IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 6, 2019, accepted May 24, 2019, date of publication May 30, 2019, date of current version June 18, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2920005

Hippocampus Localization Using a Two-Stage
Ensemble Hough Convolutional Neural Network

ABOL BASHER!, KYU YEONG CHOI?, JANG JAE LEE2, BUMSHIK LEE3,

BYEONG C. KIM*, KUN HO LEE?3, AND HO YUB JUNG !

! Department of Computer Engineering, Chosun University, Gwangju 61452, South Korea
2National Research Center for Dementia, Chosun University, Gwangju 61452, South Korea
3Depa.rtment of Biomedical Science, Chosun University, Gwangju 61452, South Korea

*Department of Neurology, Chonnam National University Medical School, Gwangju 61469, South Korea
SDepartment of Information and Communication Engineering, Chosun University, Gwangju 61452, South Korea

Corresponding author: Ho Yub Jung (hoyub@chosun.ac.kr)

This work was supported in part by the Brain Research Program through the National Research Foundation of Korea funded by the
Ministry of Science, ICT and Future Planning under Grant NRF-2014M3C7A 1046041, and in part by a Research Fund from Chosun

University, in 2018.

ABSTRACT In this paper, we present a two-stage ensemble-based approach to localize the anatomical
structure of interest from magnetic resonance imaging (MRI) scans. We combine a Hough voting method
with a convolutional neural network to automatically localize brain anatomical structures such as the
hippocampus. The hippocampus is one of the regions that can be affected by the Alzheimer’s disease,
and this region is known to be related to memory loss. The structural changes of the hippocampus are
important biomarkers for dementia. To analyze the structural changes, accurate localization plays a vital
role. Furthermore, for segmentation and registration of anatomical structures, exact localization is desired.
Our proposed models use a deep convolutional neural network (CNN) to calculate displacement vectors by
exploiting the Hough voting strategy from multiple 3-viewpoint patch samples. The displacement vectors are
added to the sample position to estimate the target position. To efficiently learn from samples, we employed
a local and global strategy. The multiple global models were trained using randomly selected 3-viewpoint
patches from the whole MRI scan. The results from global models are aggregated to obtain global predictions.
Similarly, we trained multiple local models, extracting patches from the vicinity of the hippocampus location
and assembling them to obtain a local prediction. The proposed models exploit the Alzheimer’s disease
neuroimaging initiative (ADNI) MRI dataset and the Gwangju Alzheimer’s and related dementia (GARD)
cohort MRI dataset for training, validating and testing. The average prediction error using the proposed
two-stage ensemble Hough convolutional neural network (Hough-CNN) models are 2.32 and 2.25 mm for
the left and right hippocampi, respectively, for 65 test MRIs from the GARD cohort dataset. Similarly, for
the ADNI MRI dataset, the average prediction error for the left and right hippocampi are 2.31 and 2.04 mm,
respectively, for 56 MRI scans.

INDEX TERMS Ensemble Hough-CNN, hippocampus, displacement vector, MRI, Hough voting.

I. INTRODUCTION
A broad range of research works on medical imaging

has been conducted in recent years. Brain magnetic res-
onance imaging (MRI) is one of the most studied fields
in medical image analysis [1]-[4]. The hippocampus is a
crucial structure of the human brain’s limbic system [2].
It is believed that the hippocampus plays a vital role in
the learning process and memory management of daily life
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activities [2].Furthermore, the hippocampus’ shape, struc-
ture, and size are the prime biomarker for Alzheimer’s disease
detection [1], [2], [7], [31].

Hippocampus localization and segmentation have received
attention from different research communities [1]-[4].
Although several methods [1]-[3], [5] have been proposed to
localize and segment the hippocampus, it is still a challenging
research area due to the nature of the anatomical structure of
the hippocampus. The volume of the hippocampus on each
side of the brain is approximately 3.0 to 3.5 cm® in the adult
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brain [6]. The hippocampus has faint edges and overlapping
intensities [1] with its neighboring structures, which makes
the segmentation more difficult. Therefore, prior knowl-
edge describing the accurate location of the hippocampus
can help the segmentation process by confining the region
of interest and possibly providing segmentation seeding
points.

In this work, we propose a joint approach of Hough
voting [8]-[10] and a convolutional neural network
(CNN) [11] to automatically localize the right and left
hippocampi in MRI scans. We used the CNN as a feature
extractor due to its ability to learn features from input data.
Hough voting [8], [12] and a CNN are utilized to determine
the displacement vectors from the random sample points to
the target location inside the given volumetric MRI.

Our approach consisted of a two-stage learning
process [13] to exactly estimate the location of the hippocam-
pus. The graphical overview of our proposed approach is
shown in Fig. 1. We designed multiple global and local
models. Those models are then aggregated together in both
phases. The global model learned the feature map from
the whole MRI scan and predicted the apparent location of
the hippocampus. The local model was trained to learn the
features map in the vicinity of manually marked hippocam-
pus locations. In the testing phase, we jointly utilized the
ensemble global and local models. The detailed ensemble
architecture of our proposed two-stage Hough CNN in the
test phase is shown in Fig. 1(c). From the prediction of the
ensemble global model, we took samples for the ensemble
local model for final predictions. The ensemble local model’s
predicted displacement vectors are transformed into image
pixel positions by adding to the center of the generated
samples for the local model, which was ultimately placed
inside our anatomical structure of interest. This simple strat-
egy offers a good localization model for the right and left
hippocampi in MRI scans.

We propose a two-stage ensemble Hough-CNN based
on a Hough voting strategy similar to [14]. Although a
Hough-CNN was proposed in [14], their studies focused on
segmenting multiple regions of interest using semiautomatic
and manually annotated regions with the Hough-CNN. In this
study, we performed a two-stage ensemble operation to pre-
dict the hippocampus location on both sides of the brain
from MRI scans. This approach is robust for various anatom-
ical shapes and appearances. Left and right hippocampi
locations in 351 MRI scans from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and 326 MRI scans from
the Gwangju Alzheimer’s and Related Dementia (GARD)
cohort datasets,(from National Research Center for Dementia
(NRCD), Gwangju, Republic of Korea), are manually anno-
tated. In contrast to previous works, we fully evaluated the
proposed two-stage ensemble network against the manually
annotated ground-truths to obtain quantitative results for the
localization network. The ensemble Hough-CNN offers a
fully automatic localization scheme, and it is superior to the
other previous approaches [1], [2].
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The rest of the paper is arranged in the following manner.
In section 2, we review the hippocampus localization-related
research works as well as multiple landmark detection of
brain regions of interest and highlight the limitations of exist-
ing works. Our proposed methodology, consisting of patch
and label generation, network architecture and training, and
localization procedure is explained in section 3. In section 4,
we discuss the evaluation process, dataset and results. A sum-
mary of the evaluation is covered in section 5.

Il. RELATED WORKS

A number of methods have been proposed to localize brain
structures, and they can be categorized into manual local-
ization, spatial relation-based localization, atlas-based local-
ization, statistical shape model-based approaches as well as
deep learning-based detection strategies. Manual localiza-
tion methods of brain structures mainly depend upon the
expertise of special operators such as a radiologist [15], [16],
which can consume a large amount of experts’ expensive
time. On the other hand, the spatial relation-based method
exploits a set of predefined rules such as fuzzy sets [17], [18].
The atlas-based method provides automatic localization but
it requires an atlas to extrapolate information to the target
dataset using co-registration procedures [19], [20]. Although
this method can accurately localize the target position auto-
matically, it generally consumes a great deal of compu-
tation time and data. Therefore, researchers have moved
to new approaches, such as statistical shape model-based
approaches, which are capable of predicting shape variability
in the training population. This method discerns all the shapes
that exist in the training data and parameterizes the mean
approximate shape [21]. Using the mean shape, the statisti-
cal shape model-based approaches localize the approximate
position of the anatomy of interest.

Achuthan et al. [1] introduced a pairwise nonrigid coher-
ent point drift registration-based method to localize the
hippocampus from 40 manually delineated hippocampus
volumes [22]. In this method, they utilized the strength of
pairwise non-rigid coherent point drift registration. The pro-
posed assembly based coherent drift method offers the pre-
diction of a root mean square distance value that is below
3.5 mm from the ground truth position [1]. In contrast,
Siadat et al. [2] proposed a knowledge-based localization of
the hippocampus in brain MRI scans. This method follows
the statistical roadmap approach to localize any landmark in
brain MRI scans such as the hippocampus.

Deep learning-based detection strategies have achieved
many breakthroughs in different disciplines using com-
puter vision and machine learning-based algorithms
[13], [24], [42]. Gall et al. [8] proposed Hough forests to
detect an object, such as pedestrian detection, from highly
unconstrained images and video frames. A Hough forest
consists of random decision trees where the decision trees
are determined from the input data. The local appearances of
input data are mapped to the leaves of decision trees in the
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(a) GH-CNN

(b) LH-CNN

(c) Two-Stage Ensemble Hough-CNN

FIGURE 1. Proposed two-stage ensemble Hough convolutional neural network. (a) Uniformly distributed random sample points R(y y 7) are used to
extract patches from a MRI scan to train the global Hough convolutional neural network (GH-CNN), where F(x y z) is the manually marked
hippocampus location, (b) On the other hand, the training patches are generated in the vicinity of hippocampus to train the local Hough convolutional
neural network (LH-CNN). (c) Multiple trained networks are aggregated together to form a two-stage ensemble Hough convolutional neural network

to estimate the location of the hippocampus.

Hough forest and each leaf is considered to be a probabilistic
vote in the Hough space. Therefore, a set of leaves in the
Hough forest acts like an implicit appearance codebook that
can be improved for Hough-based detection [8], [26]-[28].
Gall et al. [8] improved the general Hough transform [23]
and amalgamated it with other methods, such as the Implicit
Shape Model [16] and local appearance codebooks to per-
form the object detection. Milletari et al. [14] developed a
Hough convolutional neural network (Hough-CNN) based
approach to segment 26 anatomical structure of interest
in brain MRI and CT scans.The regions of interest were
annotated using manual and semiautomatic approaches
from the Hough-CNN (FSL First [25]). A multiscale deep
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reinforcement learning-based landmark detection strategy
was developed by Ghesu et al. [24].

Hough votes refer to a collection of evidences in a Hough
space where each evidence corresponds to a product set
of different locations, scale, aspects. The maximum peak
in the sum of all Hough votes points to an instance of
an object [8]. The CNN models calculate the displacement
vectors pointing to the hippocampus location based on the
estimated instances from Hough votes in the Hough space
domain, thus the Hough-CNN is formed. In this research
study, we concentrated on automatic localization using a
two-stage ensemble Hough-CNN to fully evaluate the accu-
racy of the Hough-CNN localization approach.
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FIGURE 2. The red rectangular is the considered region for patches’
centers in MRI scans. Blue dots inside the red rectangular cuboid
represent the center of extracted patches for the GH-CNN. The blue dots
inside red circles are the patch centers for LH-CNN. C is the center of the
MRI scan. The red dots with a cross is the target hippocampus location.

Ill. PROPOSED TWO-STAGE ENSEMBLE HOUGH-CNN

If we can calculate displacement vectors from any certain
point, then by using random image pixel index as a cen-
ter, we can generate multiple random samples with corre-
sponding displacement vectors from the sampled pixel to
the anatomical structure of interest [8], [29]. The anatom-
ical context around the ground truth point in the training
MRI dataset can be used to learn the displacement vectors
pointing to the target location. One can use the random
forest [8], [30], [41] and deep CNN to determine the dis-
placement vectors from input image features. For multiple
samples from the same MRI, the trained model predicts
multiple displacement vectors that can be added to with
corresponding random points, and then averaged to return
an estimated point that is designed to be placed inside the
anatomical structure of interest. Multiple global networks are
trained using the whole MRI scan. Similarly, multiple local
networks are trained to discern local information around the
hippocampus. The global and local networks are amalga-
mated to form the two-stage ensemble and obtain the final
estimation of a region of interest. Using a two-stage ensemble
Hough CNN, we have accurately localized the right and left
hippocampi in an MRI scan.

A. PATCH AND LABEL GENERATION

Let us consider a given volumetric MRI, Mxyz 73 —
N [24], and the hippocampus as the anatomy of interest.
The challenge is to learn the displacement vectors from any
random point to the hippocampus location.

From 3D MR imaging space, 2D patches are extracted con-
sidering uniformly distributed random points inside a MRI
scan. To simplify the challenge of interpreting the 3D data
space from a large MRI volume shown in Fig. 2, we extracted
a 2D slice to represent how the data distribution is chosen
to train the network. 2D slices of a sagittal, coronal, and
axial view of an MRI scan are shown in Fig. 3 and Fig. 4.
In each 2D slice, the sample points are uniformly distributed.
We took multiple patches to cover all the information that
exists in each slice for the global model. Two different sizes
of patches are considered for the global and local networks.
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FIGURE 3. Uniformly distributed random sample points from the whole
MRI are used to extract patches except in the boundary region. A 2D
representation of a 3D MRI region considered to generate patches for the
global model (GH-CNN). Subsequently, 96 x96 patches are extracted for
the GH-CNN. These patches are downscaled to 32x32 and then merge
those 3-plane view 2D patches into 3-channel 32x32 patches.

FIGURE 4. Uniformly distributed random sample points in the vicinity of
the hippocampus are used to extract patches. A 2D representation of a 3D
8x8x8 cubic region is selected to generate patches for the local model.
The 32 x32 patches are extracted from MRI scans and then merged into
32x32x3. These merged patches are used as an input to the local model.

We performed a normalization operation on each patch using
the standard normal distribution.

In MRI My, the sample generation process for the global
network is depicted in Fig. 2. The blue dots are the centers of
the sample patches.

The 96 x 96 patches are extracted from the whole MRI for
global networks. The two red dots with a cross are the target
left and right hippocampi in the training MRIs. The differ-
ences between the blue dots and red dots define the target
displacement vectors. The target displacement vectors are
calculated with the patches, which are utilized as a label while
we train the global and local networks. For the global model,
we did not take any sample point near the boundary region of
the MRIL.

Using the blue dots inside the red circles as a center,
as shown in Fig. 2, the patches are extracted from the MRI
scans. These extracted patches are used to train the local mod-
els. The patch centers follow 8 x8x 8 cubic regions from the
target left and right hippocampi locations (red circles). The
generated patches have a dimension of 32x32. Then, the 2D
32x32 patches are merged into 3-channel 32x32 patches.
These merged patches are used as input to the local mod-
els. Multiple patches are extracted from each MRI scan.
We depicted the patch extraction process in Fig. 3 and Fig. 4.
The extracted multiple patches are used to train, validate,
and test the proposed model to estimate the hippocampus
location.
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TABLE 1. GH-CNN and LH-CNN network architectures used in the ADNI dataset.

Model Name Network Architecture Activation Function | Batch Normalization | Optimizer
16 1 2 2 4 128 R128 [l2
GMy, | I, CL6,Clo, P, 32, P, €32, P, €4, €128, F128 p128 3 relu True adam
GH-CNN
16 32 pm 64 pm 128 pm 256 ~512 512 E128 |3
GMy, | I32,C3°,C3%, PR, C3%, PR, G370, PR, G320, G312, B 5, F20 F
LMlh 1327 C32, C64, Pm, C128, Pm, CZSG, FSIZ, 1:;2567 F3 relu True adam
LH-CNN 3 3 2°3 2 3
32 64 pm 128 pm 256 256 128 3
LMy 1327C3 ,C3 ,PQaC3 3P25C3 B Sl S &
Tsample size = Network input, C?:&ﬂ)bm) = Convolutional layer, P?* = Max Pooling with stride 2, F#fie" = Fully connected layer.
TABLE 2. GH-CNN and LH-CNN network architectures used in the GARD cohort dataset.
Model Name Network Architecture Activation Function | Batch Normalization | Optimizer
16 32 4 12 2 512 15
*GMy | I3p. C16,C3%, PR, €4 Py, C1%8, P, €3°6, C312, P12, F128 3 relu True adam
GH-CNN
16 32 pm (64 pm 128 pm 256 ~512 512 R128 w3
GM, 1325C3 ,C3 sPQsC3 ,P27C3 ,P29C3 7C3 N S S &
LMy, I35, CL6, C32, P, C§*, P, €128, C2%6, F256 p128 B3 relu True adam
LH-CNN =
16 32 pm 64 pm (128 ~256 /256 K128 B3
LMy, I3, C3°, C3%, PY, C3%, P5, C3°°, C5°°, F~°, F'°° F

C(#ﬁher)

Tsample size = Network input, (kernal size)

= Convolutional layer, P]' = Max Pooling with stride 2, F#fil™d = Fully connected layer.

*One of GM;, does not have a batch normalization layer, instead, it has dropout layer after first fully connected layer (f-1)(25 %) and second fully connected layer(f-2)(35 %)

B. NETWORK ARCHITECTURE AND TRAINING

Different network design approaches [32]-[36], [42] are
proposed to analyze multiple regions in the brain.
Our network design topology follows the ensemble [37]
based Hough-CNN with a two-phase learning policy
[13], [14], [34]. We propose a global Hough convolutional
neural network (GH-CNN) and local Hough convolutional
neural network (LH-CNN). The GH-CNN consists of 6
convolutional layers along with 3 fully connected layers.
All convolutional blocks have the same kernel size (3x3)
with a relu [38] activation function. However, the number of
filters are different in different convolutional blocks. Three
max-pooling layers are used to design the GH-CNN. A batch
normalization [39] layer is added after each block of the
convolutional layer and fully connected layer. The GH-CNN
is shown in Fig. 1 (a) (GH-CNN) and the detail network
architectures are shown in Table 1 and Table 2.

The LH-CNN is a little different than the GH-CNN. The
LH-CNN consists of 4 convolutional layers with 3 fully
connected layers for the ADNI dataset. For the GARD cohort
dataset, the LH-CNN has 5 convolutional layers and the rest
of the network structure is the same as the ADNI dataset. All
convolutional blocks have the same kernel size (3x3) with a
relu [38] activation function. Different numbers of filters are
utilized in each convolutional block. Two max-pooling layers
are used in the LH-CNN. In addition, batch normalization
layers are concatenated after each convolutional layer and
a fully connected layer. The LH-CNN is shown in Fig. 1
(b) (LH-CNN). The detailed architecture of the LH-CNN is
shown in Table 1 and Table 2.

73440

The GH-CNN and LH-CNN are trained using two differ-
ent types of patches. Because of GPU memory constrained,
the 9696 x3 patches are downscaled to 32x32x3 to train
the GH-CNN. On the other hand, 32x32x3 patches are
extracted from the vicinity of the hippocampus region, and
they are used to train the LH-CNN. The detailed sample
extraction procedures are explained in the patch generation
section. All the parameters of the Adam optimizer [40] are
kept as the default except for the learning rate. Different
learning rates (le-5 to le-2) are considered to train different
models of the GH-CNN and LH-CNN. The training times of
the LH-CNN and GH-CNN range from 6 to 14 hours for each
model.

C. LOSS FUNCTION

To train the GH-CNN and LH-CNN, the mean square error is
considered as a loss function.

1
kxgq

J=kxq

2

Jj=1
1
< (3 (0 sm-riez-27)) o

where k is the number of patches generated from each MRI
and q is the total number of MRISs used for training. (X, Y;, Z;)
are the target displacement vectors and (X/, Yj/ , Zj/ ) are the
predicted displacement vectors.

Two representative training and validation curves of the
global and local model are shown in Fig. 5 and Fig. 6,
respectively. The 5-fold cross validation result of the global
and local models are shown in Appendix A.

MSE =
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FIGURE 5. Training and validation loss of the GARD cohort dataset
(GH-CNN): Right hippocampus.

FIGURE 6. Training and validation loss of the GARD cohort dataset
(LH-CNN): Right hippocampus.

D. LOCALIZATION PROCEDURE

We combine three GH-CNN models with three LH-CNN
models and form a two-stage ensemble Hough-CNN. Three
GH-CNN models estimate the global displacement vectors
separately from the multiple patches extracted from the same
MRI scan. After that, we calculate the average displacement
vectors. This average result is added to the sampled reference
points previously used to extract the global models’ samples.
This result is the predicted locations for the hippocampus by
the global models.

We use global predicted locations to generate patches for
the local model. After extracting patches from the MRI scan
around the global prediction regions, we perform the same
operations again. However, this time, we use the local models
instead of global models. An ensemble of three LH-CNNs
estimate the displacement vectors separately from the sam-
pled patch positions.

We calculate the average displacement vectors that were
estimated previously by the three LH-CNN models. These
average displacement vectors from the LH-CNN models are
added to the global models’ predicted locations. The obtained
results are the final predicted hippocampus locations in the
target test MRI scans for each patch. We repeat this procedure
for multiple patches. The averaged result is the final voxel
location of the target test MRI scans. Using these voxel
locations, we display the 3-plane view of the hippocampus
for the target MRI scans.

Consider that the GH-CNN predicted global displacement
vectors are V(. y,w) € R3 and the random samples’ center was
Rixvz) € N3. Now the global models’ predicted hippocam-
pus locations, G(x,x,z) are

Gux.,v.z) = Rx,v,z) + Viuv,w 2)

VOLUME 7, 2019

Algorithm 1 Hippocampus Localization

1 Data: Input MRI volume, Mxyz,

2 Output: Estimated locations, Hx y,z),

3 Initialize the number of samples k,

4 | X ={x1,x2, - xl,

5 | Y={y,y2,yh

6 | Z=1{z1,22, -2}

7 Generate Sample Center, R(xy,z), Where
8 Generate samples, S, = {s1 - - - 5},

9 | Fori:1tokdo

10 Viu,v,w) < Sg to global trained model;
11 Gx.v.z) = Rx.v.z) + Viwvw

12 | Use G(x,y,z) as a random reference points,
13 | Generate samples, S; = {s1...Sk},

14 | Fori: 1tokdo

15 Uw,v,w) < S to local trained model;
16 Lix.yzy=Gx.y.z)+ Upvw:

k
17 | Hxvzy= 1 > (Lex.v.2))s
1

Here, X, Y, and Z are the center of the samples; u, v, and w
are the displacement vectors in the 3D MR image space.

We used these global predicted hippocampus locations as
random points to extract patches from the same test MRI
scan again. Then, these patches are utilized as input to the
LH-CNN. Now, consider that LH-CNN predicted local dis-
placement vectors are U,,,,w) € R3. In this case, the ran-
dom reference points are the global predicted hippocampi
locations, Gx,y,z). Therefore, the local models’ predicted
hippocampus location, Hx y,z) are

k

1
Hixyz) = % Z (Gx.v.z) + Uuvow)) 3
1

Here, k denotes the number of patches generated from
each MRI scan. The whole process is depicted in Fig. 7. The
detailed localization process is explained in Algorithm 1.

We have tested these models with the ADNI MRI dataset
and the GARD cohort dataset. For data separation in the
ADNI MRI dataset, we considered the patient ID. From
8 patients, 56 MRI scans are used to test the model. The pre-
diction errors (Euclidian distance) for the left and right hip-
pocampi are shown in Table 3. In the test phase, the predicted
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FIGURE 7. Left hippocampus localization using the ensemble Hough-CNN. This is a testing phase view of two stage ensemble Hough-CNN. In this phase,
three view patches (axial, coronal, and sagittal) are used as an input to the individual model to estimate the displacement vectors (votes) for each
patch. The averaged values of global displacement vectors (GDV) are added to random reference sampled points that results in ensemble hippocampus
positions G(x y 7). Now, using G(x vy z), the second sets of random samples are generated from the same MRI scans, and utilized those samples as an
input to the ensemble LH-CNN. The ensemble LH-CNN's averaged local displacement vectors (LDV) are concatenated with G(x y z) resultingin Ly y 7).

Dividing the L‘X v.z) by the number of patches extracted from each MRI scans, we can obtain the estimated hippocampus location, H(x y 7). We have

displayed the

eft i\ippocampus here. Similarly, we locate the right hippocampus.

TABLE 3. Prediction error in the ADNI MRI dataset. The boldface numbers are the final error.

Dataset Hippocampus Model Name | Individual model’s prediction error (mm) | Aggregated prediction error (mm)

GM-1 3.2477

GM-2 3.2802 3.2745
Left hippocampus GM-3 3.3346
LM-1 2.3536

LM-2 2.3967 2.3187
ADNI MRI Dataset (343) LM-3 2.2432
GM-1 2.9094

GM-2 3.0279 2.9741
Right hippocampus GM-3 3.0273
LM-1 2.0256

LM-2 2.1322 2.0440
LM-3 2.0544

GM = Global Model, LM = Local Model

left and right hippocampi locations are shown in Fig. 8 to
Fig. 11 in Appendix B for the ADNI MRI dataset.

Similarly, we performed the same test on the GARD cohort
dataset of 65 MRI scans. The prediction errors (Euclidian dis-
tance) for the left and right hippocampi are shown in Table 4.
The predicted voxel locations are displayed in Fig. 12 to
Fig. 15 in Appendix B.

IV. EVALUATION RESULT

In the test phase, we utilized both the GH-CNN and LH-CNN
together to determine the hippocampus location in the test
MRI and evaluate the error for the ADNI and GARD cohort
datasets.

A. DATA SETS

We exploited two datasets in this research paper. The ANDI!
and GARD cohort MRI datasets were used to train, validate
and test the GH-CNN and LH-CNN. The ADNI dataset

73442

consists of 351 MRI scans with three classes (AD, MCI,
and NC). There are 60 patient scans available in the ADNI
dataset. From 351 MRI scans, 343 MRI scans are considered
for training (228) (42 patients), validation (59) (10 patients)
and testing (56) (8 patients). We used the patient ID to
separate the dataset into the training, validation and testing
sets. In the ANDI dataset, most of the scan dimensions
are 256x256x 170 with 1 mm? sized voxels. We also used
the GARD cohort dataset, which contains 326 MRI scans
of 326 patients. The GARD cohort dataset is divided into
four classes (ADD, aAD, MCI, and NC). The GARD cohort
dataset is divided into the training, validation, and testing set
according to their patient identification number. Most of the
MRI scans in the GARD cohort dataset have a dimension
of 312x212x220 with 1 mm? sized voxels.

IData collection and sharing for this project was funded
by the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(National Institutes of Health Grant UO1 AG024904)
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TABLE 4. Prediction error in the GARD cohort dataset. The boldface numbers are the final error.

Dataset Hippocampus Model name | Individual model’s prediction error (mm) | Aggregated prediction error (mm)

GM-1 3.6243

GM-2 3.4936 3.5228
Left hippocampus GM-3 3.5016
LM-1 2.3075

LM-2 2.3355 2.3267
GARD cohort Dataset (326) LM-3 2.3701
GM-1 3.7468

GM-2 3.6941 3.7108
Right hippocampus GM-3 3.7192
LM-1 2.3035

LM-2 2.2363 2.2519
LM-3 2.2641

GM = Global Model, LM = Local Model

TABLE 5. GARD cohort dataset: Left hippocampus (LH-CNN): 5-fold cross
validation.

TABLE 6. GARD cohort dataset: Left hippocampus (GH-CNN*): 5-fold
cross validation.

and DOD ADNI (Department of Defense award number
W81XWH-12-2-0012). ADNI is funded by the National
Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, and through generous con-
tributions from the following: AbbVie, Alzheimer’s Asso-
ciation; Alzheimer’s Drug Discovery Foundation; Araclon
Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb
Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Phar-
maceuticals, Inc.; Eli Lilly and Company; Eurolmmun;
F. Hoffmann-La Roche Ltd and its affiliated company Genen-
tech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen
Alzheimer Immunotherapy Research & Development, LL.C.;
Johnson & Johnson Pharmaceutical Research & Develop-
ment LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso
Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack
Technologies; Novartis Pharmaceuticals Corporation; Pfizer
Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Com-
pany; and Transition Therapeutics. The Canadian Institutes
of Health Research is providing funds to support ADNI
clinical sites in Canada. Private sector contributions are
facilitated by the Foundation for the National Institutes
of Health (www.fnih.org). The grantee organization is the
Northern California Institute for Research and Education,
and the study is coordinated by the Alzheimer’s Therapeu-
tic Research Institute at the University of Southern Cali-
fornia. ADNI data are disseminated by the Laboratory for
Neuro Imaging at the University of Southern California.
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Type Fold-1 Fold-2 Fold-3 Fold-4 Type Fold-1 Fold-2 Fold-3 Fold-4
Training MSE | 0.7372 | 0.7447 | 0.7365 | 0.7359 Training MSE | 1.1158 | 1.0648 | 1.0728 1.0509
Validation MSE | 2.1765 | 2.0254 | 1.6226 | 1.8735 Validation MSE | 1.0743 | 1.2216 | 1.0420 1.1747
Testing MSE 29105 | 2.9269 | 2.9060 | 3.0835 Testing MSE 12307 | 1.2008 | 1.2163 1.2421

TABLE 7. GARD cohort dataset: Right hippocampus (LH-CNN): 5-fold
cross validation.

Type Fold-1 Fold-2 | Fold-3 Fold-4
Training MSE 0.1915 | 0.1959 | 0.1961 0.1915
Validation MSE | 1.8579 | 1.7032 | 1.3898 2.1815
Testing MSE 1.8435 | 1.8159 | 1.8443 1.9543

Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). As such, the investigators within
the ADNI contributed to the design and implementation of
ADNI and/or provided data but did not participate in analysis
or writing of this report. A complete listing of ADNI inves-
tigators can be found at: http : //adni.loni.usc.edu/wp —
content /uploads/how_to_apply/ADNI_Acknowledgement _
List.pdf

B. PREDICTION ERROR CALCULATION

In the ADNI and GARD cohort MRI datasets, each MRI’s
pixel to pixel distance is approximately 1 mm. Therefore,
in 3D MRI, the differences between target locations of
the hippocampus and the ensemble Hough-CNN estimated
locations of the hippocampus are the prediction errors in
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TABLE 8. GARD cohort dataset: Right hippocampus (GH-CNN*): 5-fold
cross validation.

Type Fold-1 Fold-2 Fold-3 Fold-4
Training MSE 1.1020 | 1.0907 | 1.0834 1.0989
Validation MSE | 1.2734 | 1.3316 | 1.1550 1.4988
Testing MSE 1.3435 | 1.3748 | 1.3694 1.4312

TABLE 9. Left hippocampus (LH-CNN): 5-fold cross validation.

Type Fold-1 Fold-2 Fold-3 Fold-4
Training MSE 0.1904 | 0.1944 | 0.1909 | 0.1935
Validation MSE 1.8078 | 2.2081 2.4217 | 2.0039
Testing MSE 23643 | 2.6135 | 2.3467 | 2.5086

TABLE 10. ADNI dataset: Left hippocampus (GH-CNN*): 5-fold cross
validation.

Type Fold-1 Fold-2 Fold-3 Fold-4
Training MSE 0.9827 | 0.8994 | 0.9385 | 0.9760
Validation MSE | 1.4610 | 2.3999 | 2.0405 1.3011
Testing MSE 1.7051 1.6782 | 1.7966 | 1.8073

TABLE 11. ADNI dataset: Right hippocampus (LH-CNN): 5-fold cross
validation.

Type Fold-1 Fold-2 Fold-3 Fold-4
Training MSE 0.6116 | 0.6192 | 0.6174 0.6208
Validation MSE 1.5231 1.6899 2.0639 1.4907
Testing MSE 1.8935 1.9638 2.1877 1.8086
Euclidian space.
drms = \/(H(X,Y,Z) — Fix.v.2)? 4)

In Equation 4, d,,,s stands for average Euclidian distance.
Fxvy,z) and H(x y z) are the target hippocampus location
and two-stage ensemble Hough-CNN estimated hippocam-
pus location, respectively. The averaged prediction errors
for the GARD cohort dataset are 2.32 mm and 2.25 mm
for the left and right hippocampi, respectively. On the other
hand, the averaged prediction errors for the ADNI dataset
are 2.31 mm and 2.04 mm for the left and right hippocampi,
respectively. The average runtime to estimate the hippocam-
pus location in an MRI is 2 seconds.

Achuthan et al. [1] reported an RMS distance of 3.5 mm
between the estimated hippocampus location and ground
truth. Our proposed two-stage ensemble Hough-CNN offers
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TABLE 12. ADNI dataset: Right hippocampus GH-CNN*): 5-fold cross
validation.

Type Fold-1 Fold-2 Fold-3 Fold-4
Training MSE 0.7625 0.7501 0.7539 0.7659
Validation MSE 1.0095 0.9184 1.1342 0.7891

Testing MSE 1.2212 1.2016 1.2596 1.1607
Axial Sagittal Coronal

(a)

(b)

FIGURE 8. ADNI dataset (BEST CASE): Left hippocampus. Minimum RMS
error is 0.7134 mm. (a) Predicted hippocampus location. (b) Ground truth
hippocampus location.

Axial Sagittal Coronal

(a)

(b)

FIGURE 9. AND dataset (BEST CASE): Right hippocampus. Minimum RMS
error is 0.1785 mm. (a) Predicted hippocampus location. (b) Ground truth
hippocampus location.

an acceptable average RMS error of 2.24 mm between

approximated hippocampus locations and the ground truth.
The training, validating and testing operations have been

performed with an HP Workstation Intel Xeon Processor
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Axial Sagittal Coronal

(@)

(b)

FIGURE 10. ADNI dataset (WORST CASE): Left hippocampus. Maximum
RMS error is 5.5622 mm. (a) Predicted hippocampus location. (b) Ground
truth hippocampus location.

Axial Sagittal Coronal

(a)

(b)

FIGURE 11. ADNI dataset (WORST CASE): Right hippocampus. Maximum
RMS error is 4.3902 mm. (a) Predicted hippocampus location. (b) Ground
truth hippocampus location.

(3.10 GHz) with 32 GB RAM and an INVIDIA Quadro
MD4000 GPU (8 GB).

V. CONCLUSION

In this paper, we presented a joint approach consisting of
Hough voting and deep CNN for accurate real time 3D
anatomical structure localization in an MRI scan. For exact
anatomical structure localization in an MRI scan, we com-
bined Hough voting with a deep CNN. A deep CNN extracts
feature maps from input sample images to vote for the center
of the samples to calculate the displacement vectors pointing
to the target structure. We introduced a two-stage ensem-
ble learning strategy. In the primary phase, the GH-CNN
learns all the information about the given training data and
predicts the global displacement vectors near the region of
anatomical interest. In the final phase, the LH-CNN learns the

VOLUME 7, 2019

Axial Sagittal Coronal

()

(b)

FIGURE 12. GARD cohort dataset (BEST CASE): Left hippocampus.
Minimum RMS error is 0.3062 mm. (a) Predicted hippocampus location.
(b) Ground truth hippocampus location.

Axial Sagittal Coronal

(a)

(b)

FIGURE 13. GARD cohort dataset (BEST CASE): Right hippocampus.
Minimum RMS error is 0.3546 mm. (a) Predicted hippocampus location.
(b) Ground truth hippocampus location.

distinguishable features to predict local displacement vectors
pointing towards the target location in the vicinity of the
anatomical structure of interest.

In the testing phase, we utilized the global displacement
vectors from random image pixel locations to extract sam-
ples for the LH-CNN. The local models used the predicted
locations from the global models and estimated displacement
vectors pointing to the target locations for each sample taken
from the MRI scans. We used the random sample positions
with their corresponding predicted displacement vectors to
obtain the hippocampus locations from MRI scans.

In this work, we used the ADNI MRI dataset with
60 patients and GARD cohort dataset with 326 patients.
Using our proposed approach, we accurately localized the
left and right hippocampi. The average prediction error of
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Axial Sagittal Coronal

(b)

FIGURE 14. GARD cohort dataset (WORST CASE): Left hippocampus.
Maximum RMS error is 7.0523 mm. (a) Predicted hippocampus location.
(b) Ground truth hippocampus location.

Axial Sagittal Coronal

(a)

(b)
FIGURE 15. GARD cohort dataset (WORST CASE): Right hippocampus.
Maximum RMS error is 5.8311 mm. (a) Predicted hippocampus location.
(b) Ground truth hippocampus location.

the proposed approach of the ensemble Hough-CNN model
in the test set was 2.31 mm for the left hippocampus and
2.04 mm for the right hippocampus in the 3D MRI space for
the 56 MRI scan from the ADNI dataset. Similarly, for the
65 test MRI scans from the GARD cohort dataset, the average
prediction error was 2.32 mm and 2.25 mm for left and right
hippocampi, respectively.

APPENDIX A
See Table 5-12

APPENDIX B
See Figures 8—14.
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