
http://pubads.g.doubleclick.net/gampad/clk?id=4736495933&iu=/2215


Automatic labeling of MR brain images through extensible learning and atlas
forests

Lijun Xu, Hong Liu,a) Enmin Song, Meng Yan, and Renchao Jin
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
Key Laboratory of Education Ministry for Image Processing and Intelligent Control, Wuhan, Hubei 430074, China

Chih-Cheng Hung
Center for Machine Vision and Security Research, Kennesaw State University, Marietta, GA 30144, USA

(Received 8 December 2016; revised 31 July 2017; accepted for publication 8 September 2017;
published 24 October 2017)

Purpose: Multiatlas-based method is extensively used in MR brain images segmentation because of

its simplicity and robustness. This method provides excellent accuracy although it is time consuming

and limited in terms of obtaining information about new atlases. In this study, an automatic labeling

of MR brain images through extensible learning and atlas forest is presented to address these

limitations.

Methods: We propose an extensible learning model which allows the multiatlas-based framework

capable of managing the datasets with numerous atlases or dynamic atlas datasets and simultaneously

ensure the accuracy of automatic labeling. Two new strategies are used to reduce the time and space

complexity and improve the efficiency of the automatic labeling of brain MR images. First, atlases

are encoded to atlas forests through random forest technology to reduce the time consumed for cross-

registration between atlases and target image, and a scatter spatial vector is designed to eliminate

errors caused by inaccurate registration. Second, an atlas selection method based on the extensible

learning model is used to select atlases for target image without traversing the entire dataset and then

obtain the accurate labeling.

Results: The labeling results of the proposed method were evaluated in three public datasets,

namely, IBSR, LONI LPBA40, and ADNI. With the proposed method, the dice coefficient metric

values on the three datasets were 84.17 � 4.61%, 83.25 � 4.29%, and 81.88 � 4.53% which were

5% higher than those of the conventional method, respectively. The efficiency of the extensible learn-

ing model was evaluated by state-of-the-art methods for labeling of MR brain images. Experimental

results showed that the proposed method could achieve accurate labeling for MR brain images with-

out traversing the entire datasets.

Conclusion: In the proposed multiatlas-based method, extensible learning and atlas forests were

applied to control the automatic labeling of brain anatomies on large atlas datasets or dynamic atlas

datasets and obtain accurate results. © 2017 American Association of Physicists in Medicine [https://

doi.org/10.1002/mp.12591]
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1. INTRODUCTION

Accurate brain anatomy labeling is a crucial prerequisite for

numerous clinical and research applications. However, man-

ual labeling is a time-consuming task because labeling a set

of MR brain image requires a specialist to work for 2 or

3 days.1 With the development and recognition of public atlas

datasets, the automatic labeling of MR brain images has been

extensively investigated. Many institutions provide atlases

with the advancements in medical imaging and clinical appli-

cations, which provide basis for a future research. However,

the studies have yet to determine how numerous atlases can

be used rapidly and efficiently label MR brain images.

In this study, the proposed automatic labeling method

through the extensible learning and atlas forests aimed to

resolve previously encountered problems. The proposed

method mainly includes three steps: training the atlas dataset,

establishment of the extensible learning model and selection

atlases for target image, and labeling the target image.

The detailed work of each step is described below:

(1) In the training stage, random forest strategy is utilized

to encode atlases and generate atlas forests by using

each voxel of the atlases as a sample. In most cur-

rently multiatlas-based methods, all atlases in datasets

should be registered to target image in each labeling.

However, multiatlas-based methods become time-con-

suming because of this requirement. In the proposed

method, atlases are required to register only once in

the training stage to obtain labels; this is due to the

use of spatial features in the atlas encoding.

(2) We construct an extensible learning model and

select atlases for the target image without traversing

the whole dataset through the model. The
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extensible learning model provides a pre-estimation

of atlases in the dataset and the model will be

dynamically updated during the selection of atlases

for a new target.

(3) The labeled mean atlas which is aligned to the target

image will serve as an augmenting channel to provide

spatial information as spatial features, and then the

labels of the target image are predicted by trained atlas

forests.

This paper is organized as follows. Section 2 analyzes the

related studies on multiatlas-based methods of MR image

labeling. Section 3 discusses the proposed method and its

implementation steps. Section 4 shows the experimental

results and analysis. Section 5 presents our conclusion.

2. RELATED WORKS

2.A. Multiatlas-based labeling

The multiatlas-based method is efficient and attractive in

the field of MR brain image labeling. This method can use

the prior knowledge provided by the atlases to obtain an accu-

rate and robust labeling of the target image. In general, the

multiatlas-based method is mainly divided into two steps: (a)

Register the atlas to the target image to accurately map the

information of the atlas to the target image. (b) Use the label

fusion strategy to evaluate the labels provided by the atlases

to obtain the labeling of the target image.

Registration performance possibly influences labeling

accuracy.2 Some studies have been performed by nonlinear

registration.2 These methods can achieve high-accuracy label-

ing, but several parameters closely related to labeling accu-

racy are required. A registration scheme without any

parameters has been proposed to solve this problem and

achieves accuracy at a pixel level.3,4 In other studies, all

atlases considered rather than a single one in the dataset to

improve the registration performance.5

Some studies have focused on label fusion. The most

common method involved in label fusion is weighted vot-

ing. In this method, similarities between the target image

and reference atlases are determined to locate the reliabil-

ity of label propagation. Weighted-based evaluation meth-

ods can be local, semilocal, or global.6–9 The patch-based

strategy also plays a significant role in multiatlas-based

methods. In patch-based methods, the similar image

patches should belong to the same area and have the same

label.10 There are various patch-based methods, including

sparsity11 and k-NN (k-nearest neighbor) search structure12

have been developed.

With the development of machine learning technology,

machine learning has been introduced to multiatlas-based

labeling. Bai et al.13 used the augmented features to extract

intensity, gradient, and texture information from the atlas and

applied SVM (support vector machine) to the label fusion.

Hao et al.14 showed a local label learning strategy to evaluate

labels. This function combines SVM and k-NN to find

similar image patches from the entire available atlases and

obtain the local information around the target area.

Atlas selection is an efficient mechanism to reduce the

time required in multiatlas-based methods. The mechanism

uses the similarity among the atlases and target image to

select those that provide more valuable information and thus

improve labeling accuracy.15–17 Asman et al.18 showed that

atlas selection improved the performance of majority voting.

Langerak et al.17 filtered a few atlases before registration to

save time.

2.B. Application of random forest in medical image
segmentation

Random forest is a fast classifier with robustness. It per-

forms two random operations based on the decision tree.19

Owing to the random strategy, the random forest is more

robust than other classifications and is less prone to overfit-

ting.19–21 With regard to the preceding advantages mentioned,

the random forest is recognized as an efficient method in the

field of medical image analyses.22–27

Zikic et al.28 applied random forest to high-grade seg-

ment gliomas of multichannel MR images and achieved

success. Also, they proposed encoding atlases by random-

ized classification forests to atlas forests for multiatlas

label propagation.29,30 For this way, each forest contains

intensity, texture, and location information of the corre-

sponding atlas. Therefore, the method is independent on

registration accuracy.

The strategy of atlas forest reduces the time of multiatlas-

based method for registration. However, the labeling accuracy

of the target image does not improve much because the prior

spatial information is too simple. Zhang et at.31 showed a

hierarchical learning based atlas selection method to gather

more information from atlases through a hierarchical struc-

ture. Their study indicated more excellent results than Zikic

et al.30. Meanwhile, the method requires more computational

resources than the last one and is nonextensible. Retraining is

necessary for the hierarchical model when a new atlas is

added to the dataset.

In our proposed method, we apply extensible learning

strategy to solve the retraining problem. We used diffuse

spatial feature vector to enhance the information of voxel

location to improve the labeling accuracy of brain MR

images.

3. MATERIALS AND METHODS

This section describes the proposed method in detail. The

method is divided into three parts: the first part is the training

of atlas forests; the second part is the establishment of self-

learning model based on extensible learning strategy and

atlases selection through the extensible learning model; and

the third part is the labeling of brain MR images. Figure 1

illustrates the overview of our method. According to the

framework, this section is arranged as follows. Section 3.A

introduces the training method for the atlas forests.
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Section 3.B describes the method of establishing a self-learn-

ing model. Section 3.C describes how to obtain the labels of

the target image by trained atlases forests. Section 3.D shows

the feature extraction method of brain MR images. Sec-

tion 3.E summarizes the framework of the proposed method.

3.A. Encoding atlas by using random forest

Encoding atlas is a prerequisite step of the proposed exten-

sible learning, which allows each atlas not to be affected by

other atlases in the dataset during the propagation of labels.

In this paper, we use the random forest for atlas encoding

strategy29,30 to meet the requirements above.

The random forest consists of decision trees with the

advantage of bagging. Each tree in the forest chooses samples

with replacement and selects features randomly. The random

forests generated by the atlas are called the atlas forests.29,30

In this paper, we consider a voxel on each atlas image as a

sample and extract the features through intensity, texture, and

location. The feature extraction is discussed in detail in

Section 3.D.

We use the ID3 strategy21 to build the decision tree

in which the split function is optimized to maximize the

information gain of splitting the training set. The decision

tree grows until the subsets of training samples divided

by the split function are sufficiently small. Then, each

leaf node in the decision tree has a corresponding cate-

gory label. We select the training samples and features

randomly and repeat the procedure above to build deci-

sion trees. The decision trees generate through atlases

constitute an atlas forest.

Each atlas forest contains the information of the corre-

sponding atlas and it can propagate the labels to the target

image independently of other atlases in the dataset. The label

fusion method of the trained atlas forests is described in detail

in Section 3.C.

3.B. Extensible learning model

Unlike the current multiatlas-based methods in labeling a

new target, the proposed approach constructs an extensible

learning model which remembers the evaluation of atlases in

the dataset while labeling the target so that it is not necessary

to traverse the entire dataset for atlases selection.

The extensible learning model is divided into two parts:

one is the establishment of the extensible learning model and

the other is atlas selection based on the model which will be

updated simultaneously.

FIG. 1. Overview of the proposed method. In this method, the labeled mean atlas as an augmented channel provides spatial information to the atlases and target

image. Each atlas is encoded to the atlas forest in the training stage. An atlas weight table is established in the extensible learning model. The weight of the atlases

is changed according to the number of times selected and the timestamp in which the atlas added in the processing of labeling. The extensible learning strategy

selects appropriate atlases for target image and target image is then labeled in the labeling stage. [Color figure can be viewed at wileyonlinelibrary.com]
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3.B.1. Establishment of the extensible learning

model

To construct the extensible learning model, we build a glo-

bal atlas information list to remember the evaluation of the

atlases for a dataset. The atlas information list includes two

parameters which determine the priority of the atlas: the

selected times of each atlas qi and the time when the atlas is

added to the dataset ti. The more times the atlas is selected,

the higher the priority is. The recently added atlases will have

the high priority also. The priority is calculated by Eq. (1)

with parameter a = 1. The initial values of qi and ti are zero,

and it can also be set to different values. The extensible learn-

ing model automatically updates the atlas information list

during atlas selection procession.

wi ¼ qi � ati ðwhen wi\0; wi ¼ 0Þ (1)

3.B.2 Atlas selection and update of the extensible

learning model

The main idea of atlas selection through the extensible

learning model is to select a group of priority atlases for test

and keep the atlases with high similarity to the target for label

fusion. We update the atlas information list to renew the

extensible learning model. The selection of priority atlases

will be repeated until there is no new atlas added for label

fusion. The proposed method uses a selective and iterative

method32 for the estimation of similarity between target

image and atlases.

The mathematical description of the process is as follows.

Assuming that Ai represents the ith atlas in the dataset, S
j rep-

resents the set of atlases that have not been evaluated at the

jth selection. We define S
0 = {A1, A2, . . ., An} (n is the

number of atlases in the dataset). Let S
j
choose denote the atlases

in the test set at the jth selection and S
j
select denote the selected

atlases set at the jth selection. Also, let Skfusion denote the set

of atlases to be fused at the kth iteration, L0i the labels of the

target image predicted by atlas forest corresponding to the ith

atlas of Skfusion, and Lkest the labels of target image that is fused

by the atlases in the Skfusion. We use the notation

/i ¼ DSCðL0i; L
k
estÞ which is obtained using the Dice similar-

ity ratio (DSC) between L0i and Lkest to represent a similarity

score of ith atlas in Skfusion. The symbol {/} is used to denote

the set of /i. The details are given as follows:

When S
j
select 6¼ S

j�1
select repeat steps 1–4

Step 1: Select a subset of unevaluated atlases from S j

to compose S
j
choose, let S0fusion ¼ S

j
choose and update

S jþ1 ¼ S jþ1 � S
j
choose.

Step 2: Predict Lkest with the corresponding atlases in

Skfusion and compute the dice similarity ratio between L0i
and Lkest by /i ¼ DSCðL0i; L

k
estÞ in Skfusion. Remove the

atlases with the low similarity to the target from Skfusion and

then generate Skþ1
fusion for next iteration based on the Eq. (2).

/i\meanf/g � a � stdf/g (2)

Step 3: Repeat Step 2 until no atlas forests need to be

removed, which means Skfusion ¼ Sk�1
fusion, and then let

S
j
select ¼ Skfusion

Step 4: If S
j
select ¼ S

j�1
select, then S

j
select is the final selected

atlases sets for the target image. Update the atlas informa-

tion table according to Eq. (3) and refresh the weight of

atlases according to Eq. (1)

qi ¼ qi þ 1ðAi 2 SselectÞ and ti ¼ ti þ 1ðAi 2 S0Þ (3)

We use the extensible learning model to provide the pre-

evaluation for the atlases and then choose a fixed-size set of

atlases with the highest priority to compose S
j
choose to reduce

the evaluation times. However, the similar atlases will be

clustered in the dataset. When the number of elements in the

atlas test set is less than those in a cluster, the test set may

select all of the elements from the same cluster. In such a sit-

uation, the suitable atlases cannot be properly selected

because we cannot find the poorest atlas in the same cluster

as each element has the same low similarity to the target

image. To avoid this, we add the uncertainty to S
j
choose: some

elements are from the high-priority atlases and the others are

selected randomly in the unevaluated set.

3.C. Label fusion by atlas forests

In the labeling stage, the labels in mean atlas align to the

target image as an augmenting channel to provide spatial

information for spatial feature, and then the label of the target

image is predicted by the trained atlas forests. Assuming that

fxyz indicates feature vector of point (x,y,z) of target image I, c

is the label of brain tissue, then the probability map of each

tree in atlas forest is pt(c|fxyz). An atlas forest F, which

includes nt decision trees, predicts the probability of label c

at this point as Eq. (4):

pFðcjfxyzÞ ¼ 1=nt
Xnt

i¼1

ptiðcj fxyzÞ (4)

Averaging those probability maps predicted from na
selected atlas forests for fusion as Eq. (5), then the maximum

probability of the label is the final result as Eq. (6).

pðcjfxyzÞ ¼ 1=na
Xna

i¼1

pFi
ðcj fxyzÞ (5)

ĉ ¼ argmaxc pðcj fxyzÞ (6)

3.D. Feature extraction

To describe the characteristics of the samples, we extract

two types of features: one is based on the images that are

used to describe the intensity and local texture, and the other

is based on the spatial location as shown in Fig. 2. The spa-

tial feature is used to describe the location of the sample tis-

sue. Given that p(x, y, z) is the point at the site (x, y, z),

Ns(p) is cubic centered at p with the side length s, I(p) is the

intensity in p, and l is the average operation. The notation
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p + u is the point which has the distance u from p(xp, yp, zp)

that obtained by Eq. (7), where ax,ay,az = 1 or 0 and

ax + ay + az > 0.

pþ u ¼ pðxp � axu; yp � ayu; zp � azuÞ (7)

A. Local intensity feature is represented in Eq. (8).

Flocal1
s ðI,pÞ ¼ lðIðNsðpÞÞÞ (8)

B. Local texture feature is denoted in Eq. (9).

Flocal2
s ðI,pÞ ¼ IðpÞ � lðIðNsðp + uÞÞÞ (9)

The labeled mean atlas is registered to the atlas which will

be encoded to improve the spatial location information for

the spatial feature. Notation Lspace is the label image of the

mean atlas and Lspace(p) is the label of Lspace in a location p.

The notation Rr(p) represents diffused points centered at p

with radius r as in Eq. (10)

RrðpÞ ¼ pðxp þ r cosh sinu; yp þ r sinh sinu; zp þ r cosuÞ

h;u 2 f0;�p=4;�p=2;�3p=4;�pg

(10)

C. Spatial feature is denoted in Eq. (11)

Fspace
r ¼ LspaceðRrðpÞÞ (11)

3.E. Summary of the extensible learning framework

This section summarizes the proposed method which

includes the following three steps:

(1) In the training stage, each atlas in the dataset is

encoded into an atlas forest by following the strategy

described in Section 3.A. For each atlas, the local

intensity, texture information, and the spatial informa-

tion are extracted as the features (described in Sec-

tion 3.D). And then the encoded atlases propaganda

label to target image.

(2) Construct a global atlas information list for establish-

ing the extensible learning model as described in Sec-

tion 3.C.

(3) In the testing stage with a given new target image, we

extract the features and select the suitable atlases

through the extensible learning method and update the

learning model as described in Section 3.C. The labels

of the target image will be obtained according to the

method described in Section 3.B.

For the initialization, the paremeters for local intensity and

texture features are s = 11, u = 1,2,. . .,5 in Eqs. (7), (8), and

(9), and the radius of the spatial feature is r = 5 in Eqs. (10)

and (11). In the extensible learning model, the atlas informa-

tion list is set to empty so that each atlas has the same prior-

ity, the size of the test atlas set is 10, the random rate of test

atlas set is 0.8 (80% elements of the test atlas set come from

the high-priority group and 20% elements are selected ran-

domly from the unevaluated atlases in the dataset), and the

maximum number of iterations for the procedure is 50.

4. EXPERIMENTAL RESULTS AND DISCUSSION

This section first introduces the prepossessing of test data

and then verifies the proposed method by leave-one-out

cross-validation on the datasets. Finally, we compare the

experimental results of the proposed method with the results

of other algorithms.

Before the computation, we perform the standard prepos-

sessing in the following order:

(1) Align prior label to the atlas. Aligning the label of the

mean atlases to the images is necessary to provide the

spatial information to eliminate the error make by the

imprecise registration. We randomly select an atlas as

mean atlas and apply it in the experiment to save time.

We used elastix 4.733 as a registration tool.

FIG. 2. The detail of spatial features. The blue point in (a) is the sample point. The red points in (b) are diffused from the sample point shown in the white point

located in the center. [Color figure can be viewed at wileyonlinelibrary.com]
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(2) Histogram matching. We used the ITK-based his-

togram-matching program to the atlas images for over-

all intensity normalization, and the intensities are

resealed to the interval 0 to 255 after normalization.

(3) Find the ROI (region of interest). We locate the ROI

wherein the intensities of the image are greater than

zero.

The proposed method computed on a standard PC (CPU

i5-4570, memory 16 GB) which was similar to the computer

performance used in the comparative experiment.

4.A. Experimental results based on IBRS dataset

The IBSR data contain 18 labeled T1 MR Images, each

with 32 manual labels. We use the set of 18 primarily subcor-

tical brain tissues for labeling accuracy assessment. The

parameter setting used in our approach reaches a mean dice

score of 84.17 � 4.61%. Figure SA1 shows the labeling of

the target image produced by the proposed method.

We used the method proposed in the work of Zhang

et al.31 as a comparative experiment to evaluate the efficiency

of the proposed method. Table I presents the results of the

DSC measures for the selected subcortical region in the

IBSR, indicating approximately 5% improvement compared

with the method proposed by Zhang et al.31 after adopting

the extensible learning method and spatial feature.

In the proposed method, the encoding time per atlas

requires 7 min, in which extracting the features takes

4–5 min and generating the atlas forests takes 2–3 min. This

part is offline. In the labeling stage, it takes around 17 s to

evaluate whether an atlas is suitable for target image and

about 16 atlases are tested before labeling the target image. It

takes about 4 min 20 s for atlas selection and labeling a tar-

get image.

4.B. Experimental results based on LONI LPBA40
dataset

In the second experiment, we evaluate our proposed

method on the LONI LPBA40 dataset. This database contains

40 brain atlases from healthy people; each atlas contains 54

manual labels and a brain MR image. Our strategy obtained

the average DSC of 83.34%, indicating approximately 5% of

overall improvement for the method of Zhang et al.31 Fig-

ure SA2 shows the labeling of the target image produced by

the proposed method. Tables II and III illustrate the DSC

measure of the obtained by the method31 and the proposed

method.

TABLE I. Quantitative compaction of DSC values obtained by the Zhang

et al. method31 and the proposed method for the 18 labeled primarily subcor-

tical regions in the IBSR dataset.

Brain regions Zhang et al. method31 (%) Proposed method (%)

L.lateral ventriclea,b 85.86 � 7.51 91.50 � 6.45

L.thelamusa,b 87.80 � 2.73 92.13 � 1.66

L.caudate 82.83 � 4.23 82.42 � 7.93

L.putamena,b 81.56 � 6.53 90.07 � 2.44

L.pallidum 73.30 � 7.80 75.22 � 8.05

3rd Ventricle 76.62 � 10.41 82.13 � 4.30

4th ventriclea,b 75.81 � 8.35 82.37 � 4.03

L.hippocampusa,b 75.90 � 5.39 81.93 � 4.96

L.amygdalaa 69.78 � 9.89 72.33 � 7.57

L.VentralDCa,b 82.47 � 4.35 83.01 � 2.72

R.lateral ventriclea,b 82.18 � 6.08 91.84 � 4.90

R.thelamusa,b 88.21 � 3.59 92.00 � 1.83

R.caudatea,b 84.61 � 7.93 85.43 � 4.38

R.putamen 84.67 � 5.09 90.57 � 2.57

R.palliduma,b 76.00 � 5.58 81.21 � 3.86

R.hippocampusa,b 76.00 � 5.59 84.18 � 3.87

R.amygdalaa,b 67.27 � 8.43 72.94 � 9.16

R.VentralDC 81.09 � 3.46 83.76 � 2.24

Overall 78.64 � 6.42 84.17 � 4.61

aThe label index indicates P < 0.05 with the two-tailed paired t-test.
bThe label index indicates P < 0.05 with the Wilcoxon rank-based t-test.

TABLE II. Quantitative compaction of DSC values obtained by the Zhang

et al. method31 and the proposed method for the left-hemisphere ROIs in the

LONI LPBA40 dataset.

Brain regions

Zhang et al.

method31 (%)

Proposed

method (%)

Superior frontal gyrusa,b 85.44 � 2.91 93.03 � 1.64

Middle frontal gyrusa,b 84.42 � 2.80 90.27 � 2.32

Inferior frontal gyrusa,b 79.05 � 4.36 87.97 � 4.29

Precentral gyrusa,b 80.73 � 4.05 86.06 � 3.31

Middle orbitofrontal gyrusa,b 76.19 � 6.06 84.56 � 3.69

Lateral orbitofrontal gyrusa,b 65.23 � 9.36 73.18 � 8.36

Gyrus rectusa,b 76.89 � 3.82 73.58 � 5.79

Postcentral gyrusa,b 77.00 � 4.92 85.50 � 4.78

Superior parietal gyrusa,b 80.25 � 3.81 88.36 � 3.28

Supramarginal gyrusa,b 72.97 � 6.23 84.52 � 4.36

Angular gyrusa,b 75.00 � 4.80 79.84 � 6.82

Precuneusa,b 77.13 � 4.79 79.48 � 3.42

Superior occipital gyrusa,b 70.28 � 7.61 80.61 � 6.95

Middle occipital gyrusa,b 78.38 � 4.70 83.99 � 4.41

Inferior occipital gyrusa,b 74.86 � 5.30 85.67 � 4.12

Cuneusa,b 74.67 � 6.88 78.03 � 5.46

Superior temporal gyrusa,b 82.91 � 2.71 89.46 � 2.49

Middle temporal gyrusa,b 77.46 � 3.83 81.02 � 4.01

Inferior temporal gyrusa,b 77.80 � 5.71 82.66 � 4.28

Parahippocampal gyrusa,b 78.02 � 4.12 80.33 � 2.38

Ligual gyrusa,b 80.01 � 5.54 79.84 � 5.05

Fusiform gyrusa,b 79.82 � 5.54 79.71 � 5.31

Insular cortexa,b 83.33 � 2.40 87.23 � 1.02

Cingulate gyrusa,b 77.10 � 5.32 79.83 � 4.71

Caudatea,b 80.60 � 4.16 84.55 � 4.48

Putamena,b 81.72 � 2.54 85.04 � 2.67

Hippocampusa,b 80.39 � 2.46 81.61 � 3.23

Overall 78.06 � 4.69 83.25 � 4.29

aThe label index indicates P < 0.05 with the two-tailed paired t-test.
bThe label index indicates P < 0.05 with the Wilcoxon rank-based t-test.
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In the proposed method, the encoding time per atlas

requires 8 min, in which extracting the features takes 5–

6 min with four threads in parallel and generating the atlas

forests with interlaced sampling takes 2–3 min. This part is

offline. In the labeling stage, it takes an average of 16 s with

eight threads in parallel to evaluate whether an atlas is suit-

able for target image and about 24 atlases are tested before

labeling the target image. It takes about 6 min 24 s for label-

ing a target image.

4.C. Experimental results based on ADNI datasets

In the third experiment, we evaluate our proposed method

on the ADNI dataset. This dataset provides an extensive set

of adult brain MR images acquired from 1.5T MR scanners.

In the experiment, we randomly selected 100 images with the

manual labels of the hippocampus in the ADNI dataset, with

34 from the Normal Control (NC) subjects, 33 from Mild

Cognitive Impairment (MCI) subjects, and 33 from Alzhei-

mer’s disease (AD) subjects. The atlases of the dataset come

from the difference subject so that we can evaluate the robust-

ness of proposed algorithm and the performance of the exten-

sible learning model for processing the dataset with scores of

atlases.

To ensure the robustness of the algorithm, we randomly

select each of atlases from the MCI, NC, and AD subjects,

respectively, and combines them into an mean atlas to pro-

vide the position information. Our method obtained the aver-

age DSC of 81.88%, indicating approximately 5% of overall

improvement for the method of Zhang et al.31 as shown in

Table IV. Figure SA3 shows the labeling of the target image

by the proposed method.

TABLE III. Quantitative compaction of DSC values obtained by the Zhang

et al. method31 and the proposed method for the right-hemisphere ROIs in

the LONI LPBA40 database.

Brain regions

Zhang et al.

method31 (%)

Proposed

method (%)

Superior frontal gyrusa,b 86.61 � 1.97 93.03 � 1.64

Middle frontal gyrusa,b 84.94 � 3.04 90.27 � 2.32

Inferior frontal gyrusa,b 80.08 � 3.75 87.97 � 4.29

Precentral gyrus 82.36 � 4.19 86.06 � 3.31

Middle orbitofrontal gyrusa,b 75.33 � 6.30 84.56 � 3.69

Lateral orbitofrontal gyrus 69.72 � 6.89 73.18 � 8.36

Gyrus rectus 74.82 � 5.34 73.58 � 5.79

Postcentral gyrusa,b 78.00 � 5.36 85.50 � 4.78

Superior parietal gyrusa,b 81.17 � 2.58 88.36 � 3.28

Supramarginal gyrusa,b 75.70 � 6.89 84.52 � 4.36

Angular gyrusa,b 73.76 � 7.96 79.84 � 6.82

Precuneusa,b 77.05 � 4.56 79.48 � 3.42

Superior occipital gyrusa,b 69.78 � 7.31 80.61 � 6.95

Middle occipital gyrusa,b 77.45 � 6.71 83.99 � 4.41

Inferior occipital gyrusa,b 77.89 � 5.35 85.67 � 4.12

Cuneusa,b 74.21 � 7.14 78.03 � 5.46

Superior temporal gyrusa,b 83.61 � 4.25 89.46 � 2.49

Middle temporal gyrusa,b 77.47 � 4.70 81.02 � 4.01

Inferior temporal gyrusa,b 74.80 � 4.94 82.66 � 4.28

Parahippocampal gyrus 80.14 � 3.35 80.33 � 2.38

Ligual gyrusa,b 77.77 � 5.12 79.84 � 5.05

Fusiform gyrusa,b 81.68 � 4.01 79.71 � 5.31

Insular cortexa,b 85.27 � 2.05 87.23 � 1.02

Cingulate gyrus 78.82 � 3.27 79.83 � 4.71

Caudatea,b 78.81 � 6.77 84.55 � 4.48

Putamena,b 81.52 � 2.65 85.04 � 2.67

Hippocampusa,b 80.67 � 2.66 81.61 � 3.23

Overall 78.50 � 4.78 83.25 � 4.29

aThe label index indicates P < 0.05 with the two-tailed paired t-test.
bThe label index indicates P < 0.05 with the Wilcoxon rank-based t-test.

TABLE IV. Quantitative compaction of DSC values obtained by the Zhang

et al. method31 and the proposed method for the labeled left and right hip-

pocampus in the ADNI dataset.

Brain regions Zhang et al. method31 (%) Proposed method (%)

Left hippocampusa,b 75.72 � 5.01 81.44 � 4.32

Right hippocampusa,b 76.27 � 5.85 82.32 � 4.74

Overall 76.00 � 5.43 81.88 � 4.53

aThe label index indicates P < 0.05 with the two-tailed paired t-test.
bThe label index indicates P < 0.05 with the Wilcoxon rank-based t-test.

(a) (b) (c)

FIG. 3. (a) The manual labeling, (b) the labeling is obtained with the spatial feature, (c) the labeling is obtained without the spatial feature. [Color figure can be

viewed at wileyonlinelibrary.com]
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FIG. 4. Comparison of DSC measures obtained by the method without atlas selection proposed by Zikic et al.,30 the method with atlas selection by SIMPLE32

(yellow), the proposed method (magenta), and hierarchical learning method proposed by Zhang et al.31 (green) in the IBRS dataset. [Color figure can be viewed

at wileyonlinelibrary.com]

FIG. 5. Comparison of DSC measures obtained by the method without atlas selection proposed by Zikic et al.30 method (blue), the method with atlas selection

by SIMPLE32 (yellow), the proposed method (magenta), and hierarchical learning method proposed by Zhang et al.31 (green) for the left-hemisphere ROIs in the

LONI LPBA40 dataset. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 6. Comparison of DSC measures obtained by the method without atlas selection proposed by Zikic et al.30 method (blue), the method with atlas selection

by SIMPLE32 (yellow), the proposed method (magenta), and hierarchical learning method proposed by Zhang et al.31 (green) for the right-hemisphere ROIs in

the LONI LPBA40 dataset. [Color figure can be viewed at wileyonlinelibrary.com]
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In the proposed method, the encoding time per atlas

requires 2 min, in which extracting the features takes 1–

2 min and generating the atlas forests takes around 30 s.

This part is offline. In the labeling stage, it takes around

8 s to evaluate whether an atlas is suitable for target

image and about 40 atlases are tested before labeling the

target image. It takes about 5 min 20 s for labeling a tar-

get image. This experiment shows that the proposed

method is also competent with atlases from different sub-

jects, and the extensible learning model selected suitable

atlases for the target image without traversing all the data-

sets as expected.

4.D. Influence of spatial feature

The spatial feature we proposed has noticeable effect on

labeling performance. Figure 3 shows the comparison of

labeling with a spatial feature and without, indicating under

segmentation will happen in the tissue border and the place

that the texture is not clear.

The larger radius would give more spatial information

with the increased processing time. When the radius is

sufficiently large, the efficiency will not improve with any

further increase in radius. When the radius is zero, the

method simply relies on a probabilistic atlas and simple loca-

tion information as Zikic et al.30 described. In such a situa-

tion, the DSC measure value is only about 60%. We set the

radius of spatial feature r = 5 in our experiments to take into

account the accuracy and efficiency of the algorithm. Fig-

ure SA4 illustrates the effect of the radius for the DSC mea-

sures, and Figure SA5 shows the effect of the radius for the

computation time.

4.E. Evaluation of extensible learning

We compared our strategy with the method without atlas

selection proposed by Zikic et al.30, method using the selec-

tive and iterative approach32 and hierarchical learning

method proposed by Zhang et al.31 to evaluate the perfor-

mance of extensible learning strategy in detail. All of these

four methods utilized spatial features. Figures 4–7 illustrate

the DSC measure of four methods in a box plot and Tables

SA1 to SA4 show the detail. Tables SA5 and SA6 show the

analysis of the time complexity and the extensibility of four

methods. Figure 9 shows that the extensible learning model

only needs to compare 16, 24, and 40 times in the dataset of

IBRS, LONI LPBA40, and ANDI, respectively. For the tradi-

tional method, such as SIMPLE method,32 it requires 17, 39,

and 99 times. If we assume that a comparison takes 20 s, the

proposed method will reduce the computational time with

20 s, 5 min and 30 s, 13 min, respectively, in the three data-

sets for the completion of the atlas selection.

Experimental results indicate that the accuracy of labeling

will be improved after atlas selection and more accurate

results in some small tissue can be obtained with the hierar-

chical learning method. However, the hierarchical learning

method requires more computational resources and need to

retrain the model when training set changed. The extensible

learning process selected atlases for target and achieved

excellent performance as the selection strategy that requires

testing of all atlases in the dataset.

FIG. 7. Comparison of DSC measures obtained by the method without atlas

selection proposed by Zikic et al.30(blue), the method with atlas selection by

SIMPLE32 (yellow), the proposed method (magenta), and hierarchical learn-

ing method proposed by Zhang et al.31 (green) in ADNI dataset. [Color fig-

ure can be viewed at wileyonlinelibrary.com]

FIG. 8. The dynamic behavior evaluation of the extensile learning model: (a) shows the tendency of DSC values to the number of processed images and (b)

shows the tendency of DSC values to the number of training atlases in the training set. [Color figure can be viewed at wileyonlinelibrary.com]
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In addition, we evaluate the dynamic behavior of the

extensible learning model. The experiment is divided into

two parts and performed on ADNI dataset which has 100

atlases. We randomly selected 50 atlases from the dataset as

the training set and the rest was used as the test set. In the test

set, an image is randomly selected as the observation object,

and the DSC value is counted after the model processed the

remaining images sequentially. The above process is repeated

10 times and the labeling results of the observation objects

are averaged and shown in Fig. 8(a) to illustrate the dynamic

behavior of the extensible learning model with the number of

processed images. The experimental results show that label-

ing efficiency of the model is improved with the number of

processed images and will become stable after an enough

number of images is processed. Then, we randomly selected

50 atlases from the dataset as the training set. In the rest data-

set, we randomly select one image as the test object and add

another 49 atlases to the training set sequentially. The DSC

value of the test image is cumulated at each atlas addition.

The above process is repeated 10 times and the labeling

results of the test images are averaged and shown in Fig. 8(b)

to demonstrate the dynamic behavior of the extensible model

with the number of training atlases. The experimental results

that showed in Fig. 8(b) illustrate that the extensible learning

model is able to obtain the useful information in the new

training atlases so that to improve the efficiency the image

labeling.

4.F. Influence of random rate in extensible learning

In this section, we conducted further experiments to evalu-

ate the efficiency of extensible learning and analyze the influ-

ence of the random rate. We designed the following

experiments. According to different random rates, the statis-

tics is calculated for (a) the average number of atlases

selected for each target, (b) the average number of atlases

evaluated by the extensible learning model, and (c) the label-

ing accuracy of the proposed method for brain MR images.

FIG. 9. The effect of random rate. (a), (c), and (e) represent the trend effects of the random rate on the number of selected and test atlases. (b), (d), and (f) repre-

sent DSC measure of the proposed method, the ratio of the average number of selected atlases to the total number of the atlas in the dataset, the ratio of the num-

ber of evaluated atlases to the total number of the atlas in the dataset, and the ratio of the number of selected atlases to the number of evaluated atlases. [Color

figure can be viewed at wileyonlinelibrary.com]
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The experimental results in the IBRS, LONI LPBA40, and

ADNI datasets are shown in Fig. 9.

The experimental results show that the random rate slightly

influences the labeling precision. In the process of labeling,

the number of atlases evaluated by the extensible learning

model is slightly decreased and the number of the selected tar-

get atlases is slightly increased with the increase in the ran-

dom rate. However, when the random rate is one, the number

of the atlas to be estimated by the extensible model is signifi-

cantly reduced and the number of the selected target atlases is

significantly increased. This finding is attributed to the

absence of the randomness. When the size of an atlas test set

is less than the scale of a cluster, the test set always selects the

atlases in the cluster as elements and then the elements will be

clustered by themselves. For this reason, the extensible learn-

ing model will converge quickly to result in a noticeable

reduction in the number of atlas to be evaluated. Simultane-

ously, if the selected atlases clustered by themselves, we can-

not remove the atlases with low similarity to the target image,

thus apparently the number of selected atlases will be

increased. We add the random rate to avoid the clustering so

that the robustness of the proposed method can be improved.

5. CONCLUSION

This paper proposed an extensible learning method of

atlas forest to label brain MR images. We imported spatial

features into atlas encoding by random forest to obtain excel-

lent labeling without cross-registration. We also designed a

self-learning model based on an extensible learning strategy.

With this model, the proposed method selects atlases without

traversing the entire dataset. Thus, the proposed method can

be applied to large datasets.

The proposed method was evaluated in three public data-

sets: IBRS, LONI LPBA40, and ADNI. We then tested the

proposed method in the IBRS and LONI LPBA40 datasets

and observed that the proposed method performed well in

complex tissues. We subsequently evaluated the proposed

method in the LONI LPBA40 and ADNI datasets which con-

tain numerous atlases and found that the proposed method

could be employed to select atlases for target image without

traversing the entire dataset. Our experiments on these three

datasets revealed that the proposed method could manage

large-scale or varying atlas datasets under the condition of

ensuring the labeling accuracy of MR brain images.

In future studies, our proposed method will be evaluated

in other datasets, and the more comprehensive strategy will

be utilized to assess our proposed method. The proposed

method will also be extended to label other no brain struc-

tures, including abdominal organs.
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Figure SA1. (a–d) the manual labeling in IBRS dataset, (e–

h) the labeling is obtained by the proposed method in the

IBRS dataset.

Figure SA2. (a–e) The manual labeling in LONI LPBA40

dataset, (f–j) The labeling is obtained by the proposed

method in the LONI LPBA40 dataset.

Figure SA3. (a) The manual labeling for NC subjects, (b) the

labeling of the proposed method for NC subjects, (c) the

manual labeling for MCI subjects, (d) the labeling of the pro-

posed method for MCI subjects, (e) the manual labeling for

AD subjects, and (f) the labeling of the proposed method for

AD subjects.

Figure SA4. The effect of the radius of the spatial feature for

DSC measure in IBRS dataset.

Figure SA5. The effect of the spatial feature radius for the

computation time in IBRS dataset.

Table SA1. Quantitative compaction of DSC values obtained

by the method without atlas selection proposed by Zikic

et al.1, the method with atlas selection by SIMPLE,2 the hier-

archical learning method proposed by Zhang et al.3, and the

proposed method for the 18-labeled primarily subcortical

regions in the IBSR dataset.

Table SA2. Quantitative compaction of DSC values obtained

by the method without atlas selection proposed by Zikic et al.1,

the method with atlas selection by SIMPLE,2 the hierarchical

learning method proposed by Zhang et al.3, and the proposed

method for the left-hemisphere ROIs in the LONI LPBA40.

Table SA3. Quantitative compaction of DSC values obtained

by the method without atlas selection proposed by Zikic et al.1,

the method with atlas selection by SIMPLE,2 the hierarchical

learning method proposed by Zhang et al.3, and the proposed

method for the right-hemisphere ROIs in the LONI LPBA40.

Table SA4. Quantitative compaction of DSC values obtained

by the method without atlas selection proposed by Zikic et al.1,

the method with atlas selection by SIMPLE,2 and the hierar-

chical learning method proposed by Zhang et al.3, and the pro-

posed method for the labeled left and right hippocampus in the

ADNI dataset.

Table SA5. Comparison of Time Complexity of the method

without atlas selection proposed by Zikic et al.1, the method

with atlas selection by SIMPLE,2 the method with hierarchical

learning proposed by Zhang et al.3 method, and the proposed

method.

Table SA6. The extensibility of the method without atlas

selection proposed by Zikic et al.1, the method with atlas selec-

tion by SIMPLE2, the method with hierarchical learning pro-

posed by Zhang et al.3 method, and the proposed method.
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