Tau and p-Tau both sequences ob-
tained with DEBM can be divided in four partial rankings that contain
the same biomarkers: Aβ1,42/p-Tau ratio, Aβ1,42 and MMSE in the first
partial ranking, hippocampus and entorhinal cortex in the second,

Table 4
Measurements of area under curve (AUC), sensitivity (Sens), specificity (Spec), and balanced accuracy (BalAcc) at a specific threshold (kT) for the subject staged with
EBM and DEBM methods on training and test data sets.

EBM DEBM p-value

kT Sens Spec BalAcc AUC kT Sens Spec BalAcc AUC

Training set
AD vs CN 7 0.97 0.96 0.96 0.97* 5 0.92 0.94 0.93 0.95* 1.88·10−3

AD vs MCI 9 0.59 0.96 0.77 0.81 5 0.48 0.94 0.71 0.76 5.30·10−5

MCI vs CN 6 0.88 0.52 0.70 0.73* 5 0.92 0.52 0.72 0.73* 0.537

Test set
AD vs CN 5 0.71 0.91 0.81 0.87 7 0.78 0.85 0.81 0.86 3.99·10−2

AD vs MCI 12 0.77 0.71 0.74 0.78 11 0.70 0.75 0.73 0.77 0.393
MCI vs CN 1 0.63 0.62 0.62 0.63 1 0.68 0.60 0.64 0.64 0.676

Thresholds are chosen to maximize the balanced accuracy in each classification task. P-values of Delong test performed to compare AUCs of EBM and DEBM methods
are reported in the last column. AUCs of training set denoted with * are significantly different from their corresponding values derived from the test subjects (p-value
of DeLong test ≤0.05).

Table 5
Measurements of area under curve (AUC), sensitivity (Sens), specificity (Spec) and balanced accuracy (BalAcc) at a specific threshold (kT) for the staging obtained
with EBM and DEBM methods on training and test data sets not containing missing values.

EBM DEBM p-value

kT Sens Spec BalAcc AUC kT Sens Spec BalAcc AUC

Training set
AD vs CN 8 0.98 0.95 0.97 0.97 3 0.86 0.99 0.92 0.95 3.10 10−2

AD vs MCI 8 0.70 0.95 0.83 0.83 7 0.66 0.76 0.71 0.76 0.104
MCI vs CN 5 0.89 0.51 0.70 0.72 3 0.86 0.58 0.72 0.73 1.99 10−8

Test set
AD vs CN 4 0.88 0.94 0.91 0.95 3 0.91 0.91 0.91 0.94 0.332
AD vs MCI 4 0.57 0.94 0.76 0.80 5 0.63 0.87 0.75 0.79 1.65 10−2

MCI vs CN 4 0.88 0.43 0.66 0.66 3 0.91 0.52 0.71 0.70 0.296

P-values of Delong test performed to compare AUCs of EBM and DEBM methods are reported in the last column. In DEBM and EBM AUCs of the training set were not
significantly different to their corresponding AUCs in the test set (p-values of DeLong test always > 0.05).
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middle temporal gyrus, fusiform gyrus and precuneus in the third and
whole brain and ventricles in the last partial ranking.

4. Discussion

To our knowledge, this is the first translational study showing via-
bility of the EBM and DEBM, trained on research data, in a clinical
setting. This is also the first cross-cohort assessment of the models'
validity on cross-sectional multimodal biomarkers. Previous literature
focused only on well characterized research datasets and synthetic data
(Young et al., 2014; Venkatraghavan et al., 2017, 2019; Iturria-Medina
et al., 2016; Li et al., 2014; Koval et al., 2018; Schiratti et al., 2015) but
this kind of approach does not take into consideration the aspects of
real clinical data. We investigated and compared the performance of
EBM and DEBM when applied to the same training and test data sets
which included subjects across the entire disease spectrum, accounting
for missing data.

EBM and DEBM rely on different estimates of the Gaussian mixture
models and in the definition of the optimal sequence of biomarkers. As
highlighted in literature (Venkatragahvan et al., 2019), the optimiza-
tion technique adopted in DEBM, for which Gaussian parameters and

mixing parameters are optimized alternatively, prevents the abrupt
change of the mixing parameter for small changes in the Gaussian
parameters that was observed in EBM.

We observed differences between EBM and DEBM optimal event
sequences. The DEBM sequence is closer to Jack's model (Vemuri and
Jack, 2010) and also mirrors stages V and VI of cortical degeneration
due to neurofibrillary tangles deposition as described in Braak's Model
(Braak et al., 1993). The DEBM sequence starts with Aβ1,42 and Aβ1,42/
p-Tau ratio, while the EBM sequences suggests p-Tau as the first bio-
marker to become abnormal. Although in literature it is not completely
understood which is triggering the other (if at all), much evidence
suggests Aβ1,42 deposition to be upstream of Tau deposition. The de-
position of amyloid plaques presumably triggers the conversion of Tau
protein to toxic state, while less evidence suggests that toxic Tau can
enhance Aβ1,42 toxicity via a feedback loop. Soluble toxic aggregates of
Aβ1,42 and p-Tau can self-propagate and spread throughout the entire
brain, perhaps enhancing other destructive biochemical pathways
(Bloom, 2014) and triggering the abnormality cascade of the other
biomarkers. It is important to consider, however, that the transition to
abnormality of a biomarker may not correspond to its pathological
change, since no a priori thresholds are set.

Fig. 4. Positional variance diagrams of event sequences computed from training set (left) and test set (right) using EBM (a) and DEBM (b) algorithms. In the case of
DEBM green lines divide the sequences into homogeneous blocks between the training and test sets. Orange boxes represent biomarker exceptions not conserved in
the same block comparing the training vs. test positional variance diagrams. Clear event blocks cannot be identified for EBM sequences. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

D. Archetti, et al. NeuroImage: Clinical 24 (2019) 101954

9



Coherently with Iturria-Medina's model (Iturria-Medina et al.,
2016), where spatiotemporal abnormalities of multiple biomarkers are
explored via a multi-factorial data-driven analysis, both EBM and
DEBM orderings showed a drop in the performance of cognitive test
scores after events related to CSF biomarkers. In particular, EBM or-
dering of cognitive results seems slightly more plausible, ordering the
RAVLT before ADAS13, as RAVLT has been reported to be more sen-
sitive to detect abnormal changes in pre-dementia condition (Estevez-
Gonzalez et al., 2003) while ADAS is more specific to detect moderate
AD conditions (Rosen et al., 1984). According to both methods, cog-
nitive tests were positioned before group-level neurodegeneration
events in the benchmark sequences. This fact might be in contrast with
literature (Jack et al., 2010; Mormino et al., 2009) for which memory
impairment occurs after volumetric decrease of brain regions. This
difference can be explained by the fact that population-level volume
changes may affect the event sequence (Young et al., 2014). The earlier
position of cognitive scores with respect to imaging biomarkers could
be explained partially by the different GMMs used in the two algorithms
and partially because of specific inclusion criteria for the ADNI training
subjects. In ADNI, no subjects with severe cognitive impairments were
included since one of the inclusion criteria was to have MMSE score at
least equal to 18. This may affect the position in which cognitive test
scores were considered abnormal because the threshold that separates
normal from abnormal values might be overestimated by the models,
considering that no a priori assumptions are made in EBM and DEBM.

As far as the MRI biomarkers are concerned, DEBM showed an ex-
pected pattern of grey matter atrophy with AD progression.
Abnormalities were ordered throughout the temporal lobes as follows:
hippocampus, entorhinal cortex, fusiform and mid temporal regions.
Precuneus was affected subsequently, in agreement with model of
cortical atrophy progression proposed by ten Kate et al. (2017), where
atrophy of parietal regions is associated with progression from MCI to
dementia. The DEBM sequence presented the whole brain and sub-
cortical abnormalities as end-sequence events. EBM did not capture the
expected atrophic evolution of the grey matter and the main anomaly
was represented by ventricles. Their abnormality was reported in the
fourth position of the optimal sequence and their variability is spanning
from the first to the last position. Two different local likelihood maxima
due to different subtypes of AD (Young et al., 2018) in the EBM se-
quence space could be one possible reason. Also, this issue is not ob-
servable in DEBM, where normally the variance of an event is dis-
tributed continuously around its specific position, that means around
the positional variance diagram bisector. The difference between the
two models can be attributed to the smoothing effect intrinsic to the
DEBM algorithm and, as highlighted in Venkatragahvan et al. (2019), to
the specific mixture model used in EBM. The sequences generated by
EBM and DEBM models, however, represent a general event ordering
for the progression of the disease and individual trajectories may show
variability with respect to the optimal sequences.

We demonstrated, using data from ADNI and 6 other independent
clinical cohorts, the performances of EBM and DEBM across the entire
Alzheimer's time course. Staging of subjects in both the training and test
sets showed separation between AD and CN in the two methods. This
meant that the algorithms were effective at distinguishing subjects
having only a few abnormal biomarkers from those having only a few
normal biomarkers. As expected, the majority of CN subjects from the
training set were staged at position 0, where no abnormality manifested
yet, and a large number of AD subjects was at end-sequence stages
11–13. Staging of the test subjects followed the same general trend as
ADNI, although subjects with a lack of CSF values or cognitive assess-
ments and with normal imaging biomarker values were staged in
proximity of non-symptomatic stage 0. The large number of CN subjects
in the test sets that were staged in the last positions for both models, can
be partly explained considering that a significant portion of these in-
dividuals are CN elderlies with volumetric anomalies and no other
biomarker available, thus contributing to subjects' misclassification

although MMSE score showed no abnormalities. Another portion of
misclassified CN subjects is formed by individuals with abnormal
imaging biomarkers but here the misclassification is due to the linear
regression correction since the average eTIV of test subjects is sig-
nificantly lower than the average eTIV of training subjects, thus, the
imaging biomarkers of test subjects are artificially considered as
atrophic with respect to the imaging biomarkers from the training set
subjects.

Some concerns may arise from the large number of MCI subjects
staged at stage 0. The CSF and cognitive scores for the majority of these
individuals were close but not yet over the probabilistic threshold va-
lues, therefore they were still in the normal ranges, and the models
considered those subjects as normal. Despite this, staging evidences
give comparable results to state-of-the-art classification techniques for
prediction of conversion from MCI to dementia (Young et al., 2015;
Willette et al., 2014).

EBM and DEBM showed good linear correlation with MMSE scores,
fairly consistent with the clinical and regional biomarkers, thus pro-
ducing an indirect validation of models with respect to the disease
evolution. Both methods, after an initial plateau due to the ceiling effect
typical for MMSE test (Hoops et al., 2009), showed an expected linear
decline (Perneczky et al., 2006). Although it was a rather trivial ap-
proach, we tried to validate the EBM and DEBM event sequences even
in absence of a validated pathological gold-standard across the data
cohorts.

When all test subjects are considered, we detected a significant drop
of performance in classifying AD vs CN as well as in MCI vs CN subjects
from ADNI to the test cohorts. This is probably due to missing data (CSF
biomarkers and cognitive scores), which is known to increase un-
certainty in subject staging (Young et al., 2014). Indeed, when con-
sidering a reduced set of test subjects for which all biomarkers were
available, the performances became much closer to those obtained from
the training set and no more significant differences between training
and test data sets were observable for both EBM and DEBM (p-va-
lues > 0.05). This reinforces the importance to collect an adequate set
of biomarkers for an accurate staging of single subjects into the correct
diagnostic class.

As far as the test set is concerned, the classification of AD vs CN
subjects was significantly better in EBM than in DEBM (p-va-
lues≤0.05). In classifying AD vs MCI, EBM was slightly better with
higher sensitivity, balanced accuracy and AUC. In MCI vs CN, DEBM
reached higher sensitivity and balanced accuracy while EBM reached
higher specificity. This evidence might represent specific hints to guide
the usage of EBM and DEBM for physicians according to the initial
diagnostic hypothesis they want to test in their clinical practice.

An interesting consideration for future works is the possibility to use
such methods to follow MCI in specific sub-classes, namely: amnestic
MCI, non-amnestic MCI and MCI due to AD. Additional studies with
extended age range of subject, larger and additional groups and addi-
tional biomarkers such as other brain regions will be helpful to achieve
a more accurate description of AD via event-based models. Clinically
relevant information related to patients' staging, together with the
models' robustness as well as progressive tracking capabilities along the
CN-to-AD course, might be implemented into a clinical decision support
tool, to aid diagnosis and prognostic assessment of AD at early stages.

Additional efforts will be needed to understand the capabilities of
staging subjects during clinical routine by means of EBM and DEBM in:
(I) reducing the number of patients needed for future clinical trials, (II)
monitoring the efficacy of disease modifying drugs, (III) personalized
medicine.

So far, EBM and DEBM have been validated against well-char-
acterized research datasets, synthetic data and, in the present study,
multicentric clinical cohorts, but none of them has been yet compared
against different stages of the AD pathology. In the next future, we
would have to focus on further validation of both models against da-
tabases of population of normal and abnormal post-mortem studies on
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subjects assessed with as many biomarkers as possible, such as those
collected in the Religious Orders Study (Bennett et al., 2012a), Rush
Memory and Aging Project (Bennett et al., 2012b), the Adult Changes in
Thought study (Kukull et al., 2002), and the National Alzheimer's Co-
ordinating Center data set (Beekly et al., 2007).

Some limitations of the current results should be considered in fu-
ture validations of event-based models. First, the tools here described
need to be further compared with other complementary techniques
based on longitudinal data sets, such as: temporal continuous models
and spatiotemporal models – see (Oxtoby and Alexander, 2017) for a
recent review of the field. Second, as clinicians are the potential ben-
eficiaries of the tools based on such models, independent evaluators
should rate the diagnostic added value and accuracy of EBM and DEBM.
Third, the greatest limitations in the methods applied is the assumption
of a common or average disease trajectory across individuals, while AD
is highly heterogeneous and clearly violates this assumption. In this
perspective single subject orderings already available in DEBM, and
data-driven subtype progression patterns estimated using SuStaIn
(Subtype and Stage Inference) (Young et al., 2018) could play a central
role in the description of AD progression at the level of the single
subject. Finally, computational time is worth considering: the extensive
use of EBM or DEBM to analyse large volumes of data that must be pre-
processed and that require large computational resources, such as: HPC,
Grid, or Cloud (Redolfi et al., 2013, 2015; Frisoni et al., 2011), indeed
the models can be trained a priori and then they should be used in the
clinical practice only to evaluate new subjects on the basis of the pre-
ferred model within an acceptable time frame.

The state of the art of these data driven models is represented by
research tools (https://github.com/EuroPOND), that should be im-
plemented in more user-friendly interfaces compatible with the clinical
routine. Efforts towards the opportunities for clinical adoption and
perceived importance of such a tool in clinical setting has started to
appear (https://icometrix.com, n.d.) (see Supplementary material SF6).

5. Conclusions

We have performed an inter-cohort model transferability study and
model performance comparison via external validation approach for
event-based models. In the field of healthcare, the importance of data
driven models will grow in the coming years, and the results presented
here represent the first viability and generalizability proof of principle
to train such models on research data and apply them clinically: on
cross-sectional, less-well-characterized cohorts. We trained data-driven
disease progression models with the ADNI data set and compared pa-
tients' ordering, staging and performance through ADC, ARWiBo, EDSD,
OASIS, PharmaCog and ViTA data sets. Overall, we tested both models
on 4556 subjects and 14 multimodal biomarkers. Both EBM and DEBM
demonstrated similar and good classification performances especially
when all biomarkers were available for test subjects. Orderings ob-
tained from both models agreed with previous heuristic models. The
event sequence generated through DEBM returned a more reasonable
description of the course of AD, while EBM showed better classification
performances, which are important considerations for future applica-
tions.
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