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Abstract
Introduction Automated brain MRI morphometry, including
hippocampal volumetry for Alzheimer disease, is increasingly
recognized as a biomarker. Consequently, a rapidly increasing
number of software tools have become available. We tested
whether modifications of simple MR protocol parameters typ-
ically used in clinical routine systematically bias automated
brain MRI segmentation results.
Methods The study was approved by the local ethical com-
mittee and included 20 consecutive patients (13 females, mean
age 75.8 ± 13.8 years) undergoing clinical brain MRI at 1.5 T
for workup of cognitive decline. We compared three 3D T1
magnetization prepared rapid gradient echo (MPRAGE) se-
quences with the following parameter settings: ADNI-2

1.2 mm iso-voxel, no image filtering, LOCAL− 1.0 mm iso-
voxel no image filtering, LOCAL+ 1.0 mm iso-voxel with
image edge enhancement. Brain segmentation was performed
by two different and established analysis tools, FreeSurfer and
MorphoBox, using standard parameters.
Results Spatial resolution (1.0 versus 1.2 mm iso-voxel) and
modification in contrast resulted in relative estimated volume
difference of up to 4.28 % (p < 0.001) in cortical gray matter
and 4.16 % (p < 0.01) in hippocampus. Image data filtering
resulted in estimated volume difference of up to 5.48 %
(p < 0.05) in cortical gray matter.
Conclusion A simple change of MR parameters, notably spa-
tial resolution, contrast, and filtering, may systematically bias
results of automated brain MRI morphometry of up to 4–5 %.
This is in the same range as early disease-related brain volume
alterations, for example, in Alzheimer disease. Automated
brain segmentation software packages should therefore re-
quire strict MR parameter selection or include compensatory
algorithms to avoid MR parameter-related bias of brain mor-
phometry results.
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MRI Magnetic resonance imaging
TIV Total intracranial volume

Introduction

Automated volumetry of brain magnetic resonance imaging
(MRI) data is progressively recognized and used as biomarker
for early detection and diagnosis. The currently best
established example is hippocampal volumetry in mild cogni-
tive impairment (MCI) and Alzheimer dementia (AD), which
has become part of the latest generation of diagnosis recom-
mendations from the National Institute on Aging and the
Alzheimer’s Association workgroup [1, 2]. Consequently, an
increasing number of brain MRI segmentation tools are avail-
able. Most of the established tools which have been available
for many years, including SPM (www.fil.ion.ucl.ac.
uk/spm/software/spm12) and FreeSurfer (freesurfer.net), are
clearly targeted for an academic setting and are usually used
for group studies, comparing a group of patients versus a
group of controls, typically acquired on the same MRI
scanner. More recently, several cloud-based analysis tools be-
came available, e.g., VolBrain (http://volbrain.upv.es),
appMRI Hippocampus Volume Analyzer (www.mcmri.
com), Biometrica AD (www.jung-diagnostics.de),
Neuroreader (www.brainreader.net), and NeuroQuant (www.
cortechslabs.com/neuroquant). These tools represent a
fundamental paradigm shift, as now a radiologist can easily
upload the 3D T1-weighted dataset of a given patient acquired
on the local MRI machine, which is then compared to the
reference database in the software tool. This raises the ques-
tion whether differences in basic MR sequence parameters
may systematically bias the automated volume estimation.

To address this question, the current investigation directly
compares 3D T1 magnetization prepared rapid gradient echo
(MPRAGE) protocols with different parameters acquired dur-
ing the same imaging session for workup of cognitive decline.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
[3] defined MR imaging standards [4] (http://adni.loni.usc.
edu/methods/documents/mri-protocols) that include a high-
resolution MPRAGE sequence with high signal-to-noise ratio
(SNR) and gray/white contrast-to-noise ratio; notably, this
definition dates back several years [5]. As most analysis tools
use the ADNI dataset as reference database, this type of image
quality is intrinsically implied in most of these tools. In con-
trast, many radiologists using current-generationMRI systems
prefer higher spatial resolution of 1.0 mm iso-voxel or even
higher. We therefore directly compared these two different
spatial resolutions.

Another parameter that may change the image contrast is
the presence or absence of an image edge enhancement filter,
which results in a subjective difference in the MR image per-
ception. The use of this filter is variable and depends on the

preference of the radiologist; we therefore assessed whether
this image filter may bias automated brain volumetry.

To ascertain that the results are not the effect of a given
single software analysis package, we analyzed all data with
two different software packages to confirm the generalizabil-
ity of our observations.

Material and methods

The study was approved by the local ethical committee and
included 20 consecutive patients (13 females, mean age
75.8 ± 13.8 years) undergoing brain MRI for workup of cog-
nitive decline. We explicitly chose a group of elderly individ-
uals undergoing MRI workup of cognitive decline rather than
a group of young healthy volunteers to assess the effect of MR
sequence parameters on automated volume estimation in a
real-world scenario.

MR imaging

MR imaging was performed on a whole-body 1.5 T clinical
MR scanner (MAGNETOM Aera, Siemens Healthcare,
Erlangen, Germany) using a 20-channel head/neck coil.
Three different 3D T1-weighted sagittal volumes were obtain-
ed using the MPRAGE pulse sequences (see Fig. 1) using the
imaging parameter settings described in Table 1. All patients
were scanned with ADNI-2 and LOCAL+ protocols. In order
to study the effect of edge enhancement filter, unfiltered im-
ages were saved additionally to filtered ones for a subset of
nine patients and are referred to as LOCAL− protocol. All
MPRAGE scans underwent an automated quality assessment
which is capable of detecting image degradation from bulk
motion, blurring, and ghosting [6]. Based on the resulting
quality indices, we excluded three patients. Overall, removing
image volumes with low image quality resulted in a dataset of
17 patients with ADNI-2 and LOCAL+ protocols and 7 pa-
tients with LOCAL+ and LOCAL− protocols.

Additional MR sequences including axial T2, T2*, coronal
FLAIR, and diffusion tensor imaging (DTI) were acquired
during the clinical workup and analyzed to exclude space-
occupying lesions such as meningioma, subdural hematomas,
acute ischemia (DTI-derived b1000 trace and ADC), or other
significant brain pathology.

Data analysis

The data from the three protocol variants was processed both
with the in-house-developed automated segmentation frame-
workMorphoBox [7, 8] and the FreeSurfer [9] software pack-
age (version 5.3.0) to compute volumes of the following brain
tissues and structures: total intracranial volume (TIV), gray
matter (GM), cortical gray matter (cGM), white matter
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(WM), hippocampus, ventricles, and cerebellum. Both pack-
ages were run on a 2.66 GHz Intel Xeon SixCore X5650
64bits Linux (Ubuntu 14.04.3 LTS) machine with 48 GB
DDR3.

It is important to note that bothMorphoBox and FreeSurfer
segmentation tools were used with the default parameter set-
tings, and no manual editing was applied at any stage of the
segmentation process. An experienced observer visually
inspected all segmentation results for gross segmentation
errors.

Statistical analysis

The resulting estimated volumes per region were analyzed
with the R software package (version 3.1.1).

In order to assess the presence of a potential systematic bias
in the volumetric results, relative volume differences (RVDs)
between the reference protocol (Vr) and each variant (Vv) were
computed for each structure as

RVD VrVvð Þ ¼ 200
Vv−Vr

VR þ Vv
;

where RVD(Vr Vv) is in the range [−200, 200 %].
ADNI-2 and LOCAL+ protocols were used as the refer-

ence protocol (Vr) in all subsequent analysis. Relative volume
differences were averaged across the subjects. The statistical
significance of the difference from the zero median in relative
volumetric differences was tested using the Wilcoxon signed-
rank test, as the differences were not expected to be normally

Fig. 1 Example of the three
different parameter settings for
the MPRAGE sequences in
coronal, axial, and sagittal slices

Table 1 Overview of the
essential parameters of the three
different MPRAGE protocols

ADNI-2 LOCAL− LOCAL+

Voxel size (mm3) 1.25 × 1.25 × 1.2 0.97 × 0.97 × 1 0.97 × 0.97 × 1

TR (ms) 2400 2200 2200

TI (ms) 1000 900 900

Bandwidth (Hz/px) 180 150 150

FOV read/phase (mm) 240/240 250/240 250/240

Edge enhancement filter Off Off On

Neuroradiology (2016) 58:1153–1160 1155



distributed. False discovery rate (FDR) correction was used to
correct for multiple comparisons [10].

It has been shown that the variance of volume differences
does not significantly change across different systems (differ-
ent field strength, different vendors), but systematic offsets in
volumes may be present [11]. Therefore, to compare our re-
sults to previously reported scan-rescan reproducibility studies
[11–17], absolute relative volume differences (ARVDs) be-
tween the reference protocol (Vr) and each variant (Vv) were
recomputed for each structure as

ARVD VrVvð Þ ¼ 200j Vv−Vr

Vr þ Vv
j;

where ARVD(Vr Vv) is in the range [0, 200 %].
ADNI-2 and LOCAL+ protocols were used as the refer-

ence protocol (Vr) in all subsequent analysis. Absolute relative
volume differences were averaged across the subjects.

Note that the RVDs correspond to systematic offsets in
segmentation results and ARVDs represent the magnitude of
errors.

Results

Effect of spatial resolution—1.2 versus 1.0 mm/contrast

The comparison of ADNI-2 versus LOCAL+ protocols with
the FreeSurfer segmentation tool revealed significant changes
in TIV, GM, WM, cGM, ventricles, and hippocampus vol-
umes (see Fig. 3a), even though they were barely visible upon
visual inspection (see Fig. 2). The respective median RVDs
were 2.34 % (p < 0.01), 3.11 % (p < 0.001), −2.62 %
(p < 0.01), 4.28 % (p < 0.001), 2.04 % (p < 0.001), and

−4.16 % (p < 0.01). For hippocampus volumes, the median
ARVD was 4.16 ± 6.48 %.

Segmentation results obtained with the MorphoBox seg-
mentation tool revealed significant changes in TIV, WM, ven-
tricles, and hippocampus volumes (see Fig. 3b). The respec-
tivemedian RVDswere 1.77% (p < 0.001), 2.00% (p < 0.05),
−0.97 % (p < 0.05), and 3.33 % (p < 0.05). For hippocampus
volumes, the median ARVD was 3.39 ± 3.41 %.

Effect of image filtering

The comparison of LOCAL− versus LOCAL+ protocols with
the FreeSurfer segmentation software revealed a significant
change in TIV, GM, WM, cGM, and ventricle volumes. The
respective RVDs were 0.12 % (p < 0.05), 1.22 % (p < 0.05),
−1.72% (p < 0.05), 1.25% (p < 0.05), and −0.52% (p < 0.05).
The, median ARVD of the hippocampus volumes was
1.53 ± 9.05 % (see Fig. 4a).

If the MorphoBox segmentation tool is used, there are sig-
nificant changes in TIV, GM, WM, and cGM volumes. The
respective RVDs were −0.27 % (p < 0.05), 5.40 % (p < 0.05),
−3.24% (p < 0.05), and 5.48% (p < 0.05). Themedian ARVD
of the hippocampus volumes was 3.39 ± 3.31 % (see Fig. 4b).

Discussion

Basic MR sequence and image reconstruction parameters sig-
nificantly modify automated brain volume estimation of up to
4.3 % in cortical gray matter and 4.2 % in hippocampus relat-
ed to spatial resolution and contrast and up to 5.5 % in cortical
gray matter related to image filtering. Equivalent results were
obtained for two different software packages, indicating that
this is not an effect of the post-processing tool. Themajority of

Fig. 2 Example of coronal TIV
extraction and segmentation
obtained with FreeSurfer and
MorphoBox for the three
MPRAGE parameter settings
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the currently available automated brain MR volumetry tools
use the ADNI/ADNI-2 dataset as reference database, which
consists of a 1.2 mm iso-voxel 3D T1w sequence with very
strict parameters, but accept a wide range of parameter settings
for the input dataset. The results of the current investigation
imply that these tools should either restrict the input data to the
same strict MR parameters or include compensation mecha-
nisms [18] to exclude systematic bias in automated volume
estimation related to different MR sequence parameters.

It is interesting to relate the size of the observed sys-
tematic bias to biological hippocampal volume differ-
ences, as hippocampal volumetry is an established bio-
marker for MCI and AD patients [1, 2]. There, two pa-
rameters are of particular interest: the absolute hippocam-
pal volume and the rate of brain atrophy over time.

An instructive frame of reference for absolute hippo-
campal volume differences is provided by the study of
Franko et al. which is based on the ADNI dataset [19].
As illustrated in Table 2, the hippocampal volumes range

between 1800 μl (AD patients) and 2400 μl (healthy con-
trols). For the most important difference in the context of
early diagnosis, notably MCI versus controls, the volume
difference is on average −5.5 % (left) and −9.2 % (right).
The variability introduced by varying MR sequence and
reconstruction parameters is up to 4.2 % in the current
investigation. It therefore represents a substantial and rel-
evant misestimation. Note, however, that the inter-
individual variation in the absolute hippocampal volume
is in the range of 20 % for each group, which clearly
exceeds the average difference between groups. As a con-
sequence, the absolute hippocampal volume provides sig-
nificant differences between controls, MCI, and AD at the
group level, yet the diagnosis at the individual level is
impaired by this substantial inter-individual variability.

Due to this high inter-individual variability in the hip-
pocampal volume, the intra-individual rate of hippocam-
pal volume loss over time has attracted growing interest,
as this approach avoids the inter-individual variability and

Fig. 3 Variability of the brain segmentation results for the effect of
spatial resolution (1.2 versus 1 mm) and contrast by the comparison of
ADNI-2 versus LOCAL+. Relative (left column) and absolute (right
column) relative volume differences are presented as boxplots with me-
dian, interquartile range for Freesurfer (upper row) andMorphoBox (low-
er row). Whiskers extend to 1.5 times the interquartile range, and values

beyond are indicated by dots. Note that the relative volume differences
correspond to fixed offsets in segmentation results and do not represent
scan-rescan variability of each protocol. TIV total intracranial volume,
GM total gray matter, WM white matter, Cortical GM only cortical gray
matter. *p < 0.05, **p < 0.01, ***p < 0.001; corrected for multiple
comparisons
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estimates an intra-individual measure. A recent meta-
analysis by Frisoni et al. includes nine investigations ad-
dressing the rate of hippocampal atrophy in a total of 645
AD patients and 348 controls [20]. The average rate of
atrophy per year was 2.9–5.6 %, mean 4.25 % in AD, and
0.3–2–2 %, mean 1.25 % in controls, which results in a
difference of on average 3 % atrophy per year between

AD versus controls. This means that the methodological
variability should be less than 1.5 % if baseline and
follow-up investigations are done with an interval of
1 year.

In summary, these observations imply that the method-
ological variability of the brain MR volumetry should be
below 1.5 % for the example of neurodegenerative

Fig. 4 Variability of the brain segmentation results for the effect of image
filtering (present versus absent filter) by the comparison of LOCAL−
versus LOCAL+. TIV total intracranial volume, GM total gray matter,

WM white matter, Cortical GM only cortical gray matter. *p < 0.05,
**p < 0.01, ***p < 0.001; corrected for multiple comparisons

Table 2 Summary of
hippocampal volume (in μl) for
controls, MCI, and AD patients,
separated for right and left
hemisphere

Group Side Volume
(μl)

SD (μl) Variability Comparison Estimated volume
difference
(%) V1−V2

V1
Group
1

Group
2

Control
(n = 85)

R 2402 476 19.8 % MCI Control −9.2
L 2059 404 19.6 % MCI Control −5.5

MCI
(n = 102)

R 2181 468 21.5 % AD Control −11.4
L 1946 431 22.1 % AD Control −12.3

AD
(n = 90)

R 2129 446 20.9 % AD MCI −2.4
L 1805 397 22.0 % AD MCI −7.2

Mean volume, standard deviation, variability, and comparison between groups. Adapted from [19]
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diseases notably MCI and AD. The variability of MR
sequence and image reconstruction is however in the
range of 4–5 %. This, in turn, implies that if brain MR
volumetry results should be comparable between sites, the
software analysis tools should either include compensa-
tion mechanisms to balance for MR parameter-related ef-
fects (which is however not trivial) or require strict MR
protocols in order to obtain reliable and comparable brain
volume estimations useful in particular for early diagnosis
of neurodegenerative diseases. As we obtained equivalent
results for two different software analysis tools, we as-
sume that the observed results can also be generalized to
other software post-processing tools. The currently most
widely used application of automatic brain MRI mor-
phometry is for early detection of AD, and we therefore
conducted the study in the context of imaging workup of
cognitive decline. In this context, hippocampal volumetry
is of particular interest, as discussed above. However, we
assume that automatic volumetry will have increasing im-
portance in the future also for other diseases, such as
frontal dementia, epilepsy, movement disorder, and psy-
chiatric diseases. The different diseases will have different
key regions, e.g., frontal regions for frontal dementia.
Nevertheless, the fundamental concern of MR parameter-
related bias of automatic brain volume estimation remains
valid for these other domains.

The current study specifically assessed the variability of
automatic segmentation related to modifications in MR pa-
rameters within the same session. Other related investigations
assessed systematic bias in brain segmentation related to dif-
ferent MR systems [11–13], retest reliability of repeated seg-
mentation [21], effects related to software version and opera-
tion system [22] as well as retest reliability of the same MR
parameters [23]. Taken together, these results imply that a
reliable automatic volumetry is possible only if all steps of
the processing are strictly standardized, including patient po-
sitioning, MR parameters, data processing, and software
version.

Limitations

One limitation of the current investigation is the small sample
size. On the other hand, the presence of a significant and
systematic bias relating to the sequence parameters despite
the relatively small sample size implies the significant and
reproducible effect of MR sequence and image reconstruction
parameters on automated volume estimation. Moreover, we
used two different software packages and found similar sys-
tematic effects for both software packages, again highlighting
the systematic effect of MR sequence parameters on automat-
ed volume estimation. Another limitation is that we only test-
ed two sequence/reconstruction parameters, notably spatial
resolution and image filtering, which are very commonly

different between different MR sites. We assume that multiple
other MR sequence parameters also influence the automated
segmentation, yet this remains to be clarified in future studies.

Conclusions

MR sequence parameters systematically bias automated vol-
ume segmentation results. To avoid systematic bias in partic-
ular with respect to early diagnosis of neurodegenerative dis-
eases, we suggest that strict MR sequence and image recon-
struction parameters should be respected for automated brain
MR segmentation tools.
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