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A B S T R A C T   

Background: Alzheimer’s disease (AD) is associated with marked brain atrophy. While commonly used structural MRI imaging methods do not account for the 
complexity of human brain morphology, little is known about the longitudinal changes of cortical geometry and their relationship with cognitive decline in subjects 
with AD. 
Methods: Data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were used to perform two-sample t-tests to investigate longitudinal changes of cortical 
thickness (CTh) and three surface-based morphometry measures: fractal dimension (i.e. cortical complexity; FD), gyrification index (GI), and sulcal depth (SD) in 
subjects with AD, amnestic mild cognitive impairment (aMCI) in comparison to cognitively unimpaired controls (CU) in baseline and 2-year follow-up sMRI scans. In 
addition, correlations of the morphological measures with two-year cognitive decline as assessed by the modified AD Assessment Scale-Cognitive Subscale (ADAS- 
Cog 11) were calculated via regression analyses. 
Results: Compared to CU, both AD and aMCI showed marked decreases in CTh. In contrast, analyses of FD and GI yielded a more nuanced decline of the respective 
measures with some areas showing increases in FD and GI. Overall changes in FD and GI were more pronounced in AD as compared to aMCI. Analyses of SD yielded 
widespread decreases. Interestingly, cognitive decline corresponded well with CTh declines in aMCI but not AD, whereas changes in FD corresponded with AD only 
but not aMCI, whereas GI and SD were associated with cognitive decline in aMCI and AD. 
Conclusion: Patterns of longitudinal changes in FD, GI and SD were only partially overlapping with CTh reductions. In AD, surface-based morphometry measures for 
brain-surface complexity showed better correspondence than CTh with cognitive decline over a two-year period of time. Being drawn from measures reflecting 
changes in more intricate aspects of human brain morphology, these data provide new insight into the complexity of AD-related brain atrophy and its relationship 
with cognitive decline.   

1. Introduction 

Dementia is estimated to affect over 50 million people worldwide. Of 
these cases, >50% are attributable to Alzheimer’s Disease (AD) (Prince 
et al., 2014) making AD the most common neurodegenerative disease. 
Neurobiologically it is characterized by the extracellular accumulation 

of Amyloid ß 1–42 and intracellular aggregates of phosphorylated Tau- 
protein (i.e. neurofibrillary tangles). In the majority of cases, sporadic 
late-onset AD is clinically characterized by progressive cognitive 
decline, most prominently in mnestic functions in early stages. 

In the past decades, a number of imaging biomarkers have been 
established and proven helpful in the diagnosis of AD and the tracking of 
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its progression (de Leon et al., 1997; Femminella et al., 2018; Park and 
Moon, 2016; Zhang and Liu, 2018), with structural MRI (sMRI) being the 
most extensively used and studied method. Here, specific patterns of 
atrophy can be observed that have been shown to correspond to AD- 
related cognitive decline in both cross-sectional and longitudinal 
studies. Typically, regional atrophy can be observed early within medial 
temporal structures including the hippocampus, but as the disease 
progresses, atrophy expands to the lateral temporal cortex, precuneus, 
posterior cingulate cortex and further parietal and frontal cortical re
gions become affected (Baxter et al., 2006; Bejanin et al., 2017; Dubois 
et al., 2010; Gordon et al., 2018; McKhann et al., 2011; Risacher et al., 
2017; Schroeter et al., 2009; Whitwell et al., 2012). 

Common methods used to study brain morphological changes related 
to AD include voxel-based morphometry, cortical thickness and regional 
measure-based (such as ROI) volumetric measures. Nevertheless, 
commonly applied sMRI-based imaging methods and biomarkers (e.g. 
hippocampal volume or cortical thickness) do not fully account for the 
complexity of human brain morphology, which – next to volumetric 
aspects of the cerebral cortex – also encompasses the architecture and 
shape of its surface structures such as gyri and sulci. Compared to the 
amount of purely volumetric studies, relatively little is known on how 
surface morphological brain features are affected by AD, particularly 
with respect to their changes over time and how they relate to cognitive 
function. Previous studies successfully employed surface-based 
morphometry (SBM) measures in AD research. While some were 
purely cross-sectional and focused on individual measures (King et al., 
2010; Nicastro et al., 2020; Ruiz de Miras et al., 2017), most longitudinal 
studies were either ROI-based (Li et al., 2022; Wu et al., 2021) or 
otherwise constrained to specific brain regions (Dong et al., 2020). We 
found one previous whole-brain longitudinal SBM study, which used 
SBM to build a machine-learning classifier to distinguish AD from MCI 
and CU individuals and was not concerned with a comparison of 
different measures and their reflecting of cognitive decline (Qin et al., 
2022). Thereforewe aimed to investigate whole-brain longitudinal 
changes of different SBM measures (Dale et al., 1999; Fischl et al., 1999; 
Fischl and Dale, 2000) able to capture different aspects of brain 
morphology and their relationship with cognitive decline in subjects 
with AD and subjects at high risk for AD (i.e. amnestic mild cognitive 
impairment, aMCI) in comparison to cognitively unimpaired controls 
(CU) and compare these measures with longitudinal changes of cortical 
thickness (CTh), a commonly applied measure of brain atrophy. 

2. Methods 

2.1. Participants 

Data used in the preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.lon 
i.usc.edu). The ADNI was launched in 2003 as a public–private part
nership, led by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial magnetic resonance 
imaging (MRI), positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological assessment can be com
bined to measure the progression of mild cognitive impairment (MCI) 
and early Alzheimer’s disease (AD). Classification of subjects as CU, 
suffering from aMCI or AD was based on performance in the Mini-Mental 
State Examination (MMSE; Folstein et al., 1975), Clinical Dementia 
Rating (CDR) scale (Hughes et al., 1982) and Logical Memory II subscale 
of the Wechsler Memory Scale–Revised (Petersen et al., 2010). For up- 
to-date information and information regarding subject recruitment, in
clusion and exclusion criteria see https://www.adni-info.org. The ADNI 
employs a standardized protocol for acquiring and preprocessing MRI 
data. All image series undergo manual quality control for protocol 
adherence and scan quality by trained personnel. Here, as recommended 
by the ADNI investigators, we made use of a standardized and uniformly 
pre-processed MRI data collection provided by ADNI (i.e. ADNI1: 

Complete 2Yr 1.5 T), comprising structural 3-dimensional MPRAGE data 
from a total of n = 479 subjects (Wyman, 2013). 

2.2. Preprocessing 

All neuroimaging MR data were processed and analyzed with the 
Computational Anatomy Toolbox (CAT12; https://www.neuro.uni-jena. 
de/cat) and Statistical Parametric Mapping (SPM12; Wellcome Depart
ment of Cognitive Neurology). CAT12′s longitudinal preprocessing 
pipelines were used with default settings and surface and thickness 
estimation was applied to structural MR images. Detailed description of 
the individual preprocessing steps can be found in the CAT12 Manual 
(Gaser and Dahnke, n.d.). In brief, baseline and follow-up images were 
co-registered for each individual and then realigned across the entire 
sample. The preprocessing pipeline further included bias correction, 
image segmentation (i.e. into cerebrospinal fluid, white matter and gray 
matter), transformation into MNI space and DARTEL normalization. 
Specific SBM methodological aspects are listed below. Finally, data were 
smoothed with a 15-mm (for cTH) or a 25-mm (for FD, GI, SD) FWHM 
Gaussian kernel, and delta images (i.e. “follow-up” minus “baseline”) 
were created via CAT 12′s cat_stat_diff function. 

2.3. SBM measures 

SBM uses vertices instead of voxels to explicitly capture aspects of 
the brain’s surface, in particular the shape of its sulci and gyri. Four 
different SBM measures were used. While we provide a detailed dis
cussion of the respective SBM measures’ merit and rationale in the 
following paragraphs, this short overview can serve as an orientation: 
(a) Cortical thickness (CTh) estimates cortical thickness and therefore 
gray matter mass (Dahnke et al., 2013). (b) Gyrification index (GI) re
lates an idealized smooth surface of the brain, i.e. its hull, to its sulci’s 
contour, thereby providing a compact quantification of folding 
complexity. In the form used here, local GI, it allows for an area-wise 
inter-subject comparison of gyrification levels (Luders et al., 2006). (c) 
Sulcal depth (SD) describes the geographical depth of sulcal folds by 
measuring the maximum distance of any given fold to, again, an outer 
hull (Dahnke et al., 2013; Gaser and Dahnke, n.d.). (d) Fractal dimension 
(FD) is an intrinsic measure of cortical complexity. It takes advantage of 
the brain being approximately a fractal object, i.e. consisting of self- 
similar components, summarizing details over a range of scales (Yotter 
et al., 2011). 

We opted for SBM as a vertex-based approach as this method allows 
not only to investigate AD-related loss of brain matter (via CTh), but also 
different aspects of brain atrophy, such as reductions in cortical 
complexity/folding. Considering the importance of folding for 
increasing cortical surface and therefore gray matter, the combination of 
different SBM measures may provide more comprehensive information 
on the macrostructural changes associated with neurodegenerative 
diseases such as AD as compared to other commonly applied methods 
such as voxel-based morphometry (VBM). In particular, and among 
other problems, VBM suffers from partial volume effects when it comes 
to assessing cortical surface features. Two voxels in two separate gyri 
separated by a sulcus might seem geographically close in the folded 
brain and may be considered as such by VBM due to a lack of surface 
recognition, while they are actually, were the brain unfolded, 
geographically and, of more interest to research, functionally distant 
(Acosta et al., 2009; Clarkson et al., 2011; Lerch and Evans, 2005). In 
addition to the more commonly used CTh, we employed FD, GI, and SD 
to estimate longitudinal changes in cortical morphology. Loss of gray 
matter – regional in early stages and more globally in later stages - are 
the most striking brain morphological feature of AD (Karas et al., 2004). 

In the realm of surface-based methods, gray matter mass is concep
tualized as CTh. Methods of CTh estimation are based on separating gray 
matter rom white matter and cerebrospinal fluid, which is a significant 
challenge given the highly convoluted nature of the brain’s surface. 
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They differ in their consideration of partial volume effects, with the 
simplest methods tending to overestimate CTh due to inaccurate 
modeling of sulci, while more sophisticated methods of sulci recon
struction tend to be prohibitively computationally intensive. In CAT12 
this dilemma is solved by implementing the projection-based thickness 
method, a fully automated, yet reliable (even in non-standard brains) 
approach, which focuses on the distance of gray matter voxels to white 
matter voxels as opposed to the distance of gray matter to cerebrospinal 
fluid voxels, on account of the former being less prone to partial volume 
effects. On the gray matter’s outer border, the distance to white matter 
reaches its local maximum, which is then simply projected inwards, thus 
reconstructing the cortical surface (Dahnke et al., 2013). 

While CTh measures have to abstract from folding patterns, we used 
three different methods of capturing this important aspect of brain 
morphology. Brain disorders have been shown to manifest in charac
teristic variations of brain surface variability. Gyrification patterns, for 
example, are a sensitive structural neuroimaging marker of brain dis
orders. One of its oldest and most widely used reproducible and stan
dardized metrics, GI, is defined as the ratio of the inner contour, 
following the sulcal folds, to the outer contour, i.e. a virtual hull 
covering the brain’s surface (Zilles et al., 1988). It has been shown to be 
specifically altered in various neurological disorders (Libero et al., 2019; 
Matsuda and Ohi, 2018; Sterling et al., 2016) and to correspond to 
functional alterations (Schaer et al., 2013). In CAT12, GI is implemented 
in the form of a multitude of local GI (as opposed to a single global GI) 

comprehensively covering the entire brain surface (Luders et al., 2006). 
SD, on the other hand, measures the straight-line distance between 

the central surface (i.e. half-way between the gray matterto white matter 
border and the gray matter to cerebrospinal fluid border) and, likewise, 
an outer hull (Dahnke et al., 2013; Gaser and Dahnke, n.d.). 

Being reliant on constructing an external idealized contour, both GI 
and SD can be considered extrinsic metrics of cortical complexity. In 
contrast, FD aims to be an intrinsic measure. It is based on the notion of 
the brain being, to a certain extent, a fractal object. Besides forgoing 
external assumptions, CAT12′s implementation of FD calculation is able 
to estimate FD values for each vertex in each subject’s brain, avoiding 
the need for (a) exceedingly accurate inter-subject alignments and (b) 
multiple downsampling and, consequently, reconstructing surfaces, 
which introduces inaccuracies (Yotter et al., 2011). Thus, FD allows for a 
compact, reliable, and informative assessment of cortical complexity on 
a within-subject and inter-subject level. Previous research has demon
strated significant differences in FD in a number of brain disorders, 
including AD (Ha et al., 2005; King et al., 2010, 2009). 

2.4. Data analyses 

CAT12 and SPM12 were used to investigate longitudinal within- 
group and inter-group differences of SBM measures. To do so, we 
applied two-sample t-tests on our delta images. To investigate associa
tions of brain morphological changes with cognitive changes, we 

Fig. 1. Flowchart illustrating our approach. AD: Alzheimer’s disease. AMCI: amnestic mild cognitive impairment. CTh: Cortical thickness. SD: Sulcal depth. GI: 
Gyrification index. FD: fractal dimension. 
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performed multiple regression analyses with delta AD Assessment Scale- 
Cognitive Subscale (ADAS-cog 11) values as variables of interest (see 
Fig. 1 for a flowchart depicting our analysis approach). SPM12′s ANOVA 
implementation was used for additional post-hoc interaction analyses (i. 
e. group*cognitive decline). All our models contained corrections for 
age and sex since they were specified as covariates in our analyses. 
Significance was determined via the threshold-free cluster enhancement 
(TFCE) method (Smith and Nichols, 2009), which allows for cluster- 
based inference without the need to pre-specify arbitrary thresholds. 
Its implementation in the TFCE toolbox for CAT12 performs non- 
parametric permutation tests, thus avoiding problems inherent to 
parametric statistics (Eklund et al., 2016). Family-wise error (FWE) 
correction was applied with respect to the entire brain and we consid
ered a corrected p < 0.05 as significant. Labeling of significant clusters 
was done with GingerALE (https://brainmap.org/software.html) and 
the Talairach Client (https://talairach.org/client.html). Non-imaging 
statistical analyses were carried out with SAS Software (SAS Institute 
Inc., version 9.4, Cary, NC) and R 4.0.0 (R Core Team, 2020). 

3. Results 

Participant characteristics are summarized in Table 1. Our samples 
consisted of 96 subjects with AD (75.2y ± 7.4), 211 subjects with aMCI 
(74.8y ± 7.0), and 165 CU (76y ± 4.9) controls. Of these subjects, we 
used baseline and 2-year follow-up (mean follow-up time 741 ± 33 
days) sMRI scans and, as a measure of cognitive decline over time, 
corresponding modified ADAS-Cog 11 values (Rosen, 1984). Expectedly, 
a higher frequency of the APOE e4 risk allele was observed in both AD 
and aMCI participants in comparison to CU, as well as in AD vs. aMCI 
participants. Cognitive performance as measured by the ADAS11 and 
MMSE differed significantly between the groups and declined signifi
cantly in AD and aMCI subjects (AD > MCI). No significant group dif
ferences were found for age and follow-up time, however sex was not 
completely balanced between groups (p = 0.002). Note that we 

corrected systematically for sex (and age) in the following analyses 
controlling for a potential bias here. 

Of 211 aMCI subjects, 85 converted to AD within the 2-year time
frame between baseline and follow-up. No significant age or sex differ
ences were observed between converters and non-converters, but APOE 
e4 gene load and ADAS decline were, as expected, higher in converters. 
Also, 7 subjects initially classified as aMCI reverted to CU. 

3.1. Group comparison of surface-based morphometry measures 

3.1.1. Longitudinal changes in cortical thickness 
For detailed results please see Fig. 2 and Table 2. As anticipated, 

profound decreases of CTh were observed in both AD and aMCI in 
comparison to CU, most significantly within the bilateral temporal 
cortex and the temporal pole respectively and, in addition, within the 
frontal cortices and in the left insula. While in aMCI no other regions 
showed significant decreases of CTh during the observation period, 
additional decreases of cTH were found in AD subjects within medial 
frontal and parietal regions, including the precuneus and posterior 
cingulate cortex (PCC). 

3.1.2. Longitudinal changes in cortical complexity 
For detailed results, please see Fig. 2 and Table 3. In comparison to 

CU, AD subjects yielded widespread decreases in FD, predominantly 
within the lateral and superior temporal cortex and adjacent occipital 
regions (left > right). Additional decreases were observed within medial 
temporal regions, posterior aspects of medial frontoparietal cortical 
regions including the precuneus and the PCC. Additional decreases were 
found within the central region and the dorsolateral aspects of the 
prefrontal cortex (PFC) (left > right). Increases of FD were found within 
the right anterior cingulate cortex. 

In contrast, aMCI subjects only yielded subtle decreases of FD within 
posterior parts of the left superior temporal gyrus. 

Table 1 
Summary statistics.  

Group AD (N = 96) CU (N = 165) aMCI (N = 211) Total (N = 472) p value 

Age      0.209 
Mean (SD) 75.249 (7.387) 76.036 (4.993) 74.849 (7.041) 75.345 (6.486)  
Range 56.500–89.200 60.000–89.700 55.200–88.400 55.200–89.700  
Sex      0.002 
F 46 (47.9%) 81 (49.1%) 69 (32.7%) 196 (41.5%)  
M 50 (52.1%) 84 (50.9%) 142 (67.3%) 276 (58.5%)  
Days to follow-up      0.489 
Mean (SD) 743.896 (49.277) 740.776 (30.519) 739.014 (25.220) 740.623 (33.182)  
ADAS11-cog (baseline)      < 0.001 
Mean (SD) 18.563 (5.947) 5.911 (2.845) 11.366 (4.355) 10.923 (6.260)  
ADAS11-cog (follow-up)      < 0.001 
Mean (SD) 27.629 (11.320) 5.833 (2.966) 14.416 (7.730) 14.103 (10.809)  
Longitudinal Delta of ADAS11-cog      < 0.001 
Mean (SD) 9.067 (8.644) − 0.078 (3.087) 3.049 (6.074) 3.18 (6.755)  
MMSE (baseline)      < 0.001 
Mean (SD) 23.219 (1.942) 29.212 (0.923) 27.104 (1.767) 27.051 (2.661)  
MMSE (follow-up)      < 0.001 
Mean (SD) 18.979 (5.555) 29.104 (1.133) 25.111 (4.19) 25.253 (5.276)  
Longitudinal Delta of MMSE      < 0.001 
Mean (SD) 4.24 (5.215) 0.104 (1.246) 1.981 (3.713) 1.786 (3.799)  
APOE      < 0.001 
2,2 0 (0.0%) 2 (1.2%) 0 (0.0%) 2 (0.4%)  
2,3 3 (3.1%) 20 (12.1%) 9 (4.3%) 32 (6.8%)  
2,4 3 (3.1%) 2 (1.2%) 8 (3.8%) 13 (2.8%)  
3,3 27 (28.1%) 96 (58.2%) 85 (40.3%) 208 (44.1%)  
3,4 41 (42.7%) 40 (24.2%) 83 (39.3%) 164 (34.7%)  
4,4 22 (22.9%) 5 (3.0%) 26 (12.3%) 53 (11.2%)  

AD Alzhimer’s Disease. 
CU Cognitively unimpaired. 
aMCI amnestic mild cognitive impairment. 
ADAS11-cog Alzheimer’s Disease Assessment Scale-Cognitive Subscale. 
MMSE Mini Mental Status Evaluation. 
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3.1.3. Longitudinal changes of GI 
In AD compared to CU, longitudinal decreases of GI were observed 

within the left superior and middle temporal gyrus and the right post
central gyrus, whereas increases were noted within left medial occipital 
regions (i.e. lingual gyrus) and the left insular region. In MCI on the 
other hand, no differences in longitudinal GI changes were observed 
when compared to CU. 

3.1.4. Longitudinal changes of SD 
For detailed results please see Fig. 2 and Table 4. Compared to CU, 

AD showed extensive decreases of SD, most prominently within the 
bilateral insular-temporal region. Additional decreases were observed 
within the central region and the medial parietooccipital cortex, 
including parts of the posterior cingulate and the precuneus. In aMCI 
very similar yet less extent decreases were found, particularly within the 
left parietotemporal region (L > R). 

3.1.5. Converters vs. non-converters 
See Table S1 and Fig. S1) for detailed results. Post-hoc comparisons 

of subjects converting from aMCI to AD within the 2-year time frame in 
question with those who did not convert, showed extensive reductions of 
gray matter as measured by CTh (bilateral PFC, precuneus and temporal 
lobes, with emphasis on the right hemisphere) in converters. Gyr
ification was less developed for converters within the right frontal lobe. 
Analysis of cortical complexity and sulcal depth yielded no significant 
group differences. 

3.2. Associations of cognitive decline with longitudinal SBM changes 

Detailed results are provided in Fig. 3 and tables 2-5. No significant 
associations of cognitive decline (i.e. ADAS-Cog 11) with longitudinal 
changes of CTh were found in AD. In aMCI however, cTH decreases 
showed widespread associations with cognitive decline within AD- 
typical temporal, parietal and limbic regions. In contrast, longitudinal 
FD changes were associated with ADAS-Cog 11 in AD but not aMCI, with 

Fig. 2. Longitudinal changes of cortical thickness (CTh), cortical complexity (FD), gyrification index (GI) and sulcal depth (SD) in Alzheimer’s Disease (AD) and 
amnestic mild cognitive impairment (aMCI) participants (all comparisons vs. cognitively unimpaired controls (CU)). n.s. not significant; 
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associations being located within the right precuneus and adjacent 
central regions. In AD subjects, cognitive decline showed subtle associ
ations with GI decreases within the right medial central region (i.e. 
paracentral lobule) and the left precentral gyrus. In aMCI, cognitive 
decline was associated with GI decreases in the insular/claustrum region 
and the medial PFC. For SD, subtle associations with ADAS11 were 
found with the right temporal cortex in AD (i.e. fusiform gyrus) and in 
aMCI within the left temporal cortex (i.e. superior temporal gyrus). 

Additional post-hoc analyses showed a significant group*cognitive 
decline interaction for FD with stronger associations of cognitive decline 
with longitudinal FD reductions within the right medial postcentral 

Table 2 
Longitudinal changes of cTH in AD and MCI in comparison to cognitively un
impaired controls and associations with cognitive decline.  

Brain Region cluster size p-value 
(FWE) 

MNIxyz  

Longitudinal changes in 
cTH(AD < CU):     

L Superior Temporal 
Gyrus 

18,169  0.000 ¡42 
14–26 

L Middle Temporal 
Gyrus   

0.000 − 53–14 
− 18 

L Insula   0.000 − 41–30 
20 

R Inferior Frontal 
Gyrus 

12,644  0.000 41 15–26 

R Sub-Gyral   0.000 47–5 − 15 
R Superior Temporal 

Gyrus   
0.000 36 6–38 

Longitudinal changes in 
cTH (MCI < CU):     

R Sub-Gyral Gray 
Matter (Temporal 
Lobe) 

3821  0.000 44–10 
¡13 

R Middle Temporal 
Gyrus   

0.000 51 2–25 

R Superior Temporal 
Gyrus   

0.000 33 13–39 

L Superior Temporal 
Gyrus 

3758  0.004 ¡44 
16–29 

L Insula   0.01 − 35–11 
14 

L Middle Temporal 
Gyrus   

0.018 − 63–38 
− 8 

L Posterior Cingulate 37  0.048 − 4–58 14 
Associations of 

longitudinal cTH 
changes with 
dADAS11 (AD): not 
significant     

Associations of 
longitudinal changes 
in cTH with 
dADAS11 (MCI):     

L Supramarginal 
Gyrus 

14,153  0.002 ¡58–47 
22 

L Superior Temporal 
Gyrus   

0.002 − 49 
13–19 

L Superior Temporal 
Gyrus   

0.002 − 57–0 
− 4 

R Superior Temporal 
Gyrus 

10,285  0.005 55 8–16 

R Middle Temporal 
Gyrus   

0.008 54–33 − 8 

R Insula   0.01 39 13–9 
R Cingulate Gyrus 4677  0.011 16–28 41 
R Cingulate Gyrus   0.016 6–38 34 
R Cingulate Gyrus   0.018 10 40 23 

MNI Montreal Neurological Institute. 
CTh Cortical thickness. 
dADAS11 Delta of Alzheimer’s Disease Assessment Scale-Cognitive Subscale. 
*Results are listed at a threshold of p < 0.05 FWE TFCE corrected; 
Bold data indicate primary peak within a cluster; Non-bold data indicate sec
ondary peaks. 

Table 3 
Longitudinal changes of FD in AD and MCI in comparison to cognitively unim
paired controls and associations with cognitive decline.  

Brain Region cluster size p-value 
(FWE) 

MNIxyz  

Longitudinal changes in 
FD (AD < CU):     

L Claustrum 11,296  0.000 -37 
-14 
10 

L Fusiform Gyrus   0.000 -46 
-73 -7 

L Middle Occipital 
Gyrus   

0.000 -48 
-80 7 

R Insula 3654  0.000 36 
-20 
14 

R Superior Temporal 
Gyrus   

0.000 54 7 
-9 

R Superior Temporal 
Gyrus   

0.000 49 
-19 -8 

R Precentral Gyrus 2379  0.002 30 
-14 
65 

R Superior Frontal 
Gyrus   

0.003 28 24 
43 

R Medial Frontal Gyrus   0.006 23 
-11 
55 

R Parahippocampal 
Gyrus 

1639  0.009 19 
-34 -9 

L Culmen 676  0.016 -10 
-57 0 

R Precuneus 1657  0.017 11 
-66 
29 

R Precuneus   0.017 5 -67 
35 

R Cingulate Gyrus   0.045 3 -48 
27 

R Inferior Frontal 
Gyrus 

462  0.026 47 11 
20 

L Sub-Gyral 245  0.026 -43 
-23 
-24 

L Parahippocampal 
Gyrus   

0.027 -39 
-30 
-25 

L Precuneus 1187  0.034 - 9 
-56 
34 

L Precuneus   0.035 -3-64 
29 

L Precuneus   0.038 -4 -71 
36 

R Medial Frontal 
Gyrus 

125  0.043 26 49 
8 

Longitudinal changes in 
FD(AD > CU):     

R Anterior Cingulate 191  0.025 12 46 
-1 

R Medial Frontal Gyrus   0.025 8 55 6 
Longitudinal changes in 

FD(MCI < CU):     
L Superior Temporal 

Gyrus 
256  0.029 -41 

-56 
22 

Longitudinal changes in 
FD(MCI > CU):     

R Medial Frontal 
Gyrus 

80  0.031 13 47 
5 

Associations of 
longitudinal FD changes 
with dADAS11 (AD):     

R Superior Parietal 
Lobe 

1693  0.004 19 
-41 
68 

(continued on next page) 
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region and adjacent parts of the right superior parietal lobule and pre
cuneus (peakMNI: x = 18 y = -40 z = 67; k = 1693; pTFCE = 0.004) and 
the right central region (peakMNI: x = 24 y = -15 z = 74; k = 724; pTFCE 
= 0.039), both clusters largely overlapping with the individual regres
sion analysis. Nevertheless, for the other SBM measures (i.e. CTh, GI, SD) 
no significant group*cognitive decline interaction terms were observed. 

4. Discussion 

In our study, we investigated longitudinal changes of different sur
face based structural brain metrics in a well-characterized sample of 
participants with dementia due to AD, with its risk state aMCI and 
cognitively unimpaired healthy controls. Next to commonly used mea
sures of cortical thickness, we applied additional metrics including 
cortical complexity (via fractal dimension; FD), gyrification index (GI) 
and sulcal depth (SD) in order to explore whether the respective longi
tudinal changes show different neuroanatomical patterns and relation
ship with cognitive decline in comparison to healthy controls. 

Expectedly, we found marked decreases in CTh for AD and to a lesser 
degree in aMCI in comparison to CU, most significantly within the 
bilateral temporal cortices. In contrast, analyses of FD and GI yielded a 
more nuanced decline of the respective measures with some areas also 
showing increases in FD and GI. Overall changes in FD and GI were more 
pronounced in AD as compared to aMCI. Analyses of SD yielded wide
spread decreases, again more extent in AD. Interestingly, cognitive 
decline corresponded well with CTh declines in aMCI but not AD, 
whereas changes in FD were associated with cognitive decline in AD 
only and not aMCI. GI and SD were associated with cognitive decline in 
both, aMCI and AD. Expectedly, additional post-hoc analyses demon
strated stronger morphological changes in aMCI subjects converting to 
dementia stages, however most pronounced for CTh and less for GI and 
FD (but not SD). 

We found cognitive decline to be associated with CTh reductions 
only in aMCI, but not in AD, while other SBM measures fared better, i.e. 
yielded significant associations. This suggests that the neurodegenera
tive process underlying the clinical presentation of AD encompasses, 
from a gross anatomical perspective, subtle changes in cortical 
complexity. Cortical folding, the process by which gyri and sulci are 
formed as part of embryonic development, is of decisive importance for 
phylogenetic and ontogenetic brain development. Cortical folding al
lows for a much larger number of neurons to be contained in the neu
rocranium while, by optimizing for space, respecting inherent size 
constraints (Fernández et al., 2016; Striedter et al., 2015). In addition to 

Table 3 (continued ) 

Brain Region cluster size p-value 
(FWE) 

MNIxyz   

Superior Parietal 
Lobe   

0.004 22 
-49 
71  

Precuneus   17 
-53 
60 

R Precentral Gyrus 724  0.039 25 
-14 
75  

Precentral Gyrus   26 
-14 
60  

Middle Frontal Gyrus   35 -5 
48 

MNI Montreal Neurological Institute. 
FD Fractal dimension. 
dADAS11 Delta of Alzheimer’s Disease Assessment Scale-Cognitive Subscale. 
*Results are listed at a threshold of p < 0.05 FWE TFCE corrected. 
Bold data indicate primary peak within a cluster; Non-bold data indicate sec
ondary peaks. 

Table 4 
Longitudinal changes of SD in AD and MCI in comparison to cognitively unim
paired controls and associations with cognitive decline.  

Brain Region cluster size p-value 
(FWE) 

MNIxyz  

Longitudinal changes in SD 
(AD < CU):     

L Insula 13,481  0.000 -39 
-27 
21 

L Superior Temporal 
Gyrus   

0.000 -35 
-33 
18 

L Superior Temporal 
Gyrus   

0.000 -48 
-31 5 

R Superior 
Temporal Gyrus 

12,604  0.000 62 -2 
-2 

R Inferior Parietal 
Lobule   

0.000 58 
-23 
23 

R Claustrum   0.000 35 11 
12 

L Precentral Gyrus 1698  0.010 -43 
30 35 

L Supramarginal 
Gyrus   

0.016 -38 
-46 
36 

L Inferior Parietal 
Lobule   

0.022 -33 
-39 
49 

Longitudinal changes in SD 
(MCI < CU):     

L Middle Temporal 
Gyrus 

5420  0.01 -39 
-58 
18 

L Superior Temporal 
Gyrus   

0.01 -52 
-57 
26 

L Insula   0.01 -42 
-23 
18 

L Supramarginal 
Gyrus 

779  0.021 -37 
-37 
38 

L Supramarginal 
Gyrus   

0.026 -44 
-46 
40 

L Inferior Parietal 
Lobule   

0.03 -50 
-34 
39 

R Insula 720  0.038 37 
-28 
14 

R Insula   0.038 34 
-22 
18 

R Claustrum   0.039 40 
-24 1 

Associations of longitudinal 
SDchanges with dADAS11 
(AD; neg.):     

R Fusiform Gyrus 76  0.049 51 
-58 
11 

R Fusiform Gyrus   0.049 50 
-45 7 

Associations of longitudinal 
SD changes with 
dADAS11 (MCI; pos.):     

L Superior 
Temporal Gyrus 

393  0.047 -52 
-55 
20 

L Superior Temporal 
Gyrus   

0.048 -61 
-48 
21 

MNI Montreal Neurological Institute. 
SD Sulcal depth. 
*Results are listed at a threshold of p < 0.05 FWE TFCE corrected; 
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conveying geometrical advantages, folding also directly influences 
brains’ function by optimizing structural connectivity (Klyachko and 
Stevens, 2003). It therefore stands to reason that atrophy is more than 
the loss of matter, it is a loss of functionally relevant structure of matter. 
We suggest that reduction of cortical complexity amounts to deoptim
ization, explaining its independent association with cognitive decline. 
Strikingly, we observed regionally circumscribed increases in all mea
sures but CTh over time. While neurodegeneration is more likely to 
result in less cortical complexity, it is conceivable that, in some cases, it 
might deepen and widen sulci and emphasize the morphological aspect 
of cortical folding. 

Several limitations of our study need to be acknowledged. The 
retrospective character and lack of real-world data (the ADNI’s acqui
sition of imaging and behavioral data is done under carefully controlled 
and optimized conditions) limits our study’s transferability into clinical 

practice. We also need to acknowledge the risk of type I errors due to the 
sheer number of comparisons we carried out. In our study, only two 
timepoints were analyzed. Future studies might shed additional light on 
the temporal dynamics of brain morphological changes by incorporating 
additional timepoints and other brain structural parameters such as 
white matter volume changes and whether incorporating measures of 
cortical geometry might enhance diagnosis and progression tracking of 
AD. Also, it might have been worth investigating how functional con
nectivity is affected by chsanges in cortical complexity. While the ADNI 
offers functional task-free MRI data, analyzing this aspect was beyond 
the scope of our study. 

In summary, our comparison of different SBM measures in AD and 
aMCI subjects over a 2-year period of time found more complex mea
sures to be associated with cognitive decline in AD while the simplest, 
CTh, was not, suggesting a “burn-out” effect in manifest disease, where 
further decline in function is not necessarily reflected in gross loss of 
gray-matter volume. Overall, our results suggest a sequence of structural 
deterioration in disease progression with reduction in CTh dominating 

Bold data indicate primary peak within a cluster; Non-bold data indicate sec
ondary peaks. 

Fig. 3. Direct associations of longitudinal decreases of cortical thickness (CTh), cortical complexity (FD), gyrification index (GI) and sulcal depth (SD) in Alzheimer’s 
Disease AD and amnestic mild cognitive impairment (aMCI) participants with longitudinal cognitive decline (via ADAS-Cog 11). n.s. not significant. 
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early stages followed by additional changes in cortical complexity in 
later stages. Clinically, combining volumetric and SBM measures can 
increase the sensitivity of diagnosis based on neuroimaging markers and 
aid disease tracking especially in advanced disease. 
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