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Abstract 

Background: Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders characterized by 
progressive decline in cognitive function. Targeted genetic analyses, genome-wide association studies, and imaging 
genetic analyses have been performed to detect AD risk and protective genes and have successfully identified dozens 
of AD susceptibility loci. Recently, brain imaging transcriptomics analyses have also been conducted to investigate 
the relationship between neuroimaging traits and gene expression measures to identify interesting gene-traits asso-
ciations. These imaging transcriptomic studies typically do not involve the disease outcome in the analysis, and thus 
the identified brain or transcriptomic markers may not be related or specific to the disease outcome.

Results: We propose an innovative two-stage approach to identify genes whose expression profiles are related to 
diagnosis phenotype via brain transcriptome mapping. Specifically, we first map the effects of a diagnosis phenotype 
onto imaging traits across the brain using a linear regression model. Then, the gene-diagnosis association is assessed 
by spatially correlating the brain transcriptome map with the diagnostic effect map on the brain-wide imaging traits. 
To demonstrate the promise of our approach, we apply it to the integrative analysis of the brain transcriptome data 
from the Allen Human Brain Atlas (AHBA) and the amyloid imaging data from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) cohort. Our method identifies 12 genes whose brain-wide transcriptome patterns are highly corre-
lated with six different diagnostic effect maps on the amyloid imaging traits. These 12 genes include four confirma-
tory findings (i.e., AD genes reported in DisGeNET) and eight novel genes that have not be associated with AD in 
DisGeNET.

Conclusion: We have proposed a novel disease-related brain transcriptomic mapping method to identify genes 
whose expression profiles spatially correlated with regional diagnostic effects on a studied brain trait. Our empirical 
study on the AHBA and ADNI data shows the promise of the approach, and the resulting AD gene discoveries provide 
valuable information for better understanding biological pathways from transcriptomic signatures to intermediate 
brain traits and to phenotypic disease outcomes.
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Background
Alzheimer’s disease (AD) is one of the most common 
neurodegenerative disorders characterized by a decline 
in cognitive function. Given that many studies demon-
strated the high heritability of AD, ranging from 60 to 
80%, researchers have performed targeted genetic stud-
ies or genome-wide association studies (GWAS) to link 
genetic variants such as single nucleotide polymorphisms 
(SNPs) to clinical outcomes [1].

These conventional genetic association studies discov-
ered many AD-related genetic variants, including those 
from genes such as apolipoprotein E (APOE), clusterin 
(CLU), ATP-binding cassette, sub-family A (ABC1), 
member7 (ABCA7), complement component(3b/4b) 
receptor1 (CR1), and others [2–4]. However, it remains 
a challenge to interpret and validate these SNP-diagnosis 
associations directly since there is a lack of intermediate 
molecular signatures (e.g., epigenomic, transcriptomic, 
proteomic, and metabolomic measures) and system-level 
biomarkers (fluid biomarkers, brain structural and func-
tional measures, and cognitive and behavioral measures) 
to link genetics to disease status [5–7].

Recent studies have investigated the associations 
between molecular features (e.g., gene expression) with 
disease-related imaging traits [8–11]. The assays of gene 
expression, in particular, offer a unique opportunity to 
measure gene functions. The Allen Human Brain Atlas 
(AHBA) provides us comprehensive whole-genome 
whole-brain microarray transcriptomics data. Many 
researchers have documented molecular and cellular 
processes as well as the brain structural and functional 

changes involved in neurodegeneration by measuring 
spatial correlations between gene expression patterns 
and brain imaging phenotypes. For example, prior stud-
ies employed a correlation or regression model to link 
neuroimaging features (e.g., transverse relaxation time 
and regional atrophy) and transcriptomics data [8, 12–
14]. These imaging transcriptomic studies often did not 
directly involve the diagnostic outcome in the analyses. 
Thus, the identified imaging or transcriptomic mark-
ers might not be related or specific to disease outcomes 
such as AD.

In this study, we hypothesize that the genes whose 
expression patterns in the brain spatially correlated 
with the diagnostic pattern of AD-related neuroimaging 
traits, like beta-amyloid deposition, will also be asso-
ciated with AD. Thus, we propose an innovative two-
stage approach to identify the disease-related genes by 
correlating spatial gene expression map with regional 
diagnostic effects on imaging traits in the brain (Fig. 1). 
We demonstrate the promise of our approach to iden-
tifying disease-related gene expression signatures using 
the brain transcriptome data from the AHBA [15] and 
the amyloid imaging data from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) cohort [16]. Our 
approach identifies not only multiple confirmatory 
findings (i.e., AD genes from the DisGeNET database 
[17]) but also numerous novel genes associated with 
various disease stages (i.e., early mild cognitive impair-
ment [EMCI], late mild cognitive impairment [LMCI], 
and AD); and these novel genes have not been previ-
ously linked to AD in DisGeNET.

Keywords: Brain imaging transcriptomics, Imaging-diagnosis map, Gene expression map

Fig. 1 The overall workflow for identifying novel genes related to Alzheimer’s Disease (AD). The workflow involves: (i) estimating the diagnostic 
effects on the image traits across the brain using a linear regression model; and (ii) identifying AD-specific genes via spatially correlating 
imaging-diagnosis map with gene expression map in the brain
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Results
In this section, we present the results of our empirical 
study with the ADNI and AHBA data to demonstrate the 
promise of our approach. Briefly, in our stage 1 regression 
analysis, we noted that cognitive normal (CN) vs AD par-
ticipants yielded the most significant diagnostic effects 
on the AV45 imaging traits, while CN vs EMCI yielded 
the least significant ones. In our stage 2 correlation analy-
sis, we identified 12 genes, including 4 AD-related and 8 
non-AD-related genes based on the DisGeNET database, 
whose gene expression maps in the brain were spatially 
correlated with all the six diagnostic effect maps on AV45 
imaging traits. See below for more detailed description of 
these results.

Mapping diagnostic effects on the AV45 imaging traits 
across the brain via linear regression
We created an imaging-diagnosis map for each of six 
diagnostic comparisons through applying a linear regres-
sion model to capture the diagnostic effects on AV45 
imaging traits across the brain. Figure  2 shows all six 
brain maps of imaging-diagnosis associations for six 
different case-control comparisons respectively. The 
−log10(p) values for each analysis are color-coded and 
mapped onto the brain. We observed that CN vs AD 
yielded the most significant diagnostic effects on the 
AV45 imaging traits, while CN vs EMCI yielded the least 
significant ones (Table 1).

Shown in Additional File 1: Table  S1 is all the signifi-
cant ROI-diagnosis associations across the six experi-
ments. In total, 171 out of 180 ROIs were identified to be 
associated with at least one diagnostic outcome. In addi-
tion, 39 ROIs were significantly associated with all six 
diagnostic outcomes. In detail, 40 ROIs are significant for 
CN vs EMCI, 145 ROIs are significant for CN vs LMCI, 
169 ROIs are significant for CN vs AD, 134 ROIs are sig-
nificant for CN vs EMCI+LMCI, 167 ROIs are significant 
for CN vs LMCI+AD, and 162 ROIs are significant for 
CN vs EMCI+LMCI+AD. These findings are in accord-
ance with our knowledge, where the abnormality of AV45 
imaging traits gradually increases over the disease pro-
gression from EMCI to LMCI and then to AD.

Table 2 shows the top ten most significant ROIs across 
the six different diagnostic comparisons. Among these 
top findings, there are in total 23 ROIs with significant 
diagnostic effects on the AV45 imaging traits in one or 
more diagnosttic comparisons; and 14 out of 23 ROIs 
(i.e., L_10pp_ROI, L_10r_ROI, L_10v_ROI, L_31a_ROI, 
L_31pd_ROI, L_31pv_ROI, L_7m_ROI, L_9a_ROI, 
L_9p_ROI, L_d23ab_ROI, L_p32_ROI, L_PO S1_ROI, 
L_s32_ROI, and L_v23ab_ROI) are subregions of the 
bilateral dorsomedial parietal lobe, temporal-parietal-
occipital junction, and dorsocaudal temporal lobe. Three 
ROIs (i.e., L_a10p_ROI, L_a47r_ROI, and L_p47r_ROI) 
are subregions of the frontoparietal cognitive control 
network.

Fig. 2 Brain maps of imaging-diagnosis associations. a–f The brain maps for six different case-control comparisons respectively. The −log10(p) 
values for each analysis are color-coded and mapped onto the brain
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Identifying disease‑related genes through brain 
transcriptome mapping using correlation analysis
We applied Pearson correlation analysis to identify dis-
ease-related genes whose expression maps were spatially 
correlated with the imaging-diagnosis maps. In total, 295 
unique genes were identified across the six experiments, 
and we summarized all these results in Additional File 
1: Table S2(a). Specifically, CN vs AD yielded the small-
est number of significant correlations with only 40 sig-
nificant genes, and CN vs LMCI+AD yielded the largest 
number of significant genes with 214 significant genes.

Out of 295 significant genes, 57 genes have already 
been linked to AD according to the DisGeNET data-
base [17], and we summarized these 57 gene findings 

in Additional File 1: Table  S2(b). Figure  3 shows the 
heat map of these 57 gene findings, where the −log10(p) 
values of diagnosis-by-gene correlations are shown 
between the six diagnostic comparisons on the y axis 
and all 57 genes on the x-axis. There are four genes (i.e., 
AQP9, ADAMTS3, HDAC9, and NGB) whose expres-
sion maps are significantly correlated with imaging-
diagnosis maps for all six diagnostic comparisons. 
Figure 4 shows the gene expression profiles of the above 
four genes mapped onto the brain. A visual comparison 
between six diagnostic effect maps in Fig.  2 and four 
gene expression maps in Fig. 4 indicates that the spatial 
patterns of these maps are strongly correlated.

Fig. 3 The heat map of significant gene findings that are related to AD according to Dis-GeNET. The heat map includes all the genes that are 
discovered in our analyses and also related to AD according to the Dis-GeNET database. The six diagnostic comparisons on the y axis are plotted 
against all the genes on the x-axis. The −log10(p) values are color-coded and shown in the heat map. The symbol “X” denotes significant correlataion 
between the imaging-diagnosis map and the gene expression map (corrected p < 0.05)

Fig. 4 Gene expression level on the brain for the identified AD-related genes. a–d show the brain transcriptome maps for four AD-related genes 
(i.e., AQP9, ADAMTS3, HDAC9, and NGB) respectively. The normalized gene expression level is color-coded and mapped onto the brain. These maps 
are significantly correlated with imaging-diagnosis maps for all six case-control comparisons shown in Fig. 2
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Figure 5a shows the heat map of four significant gene 
findings that are not only correlated to all six diagnos-
tic comparisons but also are related to AD according to 
the DisGeNET database. It is noted that the NGB gene 
expression pattern has the highest correlations with the 
imaging-diagnosis maps across the six comparisons 
(i.e., 0.53 for CN vs EMCI, 0.61 for CN vs LMCI, 0.49 
for CN vs AD, 0.62 for CN vs LMCI+AD, 0.59 for CN 
vs LMCI+AD, and 0.61 for CN vs EMCI+LMCI+AD), 
and the ADAMTS3 gene expression pattern exhibits 
the lowest correlations (i.e., 0.38 for CN vs EMCI, 0.50 
for CN vs LMCI, 0.37 for CN vs AD, 0.48 for CN vs 
LMCI+AD, 0.46 for CN vs LMCI+AD, and 0.46 for CN 
vs EMCI+LMCI+AD).

Out of the 295 genes, there are 238 genes that have not 
been linked to AD in DisGeNET, denoted as “non-AD-
genes”. These 238 gene findings are shown in Additional 
File 1: Table  S2(c). Among these 238 genes, there are 8 
genes (i.e., ASB2, NPY1R, GLRA3, COL23A1, SPRN, 
CPNE8, TSPAN33, and KCNA3) whose expression maps 
are significantly correlated with imaging-diagnosis maps 
for all six diagnostic comparisons. These findings sug-
gest potential connections between these genes and 
AD through underlying transcriptomic and/or amyloid 
mechanisms in the brain, which is an interesting research 
topic warranting further investigation. Figure  5b shows 
the heat map of these 8 significant gene findings. The 
SPRN gene has the highest correlation coefficients (i.e., 
0.47 for CN vs EMCI, 0.52 for CN vs LMCI, 0.42 for 
CN vs AD, 0.53 for CN vs LMCI+AD, 0.50 for CN vs 
LMCI+AD, and 0.52 for CN vs EMCI+LMCI+AD), and 
the NPY1R gene has the lowest correlation coefficients 
(i.e., 0.37 for CN vs EMCI, 0.40 for CN vs LMCI, 0.36 

for CN vs AD, 0.40 for CN vs LMCI+AD, 0.40 for CN vs 
LMCI+AD, and 0.41 for CN vs EMCI+LMCI+AD).

Among 12 gene findings shown in Fig.  5a, b, we 
observed that CN vs AD yielded the lowest correlation 
coefficients for all 12 genes, in comparison with all the 
other five diagnostic paradigms. This pattern appears 
intriguing, and warrants replication in independent 
cohorts as well as further investigation for possible 
mechanistic understanding.

Discussion
In this work, we have proposed a two-stage approach to 
link transcriptome data to diagnosis outcome via brain 
mapping and have applied it to the AHBA and ADNI 
data to demonstrate its promise. Many studies have 
performed correlation or regression analysis to investi-
gate the relationship among genetics, transcriptomics 
and neurodegenerative disorders [7]. To the best of our 
knowledge, this work is the first study to link diagnos-
tic outcomes and transcriptomic data via human brain 
mapping. Across the six experiments, we confirmed the 
following four genes that are linked to AD in the Dis-
GeNET database: AQP9, ADAMTS3, HDAC9, and NGB, 
as shown in Fig. 5a. In addition, we identified the follow-
ing eight novel genes not yet linked to AD according to 
DisGeNET: ASB2, NPY1R, GLRA3, COL23A1, SPRN, 
CPNE8, TSPAN33, and KCNA3, as shown in Fig. 5b.

We observed that four significant AD genes were cor-
related with all six case-control comparisons—AQP9, 
ADAMTS3, HDAC9, and NGB. AQP9 was reportedly 
expressed in the neurons of the substantia nigra, tany-
cytes, and some astrocytes [18]. One mouse study dem-
onstrated that the reduction of ADAMTS3 contributed 

Fig. 5 The heat maps of 12 significant gene findings that are correlated to all six diagnostic comparisons. a 4 genes that are related to AD 
according to DisGeNET, and b 8 genes that are not related to AD according to DisGeNET. The −log10(p) values are color-coded and shown in the 
heat maps. The correlation coefficients are shown in each cell
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to the inhibition of amyloid β decomposition [19]. One 
study demonstrated that HDAC9 was reported to be part 
of the pathway that mediates synaptic function and amy-
loid precursor protein processing in AD [20]. The expres-
sion of NGB was also reported to be down-regulated with 
increasing age, down-regulated in women (consistent 
with their increased risk), and up-regulated in the tempo-
ral lobe of AD patients (consistent with a response to the 
disease process) [21]. All these existing findings collec-
tively support our discoveries and demonstrate the effec-
tiveness of our method in identifying AD-related genes 
supported by the transcriptomic evidence in the brain.

Additionally, we observed that eight non-AD genes sig-
nificantly correlated with the image-diagnosis map for all 
six case-control comparisons—ASB2, NPY1R, GLRA3, 
COL23A1, SPRN, CPNE8, TSPAN33, and KCNA3. We 
used the statistical over-representation test of PAN-
THER [22] to detect statistical over-representation of the 
eight significant non-AD genes compared to the human 
genome reference gene list. In this process, the enriched 
biological process of Homo sapiens species via gene 
ontology (GO) [23, 24] was identified. The results showed 
that 28 GO biological processes passed the nominal 
threshold of p < 0.05 . Among all these significant GO 
biological processes, “neuropeptide signaling pathway” 
was enriched with the smallest raw p-value 1.01× 10−3 
and with fold enrichment 41.99. Existing findings, includ-
ing apeline, Neuropeptide Y, and dynorphin A, which 
were important neuropeptides, were closely related to 
AD [25–27]. Moreover, evidence showed that in AD 
patients and AD animal models, numerous neuropep-
tide-containing neurons were pathologically altered in 
their brain areas [28]. The levels of various neuropep-
tides had also been found altered in both Cerebrospinal 
Fluid, and blood of AD patients [28]. All these existing 
findings demonstrate an important role of “neuropeptide 
signaling pathway” played in AD, indicating that the eight 
significant DisGeNET non-AD genes might have a con-
nection to AD. It warrants further investigation to evalu-
ate the potential of these genes as AD related genes.

Many AD studies demonstrated that the accumulation 
of misfolded amyloid β and tau protein causes degenera-
tion and loss of neuronal function in the brain [29, 30]. 
Our analyses yielded promising gene findings through 
mapping gene expression pattern and AD-related amyloi-
dosis pattern in the brain. Our study not only confirmed 
known AD genes but also suggested novel gene targets 
with potential to be linked to AD through underlying 
transcriptomic and amyloid mechanisms in the brain. 
These discoveries provide valuable information to guide 
further neurobiological and molecular studies to reveal 
the biological pathway from gene expression to amyloid 

accumulation and to the degeneration and loss of neu-
ronal function in the brain.

Conclusion
We have proposed a two-stage approach to identify genes 
whose expression levels are related to diagnosis pheno-
type via brain transcriptome mapping. Specifically, we 
first mapped the effects of a diagnosis phenotype onto 
imaging traits across the brain using a linear regres-
sion model. Then, the gene-diagnosis association was 
assessed by spatially correlating the brain transcriptome 
map with the diagnostic effect map on the brain-wide 
imaging traits. We applied our approach to analyze the 
brain transcriptome data from the AHBA and the amy-
loid imaging data from the ADNI cohort to demonstrate 
the promise of our approach. Our approach detected 
four genes with AD link shown in DisGeNET and eight 
genes that have not yet been linked to AD in DisGeNET. 
Our proposed novel disease-related brain transcriptomic 
mapping method was designed to spatially associate gene 
expression profiles with regional diagnostic effects on a 
brain trait to reveal disease-related genes. Our empirical 
study on the AHBA and ADNI data shows the promise 
of the approach. The resulting AD gene discoveries pro-
vide valuable information to better understand biological 
pathways from transcriptomic signatures to intermediate 
brain traits and phenotypic disease outcomes.

Methods
Data description
Data used in the preparation of this article were obtained 
from the ADNI database (adni.loni.usc.edu) [16]. The 
ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner, 
MD. The primary goal of ADNI has been to test whether 
serial magnetic resonance imaging (MRI), positron 
emission tomography (PET), other biological markers, 
and clinical and neuropsychological assessment can be 
combined to measure the progression of mild cognitive 
impairment (MCI) and early Alzheimer’s disease (AD). 
For up-to-date information, see www. adni- info. org.

In this study, we included a total of 971 participants 
(i.e., 255 Cognitive Normal [CN], 296 EMCI, 218 LMCI, 
and 202 AD subjects) who had complete [ 18F]florbeta-
pir (AV45) PET data (measuring amyloid burden), and 
diagnostic and clinical assessments. The detailed demo-
graphic information is presented in Table  1. For AV45 
PET scans, the data was registered to the Montreal 
Neurological Institute space, and the standard uptake 
value ratio was computed by intensity normalization 
using the cerebellar curs reference region. Region-level 
AV45 measures were extracted based on the human 

http://www.adni-info.org
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connectome project [31] multi-modal parcellation (HCP-
MMP) atlas, consisting of 360 regions of interests (ROIs).

The brain-wide transcriptome (gene expression) data 
was downloaded from the Allen Human Brain Insti-
tute [15]. The AHBA offered the gene expression levels 
of more than 20,000 genes from 3,702 distinct tissues, 
which were sampled across six different donors to cover 
the entire brain. Of these six honors, only two donors had 
tissue samples from both hemispheres, and the remain-
ing four donors had the samples only from the left hemi-
sphere. In this work, we preprocessed the AHBA data 
using the pipeline proposed by Aurina et al. and mapped 
those onto the HCPMMP atlas [8]. After that, we focused 

our analyses on the data from the left hemisphere 
(including 180 ROIs), since it is more densely sampled 
than the right one.

Two‑stage method for identifying novel genes related 
to Alzheimer’s disease
Here we propose a two-stage method for identify-
ing novel genes related to Alzheimer’s disease, as sum-
marized in Fig.  1. In the first stage, we perform linear 
regression to estimate the diagnostic effects on the image 
traits across the brain. In the second stage, we identify 
novel genes whose gene expression levels in the brain 

Table 1 Demographic information

CN EMCI LMCI AD Total

Number of subject 255 296 218 202 971

Age 76.35 ± 6.54 71.78 ± 7.28 74.71 ± 8.39 75.85 ± 7.67 74.48 ± 7.67

Sex (male/female) 132/123 167/129 129/89 123/79 551/420

Education (year) 16.37 ± 2.64 12.12 ± 2.64 16.12 ± 2.94 15.83 ± 2.81 16.13 ± 2.75

Table 2 Top 10 significant regions associated with diagnostic outcome

The significance level is reported in the format of −log10(p)-value. The network is annotated to the each ROI according to the Cole-Anticevic Brain-side Network [32]

ROI Network CN versus EMCI CN versus LMCI CN versus AD CN versus 
EMCI + LMCI

CN versus 
LMCI + AD

CN versus 
EMCI + LMCI + AD

L_10pp_ROI Posterior-multimodal 3.21 8.08

L_10r_ROI Posterior-multimodal 12.86 28.06 20.61

L_10v_ROI Posterior-multimodal 2.15

L_31a_ROI Posterior-multimodal 2.05 12.63 8.48 20.60 14.36

L_31pd_ROI Posterior-multimodal 11.98 29.56 22.35 13.89

L_31pv_ROI Posterior-multimodal 12.31 30.03 22.48 13.48

L_6ma_ROI Cingulo-opercular 2.03

L_7m_ROI Posterior-multimodal 12.76 30.00 7.96 22.92 14.51

L_9-46d_ROI Cingulo-opercular 7.79 13.53

L_9a_ROI Posterior-multimodal 2.54 8.48

L_9p_ROI Posterior-multimodal 2.42 7.81

L_a10p_ROI Frontoparietal 2.03

L_a47r_ROI Frontoparietal 3.00

L_d23ab_ROI Posterior-multimodal 13.96 32.99 8.76 24.26 15.72

L_FFC_ROI Visual2 30.42 21.20

L_p32_ROI Posterior-multimodal 12.64

L_p47r_ROI Frontoparietal 2.48 7.99 13.22

L_PCV_ROI Dorsal-attention 3.15 12.91 9.55 21.68 15.79

L_POS1_ROI Posterior-multimodal 37.73 22.03

L_s32_ROI Posterior-multimodal 12.53 7.89 13.33

L_TE2p_ROI Language 29.02

L_v23ab_ROI Posterior-multimodal 12.75 37.54 24.64 14.89

L_VVC_ROI Visual2 33.08
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are spatially correlated with the diagnostic effects on the 
imaging traits across the brain.

Stage 1. Regression analysis to estimate diagnostic effect 
on the AV45 imaging traits in the brain: imaging‑diagnosis 
map
Utilizing the AV45 imaging traits and diagnostic pheno-
type, we performed linear regression analysis to estimate 
the diagnostic effect on imaging traits. In this analysis, 
we used the ROI-based imaging trait as the response, 
the diagnostic phenotype (i.e., control vs case) as the 
predictor, and age, sex, and education level as covari-
ates to remove confounding effects. Since AD is a pro-
gressive neurodegenerative disorder, it is important to 
perform the analysis for different disease stages, where 
the disease progresses from EMCI to LMCI and then to 
AD (i.e., EMCI < LMCI < AD). With this observation, 
we examined the following six diagnostic comparisons: 
1) CN vs EMCI, 2) CN vs LMCI, 3) CN vs AD, 4) CN 
vs EMCI+LMCI, 5) CN vs LMCI+AD, and 6) CN vs 
EMCI+LMCI+AD. Of note, CN vs EMCI+AD com-
parison was excluded due to the stage discontinuity 
between EMCI and AD (i.e., LMCI is in-between). We 
applied our approach to each of the above six cases to 
estimate the corresponding diagnostic effect on the brain 
traits. As a result, we generated the significance map 
(imaging-diagnosis map) to assess the diagnostic effects 
in the brain. The significance was reported in format of 
−log10(p-value ) . We then excluded all the ROIs in the 
right hemisphere, to solely focus on the left hemisphere 
for the reason we stated earlier.

Stage 2. Correlation analysis between gene expression map 
and imaging‑diagnosis map
In this section, we identify disease-related genes whose 
expression levels are spatially correlated to imaging-
diagnosis map through computing their Pearson’s cor-
relation coefficients. We performed this analysis 60,162 
times (i.e., 6 imaging-diagnosis maps × 10,027 genes 
expression maps from the AHBA database) and the 
Bonferroni method was applied for multiple compari-
son correction. Due to the preprocessing step for the 
AHBA data, we only utilized the left hemisphere (i.e., 
180 ROIs out of the total 360 ROIs) for both imagin-
ing-diagnosis map and the AHBA transcriptome map. 
In addition, we further analyzed the identified genes to 
examine their associations with AD based on the Dis-
GeNET database [17]. The DisGeNET’s comprehensive 
database for disease association studies was utilized 
to assess whether or not the significant genes that we 
have identified have been associated with AD in prior 
studies. In DisGeNET, there are 3397 genes related to 
“Alzheimer’s Disease” (UMLS CUI: C0002395). Out of 

these 3397 genes, we only looked at a subset of 1877 
genes since the pre-processing step for the AHBA data 
removed genes with insignificant expression.
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