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Abstract

To perform a joint analysis of multivariate neuroimaging phenotypes and candidate genetic 

markers obtained from longitudinal studies, we develop a Bayesian longitudinal low-rank 

regression (L2R2) model. The L2R2 model integrates three key methodologies: a low-rank matrix 

for approximating the high-dimensional regression coefficient matrices corresponding to the 

genetic main effects and their interactions with time, penalized splines for characterizing the 

overall time effect, and a sparse factor analysis model coupled with random effects for capturing 

within-subject spatio-temporal correlations of longitudinal phenotypes. Posterior computation 

proceeds via an efficient Markov chainMonte Carlo algorithm. Simulations show that the L2R2 

model outperforms several other competing methods. We apply the L2R2 model to investigate the 

effect of single nucleotide polymorphisms (SNPs) on the top 10 and top 40 previously reported 

Alzheimer disease-associated genes. We also identify associations between the interactions of 

these SNPs with patient age and the tissue volumes of 93 regions of interest from patients’ brain 

images obtained from the Alzheimer’s Disease Neuroimaging Initiative.
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1. Introduction

Many longitudinal neuroimaging studies concomitantly collect genetic and recurrent 

imaging data to track individual changes in brain structure and function over time. Several 

neurodegenerative disorders, including Alzheimer disease (AD), are hypothesized to occur 

from abnormal development of the brain, which may be caused by the additive and/or 
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interactive effects of various risk genes and environmental risk factors, each contributing 

small individual effects. Thus, recurrent neuroimaging measures may lead to discoveries of 

the genetic pathways and the causal genes associated with the specific brain changes 

underlying such neurodegenerative disorders (Scharinger et al., 2010; Paus, 2010; Peper et 

al., 2007; Chiang et al., 2011a,b; Saykin et al., 2015).

A standard statistical method used in longitudinal imaging and genetics studies is the 

massive marginal association (MMA) framework (Li et al., 2013; Zhang et al., 2014; 

Guillaume et al., 2014; Hibar and et al, 2011; Shen et al., 2010; Bernal-Rusiel et al., 2013; 

Zhang et al., 2014). This approach repeatedly fits a linear mixed effects model (or 

generalized estimating equations) for paired imaging phenotypes and genetic markers. 

Because the MMA framework entails numerous comparisons, it can detect only phenotype-

marker pairs with extremely strong signals.

Several attempts have been made to more precisely investigate the effect of multiple 

genotypes on longitudinal phenotypes. Chen and Wang (2011) proposed functional mixed-

effect models with penalized splines and varying coefficients, but they focused on small 

number of predictors and number of response variables in a low-dimensional setting. Wang 

et al. (2011) used a sparse multitask regression to examine the association between genetic 

markers and longitudinal neuroimaging phenotypes. However, their model focused on 

subjects with the same number of repeated measures and ignored the spatiotemporal 

correlations of imaging phenotypes. Therefore, the multitask regression model may lead to 

loss of statistical power to detect phenotype-marker pairs with moderate to weak signals. 

Vounou et al. (2011) and Silver et al. (2012) proposed that a sparse reduced-rank regression 

model using penalized regression can detect the main genetic effects on longitudinal 

phenotypes. They, however, did not account for the spatiotemporal association among the 

longitudinal phenotypes, which is important for estimation and prediction accuracy. 

Moreover, none of these studies explored SNP-age interactions, which can reveal dynamic 

genetic effects on phenotypes.

Several important statistical concerns are associated with the joint analysis of neuroimaging 

phenotypes and a set of candidate genotypes obtained from longitudinal imaging and genetic 

studies. First, the number of regression coefficients can be much larger than the sample size, 

denoted as N. Specifically, let d and p be the dimension of the responses and the number of 

covariates, respectively. Fitting a multivariate linear mixed effects model usually requires 

estimating a d × p matrix of regression coefficients, which can be much larger than N, even 

for moderately high d and p. Second, as illustrated in Fig. 1a, to improve prediction accuracy 

(Breiman and Friedman, 1997), it is critically important to account for unstructured, within-

subject spatial correlations among multivariate neuroimaging phenotypes. Third, as 

illustrated in Fig. 2a, to improve both estimation and prediction accuracy, it is also important 

to account for within-subject temporal correlation. Fourth, as shown in Fig. 2b,c, the 

temporal growth pattern varies across regions of interest (ROIs) in the brain. Accounting for 

the overall longitudinal change of ROIs is required to increase the detection power of the 

genetic effects. Fifth, as shown in Fig. 2b, the genetic effects on ROI volumes can vary 

across time.
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Here, we have developed a Bayesian longitudinal low-rank regression (L2R2) model for the 

joint analysis of high-dimensional longitudinal responses and covariates. We integrated 

multiple robust methods to explicitly address the new challenges described previously. Our 

study has four major methodological contributions that were previously undescribed:

1. To the best of our knowledge, L2R2 is the first model of its kind for jointly 

analyzing high-dimensional longitudinal responses and covariates, although 

several approaches have been used for high-dimensional responses and 

covariates in cross-sectional studies (Rothman et al., 2010; Vounou et al., 2010; 

Zhu et al., 2014). The L2R2 model also provides a set of standard inference tools 

(e.g. standard deviation) for determining various unknown parameters. 

Zipunnikov et al. (2014) proposed a functional principle components analysis for 

high dimensional (> 10, 000) longitudinal responses, where the intercepts and 

slopes of time for all voxels were modeled by a few basis functions. However, 

their methods cannot handle high-dimensional responses and covariates 

simultaneously because the dimension of the covariance matrix that requires 

time-consuming spectral decomposition equals the product of the dimensions of 

the responses and covariates.

2. The temporal growth patterns of high dimensional responses were characterized 

by a penalized spline method. Although the spline method has been widely used 

in other studies (Eilers and Marx, 1996; Ruppert et al., 2003; Wood, 2006; Wu 

and Zhang, 2006; Lang and Brezger, 2004; Guo, 2002; Morris and Carroll, 2006; 

Greven et al., 2010), most of these studies focused on univariate responses. We 

included a new set of coefficients for the high-dimensional gene-age interactions 

to model the genetic effects on longitudinal trajectories of responses, which were 

different from previously reported coefficients corresponding to the main genetic 

effects that were time-invariant (Marttinen et al., 2014; Zhu et al., 2014). A low-

rank regression model not only reduces the number of unknown coefficients, but 

also captures the low-rank structure of the regression coefficient matrix.

3. To efficiently model the correlation structure and increase the detection power of 

association between response and covariates, we used a sparse factor model 

(Bhattacharya and Dunson, 2011) to capture the spatial correlation and the 

structured random effects to model the temporal correlation of the longitudinal 

response variables.

4. We have developed a downloadable L2R2 package, which is available at http://

odin.mdacc.tmc.edu/bigs2/.

2. Methods: L2R2 model formulation

Let yik(tij) be the j–th observation at time tij of the kth neuroimaging measurement (e.g. 

volume of ROI) for the ith subject for i = 1, … , n, j = 1, … , mi and k = 1, … , d, xi = (xi1, · 
· · , xip)T be a p × 1 vector of genetic predictors (e.g. p/2 genetic markers and p/2 gene-age 

interactions), and  be the total number of observations. To address the 
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challenges of concomitantly analyzing high-dimensional longitudinal responses and 

covariates, we proposed the following L2R2 model: For each k, we have

(1)

where βk is a p×1 vector of coefficients for the genetic predictors, μk(t) is a nonparametric 

function of t that characterizes the overall trajectories of the kth measurement across all 

subjects, w2,i(tij) = (w2,i1(tij), · · · , w2,iq2(tij))T is a q2 ×1 vector of time-variant or time-

invariant prognostic factors (e.g. age, gender), and γ2,k is a q2 × 1 vector of coefficients for 

the prognostic factors. Moreover, bik is a pb×1 vector of latent random effects that 

characterize the within-subject correlation of the ith subject for the kth measurement, and 

zi(t) is the related pb × 1 vector of covariates characterizing the correlation structure, and 

εik(t) is an error term. Let bi = (bi1, … , bid) such that

where 0 is a vector of zero of appropriate dimension, and Σb and Σe are pbd × pbd and d × d 
covariance matrices, respectively. We assumed that bi and εi(t) = (εi1(t), … , εid(t))T are 

independent for all i and t, bi and bi′ are independent for i ≠ i′, and εi(t) and εi′(t′) are 

independent for i ≠ i′ or t ≠ t′.

To address the challenges described above, we first incorporated the gene-age interactions 

into xi to model the dynamic genetic effects on individual brain development trajectories. 

The individual effect of a risk gene on brain development may vary across time. We used 

data published by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to show the 

estimated trajectories with local polynomial regression (LOESS, Cleveland and Devlin, 

1988) of subjects with and without the minor alleles for two selected phenotype-single 

nucleotide polymorphism (SNP) pairs (Fig. 2b,c). There was a strong interaction effect of 

the SNP rs769451 and age on the right hippocampus. Ignoring such interaction in model (1) 

may inflate errors, decrease the detection power of important main genetic effects, and miss 

the age-dependent genetic effects on imaging phenotypes. In contrast, the interaction effect 

of SNP rs439401 and age on the left hippocampus was small. We need to efficiently 

distinguish the important interaction effects from others with negligible interaction effects.

We considered the p × d coefficient matrix B = [β1 · · · βd] that characterizes the time-

dependent and main genetic effects on the longitudinal phenotypes across all subjects and 

time points. Given the large d and p, the number of elements in B could be much larger than 

that of N. Moreover, as shown in Fig. 1a,b, the elements in yi(t) = (yi1(t), … , yid(t))T and xi 

were highly correlated because of the spatial pattern of brain structure and the linkage 

disequilibrium structure of SNPs, respectively. Therefore, the estimate of B was unstable and 

often exhibited horizontal- and vertical-banded structures (Fig. 1c). These structures were 

more apparent after setting unimportant (i.e. insignificant) elements to zero (Fig. 1d). 
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Applying the characteristics of the coefficient matrix, we introduced a low-rank model for B 
as follows:

(2)

where r is the rank or number of layers of B; Bl = δlulvl
T is the lth layer for l = 1, … , r; Δ = 

diag(δ1, … , δr); U = [u1, · · · , ur] is a p × r matrix; and V = [v1, · · · , vr] is a d×r matrix. 

Moreover, ul and vl may be viewed as the coefficient of the linear combination of yi(t) and 

xi, respectively. Rather than investigating the correlation between all phenotype-SNP pairs, 

we examined the relation between important linear combinations of similar phenotypes and 

those of similar SNPs. Because only a few sets of genetic variants were expected to be 

associated with each longitudinal phenotype, a relatively small r ≪ min(p, d) and a sparse U 
were considered sufficient to represent the important structure of B. Model (2) considerably 

reduced the number of unknown parameters of B from pd to (d + p + 1)r and increased the 

power for detecting the important associations.

We used μk(t) to characterize the overall trajectory for the kth neuroimaging measure 

without consideration of any effects of genomic variables and prognostic factors. The solid 

curves in Fig. 2b,c depict the LOESS estimates of the development trajectories of the right 

and left hippocampal volumes, respectively. We used a penalized spline model (Eilers and 

Marx, 1996; Ruppert et al., 2003; Lang and Brezger, 2004) to model μk(t) with a polynomial 

of degree s given by

(3)

where Bm(t;T0) is a basis function of t; T0 is a vector of predetermined knots over the range 

of the tij’s (e.g. the sample percentiles); γ1,k = (γk,0, · · · , γk,q1−1)T ; and w1(t) = (1, t, · · · , 
ts,B1(t;T0), · · · , Bq1−s−1(t;T0))T. Various spline basis functions may be considered for 

Bm(t;T0), such as the B-spline basis (Eilers and Marx, 1996), truncated power basis 

(Ruppert et al., 2003), and wavelet basis (Morris and Carroll, 2006). Using μk(t) and the 

basis functions to flexibly capture the overall trajectories of the longitudinal ROIs 

measurements increases the detection power of the SNPs and SNP-age interactions and 

improves the prediction accuracy of responses at later time points.

Another issue in longitudinal studies that must be accounted for is the within-subject 

correlation among repeated measurements of each phenotype (Verbeke and Molenberghs, 

2009; Hyun et al., 2016). Various correlation structures can be formulated through zi(t)Tbik 

and Σb. We examined the trajectories of all phenotypes across all subjects for the 

longitudinal data set obtained from the ADNI. The within-subject association mainly 

occurred from the subject-specific intercept. The trajectories of the left lateral ventricle 

volume across all subjects are depicted in Fig. 2a. To generate these trajectories, we used a 
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univariate random effect for each ROI by setting pb = 1, zi(t) = 1, and Σb = τbId, where Id is 

a d × d identity matrix. In this case, the random effects of different ROIs were assumed to be 

independent.

The correlation structure among the multivariate phenotypes was modeled with another 

component in (1). The covariance matrix of phenotypic measurements across all subjects 

and all time points is depicted in Fig. 1a. Phenotypic variables usually exhibit group 

correlation structures; therefore, we used latent factors to capture these correlation 

structures. Specifically, we considered an exploratory method of using the sparse factor 

model (Bhattacharya and Dunson, 2011) for εi(t) as follows:

(4)

where ∇ is a d × ∞ factor loading matrix, ηi(t) ~ N∞(0, I∞), and ξi(t) ~ N(0,Σξ) with 

. The structure of ∇ and the number of factors were directly 

gleaned from the data.

The L2R2 in (1) with (2) – (4) incorporated can be rewritten in the matrix form

(5)

The notational definitions, prior distributions of the parameters and the technical details of 

the posterior computation were provided in the appendix.

3. Simulation study

3.1. Simulation setup

We used simulations to examine the finite-sample performance of the L2R2 model. We 

simulated Y according to model (5). We considered four cases with various dimensions and 

priors: (i) p = 50, d = 50; (ii) p = 100, d = 100; (iii) p = 200, d = 100; and (iv) p = 400, d = 

100. The dimensions of these cases were comparable with the ADNI data set used in this 

study and with other related neuroimaging and genetic studies (Wang et al., 2011; Zhu et al., 

2014; Marttinen et al., 2014). We chose the first n = 100 subjects from the ADNI data set 

and selected the top p/2 SNPs from the top 40 genes reported by AlzGene database 

(www.alzgene.org) as of June 10, 2010. Each subject was observed mi times to replicate the 

ADNI data set, resulting in N = 422 records. We used the p/2 SNPs and their interactions 

with age to form the X in model (5). The Win (5) contains q = 15 columns, including the 

intercept, the standardized intracranial volume, sex, education, handedness, and the basis 

function of age. The basis function consists of age, age2, age3, and the B-spline basis given 

the jth percentile, j = 0, 10, 20, … , 100. The elements of b were independently generated 

from a N(0, 1) distribution.
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The following parameters in (5) were used in the simulation: The low-rank coefficient 

matrix B was generated with the true rank r0 = 3 in a moderately sparse case with 65% zero 

elements and in an extremely sparse case with 95% zero elements. Specifically, we set B = 

UΔV, where U = (ujl), Δ = diag(δll) = diag(100, 80, 60), and V = (vlk) as p × 3, 3 × 3, and 3 

× d matrices, respectively. Moreover, we generated all elements ujl and vlk independently 

from a N(0, 1)×binomial(1, p1) distribution and then normalized the columns of U and V to 

have zero mean and unit variance. The value of p1 was tuned so that approximately 65% of 

the elements of B were zeros. Each element of Γ was independently generated as a γjk ~ 
N(0, 1) × binomial(1, 0.5). We simulated εi(t) ~ Nd(0,Σe), where the precision matrix Σe was 

first generated by a d × d matrix A = (ajj′) with ajj = 1 and ajj′ = uniform(0, 1) × binomial(1, 
p2) for j ≠ j′, setting Σe = AAT, and standardizing Σe into a correlation matrix. The value of 

p2 was tuned so that approximately 20% of the elements in Σe were zeros, yielding the mean 

of the absolute correlations of Σe at approximately 0.40.

For each case, 100 simulated data sets were generated. For each simulated data set, we ran 

the Gibbs sampler for 10, 000 iterations after 5000 burn-in iterations. We chose 

noninformative priors for the hyperparameters and set a0 = b0 = c0 = d0 = e0 = f0 = 10−6. For 

the covariance parameter Σe, we chose moderately informative priors to impose the positive-

definite constraint.

Besides modeling the trajectories of the response variables to improve detection power of 

the genetic variables, the splines in W could also be used to predict the response variables at 

later time points. We calculated the mean of the response variables XpredUΔVT + WpredΓ + 

Zpredb for every the subjects at one year after their last observation, where Xpred, Wpred, and 

Zpred contain the corresponding predictors for these subjects at the later time points. The 

prediction was based on Xpred Û Δ̂ V̂T +WpredΓ̂ + Zpredb̂, where the hat represents the 

posterior means of the parameters and random effects. We compared the means and 

predicted means to check the prediction accuracy using the splines in W.

3.2. Comparison with four other state-of-the-art methods

We compared the L2R2 model with four state-of-the-art methods that were developed to 

establish the association between high-dimensional responses and predictors. First, we 

considered MMA analysis between the high-dimensional response variables and predictors. 

Each phenotype was regressed on the covariate matrix W and the residue was associated 

with each SNP in X with regression. We used the lme4 R package (Bates et al., 2015) for 

MMA.

Second, we considered the group-sparse multitask regression and feature-selection (G-

SMuRFS, Wang et al., 2011) method, which is a representation of associating high 

dimensional imaging and genetic variables with regularization methods. The longitudinal 

volumes of ROIs were used as the response variables, and the X and W in L2R2 were 

combined as the matrix of predictors in G-SMuRFS. The spline basis in W modeled the 

overall longitudinal trajectories of the ROI volumes, and the SNP-age interactions in X 
represented the SNP effects on the longitudinal trajectories of ROIs. The large matrix of 

coefficients was estimated with penalty functions and optimization. Each covariate, SNP and 
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SNP-age interaction formed a group in the penalty function. We used exp(−7), exp(−6), … , 
exp(2) as possible values of the tuning parameters in the G-SMuRFS method and performed 

a five-fold cross validation to choose the tuning parameters. G-SMuRFS did not make any 

assumption on the distribution and correlation structure of the response variables. In our 

longitudinal study, G-SMuRFS method did not explicitly account for the within-subject 

temporal correlations and spatial correlations. Also, G-SMuRFS did not use dimension 

reduction for the coefficient matrix like the low-rank representation of B in L2R2.

Third, we considered the Bayesian canonical correlation analysis (BCCA Klami et al., 2013) 

to obtain linear combinations of the response variables Y and the predictor X. The 

coefficients of the linear combinations were conceptually similar to U and V in (5), and we 

denoted their estimates by Ũ and Ṽ, respectively. The coefficient matrix B was estimated by 

Ũ ṼT. Gamma mixture multivariate normal distributions were assigned to U and V, and the 

correlation structure of the response variables and the SNPs were characterized by a factor 

model. We used the default setting of the companion R package and used eight components 

in the BCCA method. The R package cannot run a continuous predictor; therefore, we 

excluded the SNP-age interactions in X. Also, the package does not process covariates like 

W. Therefore, we regressed Y on W and applied the BCCA method to the residue and X. 

Unlike the L2R2 model, the BCCA method does not account for within-subject structural 

correlation or the interactions between SNPs and age.

Fourth, we considered the Bayesian reduced-rank regression (BRRR) method developed by 

Marttinen et al. (2014). Because the BRRR software package does not allow continuous 

predictors, we excluded the SNP-age interaction terms in X. We also set the rank to three 

and ran all of the other program parameters at their default settings. The BRRR method can 

process W directly, so we did not need to regress Y on W beforehand. In contrast with the 

L2R2 model, the BRRR method does not account for SNP-age interactions or within-subject 

structural correlation.

3.3. Evaluation

To evaluate the finite-sample classification performances of all five of the methods, we 

calculated the sensitivity and specificity scores of selecting the nonzero elements in the 

coefficient matrix B for each method. The following criteria were used for the selection of 

the coefficients in each method. As the G-SMuRFS method does not provide standard error 

estimate for each coefficient, the importance of the association between each pair of ROI 

and SNP/SNP-age interaction was determined by the absolute values of the coefficient 

estimates. For all other methods, the coefficients were selected if the absolute values of their 

standardized estimates (coefficient estimate over its standard error commonly used to 

account for the estimation uncertainty) were larger than a threshold. The sensitivity and 

specificity scores for a given threshold T0 were defined as
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where TP(T0), FN(T0), TN(T0), and FP(T0) were the numbers of true positives, false 

negatives, true negatives, and false positives, respectively. Changing the threshold T0 

produced different sensitivity and specificity scores, generating the receiver operating 

characteristic (ROC) curves. In each ROC curve, the sensitivity was plotted against one 

minus specificity.

3.4. Results

The ROC curves of all four methods and the L2R2 model are depicted in Fig. 3. ROC curves 

that are closer to the upper-left corner are more likely to identify true positives and control 

for false positives.

In all simulation settings, the L2R2 model outperformed the four competing methods 

because the L2R2 model was designed to specifically address the challenges described 

above. Among the four previously developed methods, the G-SMuRFS method had the best 

performance. However, the G-SMuRFS method did not characterize the correlation structure 

among the response variables like the L2R2 model did. Therefore, the G-SMuRFS method 

potentially increased the number of false positives. Consequently, when the number of 

phenotypic variables increased, the difference between the L2R2 model and the G-SMuRFS 

method for d = 100 was larger in terms of main effects and interactions than that for d = 50.

The BRRR and BCCA methods cannot process SNP-age interactions because of the 

limitations of their companion R packages. Therefore, they increase modeling error and 

reduce the power of detecting important main genetic effects in the presence of the SNP-age 

interactions. These limitations are worsened as the number of SNPs increases. Although the 

model setup of the BRRR method was similar to that of the L2R2 model, the prior setting 

for the BRRR method was more subtle and appeared to be more suitable for small numbers 

of responses and predictors. Thus, the BRRR method is very sensitive to the number of 

responses and predictors. The MMA method performed the worst, as it did not account for 

the correlation structure of responses and predictors or the spatio-temporal correlation 

structure of the longitudinal phenotypes.

Selected spline functions in the true coefficients (Γ) and their corresponding estimates 

obtained from the L2R2 model and the G-SMuRFS method are shown in Fig. 4a–b. It is 

apparent from these splines that the bias of the L2R2 model was smaller than that of the G-

SMuRFS method. The estimated trajectories with smaller bias enabled us to better predict 

the response variables of later time points. A scatter plot of the true means at later time 

points versus the predicted means across all subjects and response variables in a randomly 

selected data set is shown in Fig. 4c. The true and predicted means were close to each other, 

indicating that model (5) can accurately predict longitudinal responses.

We examined the Markov chainMonte Carlo (MCMC) convergence through calculation of 

Gelman and Rubin’s shrink factors for all the parameter estimates obtained from three 

MCMC chains with different start values of parameters (Fig. 4d). The MCMC chains 

appeared to converge after 2000 iterations, as the shrink factors for all the parameters were 

less than 1.2. Generating 4000 MCMC samples after discarding 4000 burn-in samples for 

the L2R2 model to fit the four cases (i.e. p=50, d=50; p=100, d=100; p=200, d=100; and 
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p=400, d=100) took approximately 6, 14, 16, and 22 min, respectively, with a single core of 

an Intel Xeon E5520 CPU. In comparison, the G-SMuRFS method took 8, 18, 30, and 90 s 

to fit the four cases, respectively. However, the MCMC samples of the L2R2 model allowed 

us to make statistical inferences on all parameter estimates, whereas this could not be 

performed with the G-SMuRFS method. It is important to note that statistical inferences 

made under a high-dimensional setting require some resampling and splitting procedures 

(Meinshausen and Bühlmann, 2010). In this case, the G-SMuRFS method would require 

processing of thousands of subsamples, which may be computationally demanding.

4. Real data analysis

4.1. ADNI data description

The ADNI was launched in 2003 as a 5-year public-private partnership by the National 

Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, the 

Food and Drug Administration, private pharmaceutical companies, and nonprofit 

organizations. The primary goal of the ADNI is to test whether serial magnetic resonance 

imaging (MRI), positron emission tomography, other biological markers, and clinical and 

neuropsychological assessments can be combined to measure the progression of mild 

cognitive impairment and early AD. Determination of sensitive and specific markers of very 

early AD progression may aid researchers and clinicians in developing new treatments and 

monitoring their effectiveness, as well as reduce the time and cost of clinical trials.

4.2. Preprocessing

The MRI data were collected across a variety of MRI scanners with individualized protocols 

for each scanner to obtain standard T1-weighted images, volumetric 3-dimensional sagittal 

magnetization prepared gradient-echo sequences, or equivalent images with various 

resolutions. The typical imaging protocol included inversion time=1000 ms, repetition 

time=2400 ms, flip angle=8°, and field of view=24 cm with a 256×256×170 acquisition 

matrix in the x–, y–, and z–dimensions, yielding a voxel size of 1.25 × 1.26 × 1.2 mm3. 

Standard steps such as anterior commissure and posterior commissure correction, skull 

stripping, cerebellum removing, intensity inhomogeneity correction, segmentation, and 

registration (Shen and Davatzikos, 2004) were used to preprocess the MRI data. We then 

carried out automatic regional labeling for the template and transferring the labels after the 

deformable registration of subject images. After labeling 93 ROIs, we computed the ROI 

volumes for each subject.

The Human 610-Quad BeadChip (Illumina, Inc., San Diego, CA) was used to genotype the 

subjects whose images in the ADNI database we analyzed, resulting in a set of 620,901 SNP 

and copy number variation markers. Because the Apolipoprotein E (APOE) SNPs rs429358 

and rs7412 are not included in the Human 610-Quad Bead-Chip, they were genotyped 

separately. These two SNPs define a three allele haplotype, namely the ε2, ε3, and ε4 

variants, and the presence of each variant was available in the ADNI database for all 

subjects. We used EIGENSTRAT software (package 3.0) to calculate the population 

stratification coefficients of all subjects. To reduce population stratification effects, we used 
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images from only white subjects who had at least one imaging sample available (749 of 818 

subjects in the ADNI data set).

We also performed quality control on this initial set of genotypes (Wang et al., 2011). To 

input the missing genotypes into our analysis, we used MACH4 software (version 1.0.16) 

with default parameters to infer the haplotype phase. We also included the APOE-ε4 variant, 

coded as the number of observed ε4 variants. We removed SNPs with more than 5% missing 

values and entered the mode for the missing SNPs. In the final quality-controlled genotype 

data, we removed SNPs with a minor allele frequency smaller than 0.1 and a Hardy-

Weinberg p-value< 10−6.

4.3. Data analysis

The aim of our analysis was to apply the L2R2 model to establish an association between 

the SNPs in the top AD-risk genes reported by AlzGene (http://www.alzgene.org/) and the 

volumes of 93 brain ROIs collected by the ADNI. We used the L2R2 model to carry out 

formal statistical inferences, such as the identification of significant SNPs and SNP-age 

interactions. In this data analysis, we included data from n = 749 subjects and N = 2817 

MRI measurements, resulting in an unbalanced data set. Among the subjects, 41 had only 

one observation and another 67 had only two observations. A random effect was used to 

account for the subject-specific intercept. For the age effect, we used a quadratic penalized 

spline with 11 knots that were based on the percentiles of standardized age. We also 

included intracranial volume, sex, education, and handedness as covariates in W to adjust 

the ROI volumes.

We considered two sets of top AD-risk genes. First, we used the 114 SNPs in the top 10 

genes reported by the AlzGene database. After we performed quality control to the data set, 

87 SNPs, APOE-ε4, and their interaction with age were included in the model (1). Second, 

we selected the 1224 SNPs in the top 40 AD-risk genes by the AlzGene database. After 

applying quality control to the data, we included 1072 SNPs and their interactions with age 

in our analysis. A map of the linkage disequilibrium among the 1072 SNPs revealed a clear 

clustering pattern of SNPs (Fig. 1b). Specifically, the correlations among SNPs within each 

gene were large (> 0.7), whereas those among SNPs in different genes were relatively small.

We fitted the L2R2 model (1) to the ADNI data as follows: To determine the rank of B, the 

L2R2 model was run up to r = 10 layers. By comparing the five different selection criteria in 

Zhu et al. (2014), we chose r = 3 layers as the optimal rank for the final data analysis. We 

ran the Gibbs sampler for 20, 000 iterations after 20, 000 burn-in iterations. For the G-

SMuRFS method, we used the same Y matrix, combined the W and X matrices into a single 

predictor matrix, and then used the five-fold cross validation to choose the optimal penalty.

On the basis of the MCMC samples, we calculated the posterior median and median 

absolute deviations of U, V, and B, and used 1.4826 × median absolute deviations to 

compute the robust standard errors for each element of B. To determine the important 

coefficients, we used the standardized estimates Bstd, which were the absolute values of the 

estimates over their standard errors. To validate the low-rank structure of B, we used the 

results of the top 10 genes and set the elements of B to zero if their absolute standardized 
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estimates were larger than a threshold (Fig. 5). The sparsely distributed points along the 

horizontal and vertical directions indicated that the low-rank model was suitable for 

characterizing the association between the neuroimaging and genetic variables in the ADNI 

data set. We used a pragmatic approach to calculate the threshold for the Bayesian estimates, 

which resembled the Bonferroni correction in a frequentist approach. The threshold was the 

F(1−0.025/(pr/2+dr+r)), and F was the quantile function of standard normal distribution, 

where the denominator was the total number of parameters in the low-rank structure Uint, Δ, 

and V. Uint was the matrix of coefficients of interaction terms. The thresholds for the top 10 

genes and top 40 genes were 3.912 and 4.339, respectively. We referred the SNPs that 

passed the thresholds as significant SNPs though the meaning is different from frequentist 

significance.

4.4. Results

We determined the longitudinal trajectories of the neuroimaging ROI volumes, the effects of 

the significant SNPs on such longitudinal trajectories, and the dynamic genetic effects on the 

trajectories. We estimated the trajectories of all standardized ROI volumes on the basis of Γ̂ 

and W (Fig. 6). ROIs with decreasing volumes occurred in many regions of the brain, 

including the left and middle temporal gyri, the left and superior temporal gyri, and the left 

and right amygdala. ROIs with increasing volumes occurred in the hollow areas of the brain 

and areas of white matter and included the left and right lateral ventricles, the left and right 

frontal lobe white matter, and the left and right temporal lobes. Moreover, the trajectories of 

most ROIs demonstrated structural symmetry.

Because hippocampal atrophy and ventricular enlargement are consistent findings in patients 

with AD and mild cognitive impairment (Apostolova et al., 2012), we depicted the effects of 

some SNPs on the longitudinal trajectories of the left and right lateral ventricles and the left 

and right hippocampi (Fig. 7). Let A and a denote the major and minor alleles of a specific 

SNP, respectively. For each ROI, we depicted the mean trajectory associated with a selected 

SNP (black solid curves) and the mean trajectory corresponding to the three allelic 

combinations (i.e. AA, Aa, and aa) of the SNP (Fig. 7). The minor allele of SNP rs10501608 

increased the rate of hippocampal atrophy, whereas the SNP rs1354106 minor allele had the 

opposite effect. Moreover, the minor allele of SNP rs10501608 increased the rate of 

ventricular enlargement, yet the SNP rs10501604 minor allele had the opposite effect.

We plotted the primary SNP-age interaction effects, whose absolute standardized estimates 

were larger than the predetermined threshold, on the longitudinal trajectories corresponding 

to the top 10 genes (upper row) and the top 40 genes (lower row) (Fig. 8). The plots revealed 

a generally symmetric pattern for the left and right hemispheres, which indicated the genetic 

effects on the longitudinal change of ROI volumes were symmetric. Some asymmetric 

longitudinal genetic effects also occurred. For example, in the analysis of the SNPs from the 

top 40 genes, only the left nucleus accumbens and the right subthalamic nucleus were 

associated with SNP rs2273684, whereas their contralateral counterparts were not 

substantially correlated with any SNP. With exception of the left and right lateral ventricles, 

the genetic effects on most ROIs in the left and right hemispheres occurred in the same 

direction. Because both the number of parameters and the threshold for significance 
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increased with the number of top genes, the number of significant SNP-age interactions 

decreased with the number of top genes. However, the effects of significant SNP-age 

interaction detected for the top 40 genes were more substantial.

The significant SNP-age interaction effects of the ROIs depicted in Fig. 8 formed SNP-

specific networks that we visualized with BrainNet Viewer (Xia et al., 2013) in Fig. 9 and 

Fig. 10. Among all the networks, each SNP-specific network demonstrated spatially adjacent 

patterns. Some SNPs were associated with many ROIs, although other SNPs were associated 

only with ROIs in a specific brain area. The networks could be considerably different for 

different SNPs in a gene. In each network the sizes of genetic effects on various ROIs was 

relatively homogeneous, whereas the those across different networks may be substantially 

different. The most significant SNPs were close to the ventricular system. Some ROIs in the 

frontal lobe were also associated with SNPs that exhibited small growth effects, but ROIs 

near the prefrontal cortex were not strongly associated with the SNPs in the top 10 and top 

40 genes.

We used MMA based on linear mixed effects models where each SNP, its interaction with 

age, and the covariates in W were regressed on each ROI volume. The p-values of the 

significant coefficients are smaller than 0.05/(pr/2 + dr + r) (Bonferroni correction with the 

number of parameter in the L2R2), even though the true number of regression parameter is 

much larger (pd). The number of significant coefficients is smaller if the true number of 

parameters is used for correction. We compared the important estimated associations with 

L2R2. The two ROIs identified in the case with top 10 genes were the left and right lateral 

ventricles. Twelve ROIs were found in the case with top 40 genes, ten of which were found 

by L2R2. The number of significant associations identified by MMA were much less than 

that of L2R2. L2R2 provided more power in identifying important pairs of ROIs and SNP-

age interactions and revealed more SNPs that may alter the longitudinal trajectories of ROIs.

The results of G-SMuRFS were not directly comparable to those of L2R2 and MMA 

because G-SMuRFS does not provide standard error estimates or a cut-off for all pairs of 

association as in L2R2 and MMA. The importance of the SNPs and SNP-age interactions 

was ranked by the sum of the absolute values of the estimated coefficients across all ROIs. 

Nonetheless, we found the top ROIs and SNP-age interactions, and some of them overlap 

with those from L2R2 in the case with top 40 genes.

We built the networks of ROIs with two criteria to study the structure of the longitudinal 

volumes of ROIs. Let Bint be the part of B corresponding to the SNP-age interactions, and 

Bint,std be the standardized Bint. Firstly, we selected the ROIs corresponding to the large 

diagonal elements of  to form a network. The change of each ROI in the 

network was heavily associated with the SNPs. The network was a collection of important 

ROIs which were affected by the time-dependent SNP effects. Secondly, we constructed 

networks based on the absolute values of every columns of the standardized Vstd, which is 

the standardized V. Each network was an important combination of the longitudinal ROI 

measurements, and was strongly associated with the joint effect of a weighted combination 

of SNPs and age-SNP interactions quantified by the corresponding column of U. The top 10 

ROIs in the networks were listed in Table 1 and Table 2 for the top 10 and 40 genes, 
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respectively. Such networks were mostly symmetric for the left and right hemispheres, 

which also illustrated the genetic effects on the longitudinal volumes of ROIs are largely 

symmetric.

The imaging phenotypes provided quantitative measurements of the morphometric changes 

of the ROIs, which may characterize the underlying degenerative process of AD and capture 

information mirroring patients’ diagnostic status. We used a generalized linear-mixed model 

with logit link to determine the associations between longitudinal diagnostic status and the 

ROI volume. We found that 70 of 93 ROIs and 69 ROI and age interactions were 

significantly correlated with longitudinal diagnostic status after applying the false discovery 

rate correction with the significant level 0.05. Tissues with ROIs that correlated with 

longitudinal diagnostic status included the hippocampus, cingulate cortex, amygdala, and 

lateral ventricles, in addition to many other areas of the brain. Moreover, most of the ROIs 

identified by the L2R2 model in Figure 8 were among the 69 ROIs that demonstrated age-

dependent interactions. The SNPs used in the L2R2 model were previously reported in a 

genome-wide association study of the diagnostic status of patients with AD. Our findings 

show that the longitudinal trajectories of many ROIs are highly associated with the 

longitudinal patterns of diagnostic status; therefore, these ROIs may serve as consistent 

surrogates for measuring AD progression.

The L2R2 model elucidated some ROI-SNP pairs that were reported in previous genome-

wide association studies on the basis of diagnostic status, cognitive scores, and imaging 

measurements. For example, the SNP rs1354106, which occurs in the CD33 gene, was 

associated with a slower declining rate of the AD assessment scale cognitive score (Sherva 

et al., 2014). Biffi et al. (2010) reported that SNP rs1408077, which occurs in the CR1 gene, 

was associated with disease status. Moreover, the SNP rs1408077 was related to the 

entorhinal cortex thickness (Biffi et al., 2010) and hippocampal atrophy (Lazaris et al., 

2015). The SNP rs6088662, which occurs in the PRNP gene, was associated with reduced 

hippocampal volume and cognitive performance in healthy individuals (Li et al., 2016).

Multivariate imaging measurements may provide additional information compared with 

univariate measurements, such as diagnostic status. Some ROIs that were not associated with 

diagnostic status in the generalized linear mixed model were associated with certain SNPs in 

the L2R2 model, such as the left and right thalamus, right medial frontal gyrus, and right 

lateral front-orbital gyrus. More ROI measurements yielded additional variation in the SNPs 

compared with that of diagnostic status. Thus, integrating multivariate imaging 

measurements with genetic variables and diagnostic status may provide a clearer picture of 

the biological processes occurring in AD (Zhao and Castellanos, 2016).

4.5. Random effects

We examined the usefulness of incorporating random effects into our model by investigating 

the distribution of the estimated random effects over all subjects for each ROI. We generated 

histograms and quantile-quantile plots of the random effects obtained from two randomly 

selected ROIs from the L2R2 model that were fitted to the top 10 genes (Fig. 11). The 

variances of the estimated random intercepts were substantial compared with the scale of the 

response variables, which coincided with the subject-specific intercepts of the neuroimaging 
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measurements (Fig. 2a). Moreover, these distributions did not severely deviate from the 

normal distribution.

To statistically test the presence of the subject-specific random effects Zb, we refitted the 

data with a restricted L2R2 model without the presence of Zb and then compared the log 

likelihood ratio of the full and restricted L2R2 models. The inclusion of random effects 

decreased the log likelihood function by 14,000 (or 5%), and the number of parameters 

increased by 93. Therefore, incorporating random effects into the L2R2 model was useful 

for characterizing the correlation structure of the imaging phenotypes and improved the 

detection of the association between imaging phenotypes and genetic variants.

5. Discussion

We have developed a Bayesian L2R2 model to determine the association between 

longitudinal imaging responses and covariates with applications in imaging genetic data. We 

used this model to approximate the large association matrix. We combined a sparse latent 

factor model and random effects to flexibly capture the complex spatiotemporal correlation 

structure. We incorporated splines to capture the effect of aging and combined a traditional 

coefficient estimation with a low-rank approach. The L2R2 model dramatically reduced the 

number of parameters to be sampled and tested, leading to a remarkably faster sampling 

scheme and efficient inference. The simulation studies demonstrated that the L2R2 model 

has higher power in detecting important time-dependent and main genetic effects. Age-

dependent genetic effects are useful for characterizing age-related degenerative disorders 

like AD. When strong genetic effects modify changes in brain morphology over time, it is 

critically important to account for SNP-age interaction effects and to improve the detection 

of time-invariant main genetic effects. Although our findings confirmed the important role of 

well-known genes, such as APOE-ε4, in the pathology of AD, they also elucidated other 

potential candidate genes that warrant further investigation.

The L2R2 model effectively established associations between phenotypic markers present in 

neuroimaging data and the presence of high-risk AD alleles. However, many considerations 

still merit further research. First, it is important to consider the joint effect of genetic 

markers and environmental factors on high-dimensional imaging phenotypes (Thomas, 

2010). Second, it is of great interest to incorporate rare variant genetic markers (Bansal et 

al., 2010) with the L2R2 model. Third, the key features of the L2R2 model may be adapted 

to more complex data structures (e.g. twin and family sequencing studies) and other 

parametric and semiparametric models. Fourth, the L2R2 model may be extended to 

combine different imaging phenotypes calculated from other imaging modalities (e.g. 

diffusion tensor imaging, functional MRI, and electroencephalography) in concomitant 

imaging and genetic studies. Fifth, group structures among SNPs (i.e. gene-based 

grouping)could be incorporated to improve the efficiency of modeling-correlated SNPs by 

choosing group priors for U.

One important feature of L2R2 is the inclusion of SNP-age interactions to model the genetic 

effects on the longitudinal change of ROIs. The interactions can also be viewed as the age-

dependent genetic effects. The total age-varying genetic effects of the jth SNP xij is βj + 
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β2jtij, which assumes that the effect is a linear function of age. This assumption can be 

relaxed by modeling the effects as more flexible functions of age, e.g., polynomial functions 

and nonparametric functions, which is known as the varying-coefficient models (Hastie and 

Tibshirani, 1993; Fan and Zhang, 1999, 2008). Varying-coefficient models have been used to 

study the time-dependent genetic effects and gene-environment interactions (Gong and Zou, 

2012; Wu and Cui, 2013; Li et al., 2015). Compared to L2R2, these studies only modeled 

univariate response variables. Extending L2R2 to incorporate more flexible varying genetic 

effects is helpful to better understand the genetic impact on the complex diseases at different 

age and under various states of environment factors.

It is worth noting that in Fig. 2b, the volume of right hippocampal formation appeared to 

increase in the three-year visit for subjects with minor allele of rs768451. This phenomenon 

is less expected in studies of Alzheimer’s disease but it may be explained by the following 

reasons. We included healthy subjects, MCI and AD patients from the ADNI data set in our 

analysis. The volumes for the healthy subjects may be relatively stable. Moreover, several 

studies in the literature (Erickson et al., 2011; Leavitt et al., 2014; Niemann et al., 2014) 

reported that exercises were associated with the increase of hippocampal volume in older 

adults. Also, the number of subjects in the three-year visit was smaller than those in the 

previous visits, and the average of the hippocampal volumes for these subjects was larger 

than the average for all subjects at the initial visit. The dropout during the last visit may be 

informative. These factors warrant further investigation in the future studies.
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7. Appendix: technical details

7.1. Matrix formulation of L2R2

The L2R2 can be rewritten in the matrix form (5)
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where yi(t) = (yi1(t), . . . , yid(t))T, yi = (yi(ti1), . . . , yi(timi))
T, Y = (y1

T, . . . , yn
T)T, 1mi be a 

mi × 1 vector of ones, and tmi = (ti1, . . . , ti,mi)
T. Let  be the SNPs for the ith subject, 

, and X = 

(Xmain,Xint). Moreover, let Zi = (zi(ti1), . . . , zi(timi))
T, Z be an N × npb block diagonal 

matrix with diagonal elements Z1, . . . ,Zn, and b = (bik) be an npb × d block matrix with 

elements bik. We defined wi(t) = (w1(t)T,w2,i(t)T)T, Wi = (wi(1), . . .wi(timi))
T, and W = 

(W1
T, . . . ,Wn

T)T. Let εi(t) = (εi1(t), . . . , εid(t))T, Ei = (εi(ti1), . . . , εi(timi))
T, and E = 

(E1
T, . . . ,En

T)T. Consequently, Y is an N × d matrix of imaging measurements; X is an N × 

p matrix of genetic predictors; W is an N × q matrix of covariates with fixed effects; Z is an 

N × npb matrix of covariates with random effects; and E is an N × d matrix of error terms, 

where q = q1 + q2. Γ is a q × d matrix and its first q1 row consists of Γ1 = (γ1,1, . . . , γ1,d), 

and its last q2 columns consist of Γ2 = (γ2,1, . . . , γ2,d). In model (5), we primarily made 

statistical inferences from B (equivalently U,Δ,V) and Γ.

7.2. Priors

We consider priors on the elements of B. Let Ga(a, b) be a gamma distribution with scale a 
and shape b. We choose L2 priors on the parameters at each layer Bl as follows:

where a0 and b0 are prespecified hyperparameters. Although, we have used the same 

precision parameter for each element of ul, group information can be incorporated by 

choosing separate precision parameters for each group. The number of predictors p (or d) is 

included in the hyperprior of ul (or vl) to have a positive definite covariance matrix of high 

dimensional ul (or vl). Moreover, this data driven approach for the priors of ul and vl 

requires no additional hyperparameters to choose. because we standardize all predictors to 

have zero mean and unit variance, a single prior suffices for all elements of ul. Moreover, 

because we rescale all of the responses, we use the same dispersion for all components of vl. 

Since we focus on exploiting the potential two-way correlations among the estimated 

coefficients, we choose the L2 priors, which tend to borrow strength from correlated 

neighbors and force the coefficients towards each other to produce two highly correlated 

coefficients. Moreover, the posterior computations are simpler and faster under the L2 priors.

We consider priors on the elements of Γ = (γjk). We also choose the L2 prior on the γjks as 

follows:

where c0 and d0 are hyperparameters. For the subject-specific random coefficients, we also 

choose independent and identically distributed normal priors as
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where e0 and f0 are hyperparameters.

For the sparse factor model (4), we assign the multiplicative gamma process shrinkage prior 

(Bhattacharya and Dunson, 2011) on Λ to automatically determine the dimension of the 

factors needed to characterize the error covariance structure. The shrinkage prior 

increasingly shrinks the factor loadings towards zero with the column index and avoids 

identifiability of the order of the factor in ηi(t). Specifically, these priors are summarized as 

follows:

where v, a1, a2, aσk, and bσk are prefixed hyperparameters, τλh is a global shrinkage 

parameter for the h-th column, and the ϕkhs are local shrinkage parameters for the elements 

in the h-th column. When a2 > 1, the τλhs increase stochastically with the column index h, 

which shrinks the elements of the loading matrix to zero as the column index progresses and 

determines the effective dimension of Λ.

7.3. Posterior computation

The joint posterior for the L2R2 model with the above priors can be written as

(6)

where Tr(·) is the trace of the matrix.

We propose a straightforward Gibbs sampler for posterior computation, which converges 

rapidly. Starting from the initiation step, the Gibbs sampler at each iteration proceeds as 

follows:

1. For l = 1, . . . , r, update ul from the full conditional distributions

where  and .

2. Update vl from
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where .

3. Update δl from

where .

4. Update τδ from

5. Update γk (i.e. the kth column of Γ) from

where ΣΓk = {θkkWTW+ τγIq}−1. yΓ,k is the kth column of YΓ = Y − XB − Zb; 
YΓ,−k is the matrix after dropping the kth column of YΓ; θkk is the element for 

the kth row and kth column of Θ; θk is the kth column of Θ after dropping θkk; 

and Θ−kk is the matrix after dropping kth row and kth column of Θ.

6. Update τγ from

7. Let b̃
k be the kth column of b. Update b̃

k from

where Σbk = (θkkZTZ + τbInpb)−1. yb,k is the kth column of Yb = Y–XB–WΓ, 

and Yb,−k is the matrix after dropping the kth column of Yb.

8. Update τb from
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9. Let k* be a integer large enough to approximate the number of factors in the 

factor model (4), and  be the corresponding approximation. 

Update , which is the kth row of Λ*, from its full conditional distribution

where Ω = (η11, . . . , η1m1 . . . , ηnmn)T, Ek is the kth column of E = Y–XB–WΓ

−Zb, and  for k = 1, . . . , d.

10. Update ϕkh from its full conditional distribution

11. Update , k = 1, . . . , d, from its full conditional distribution

where εitk is the element in E for the ith subject at time t and kth response 

variable.

12. Update ψ 1 from its full conditional distribution

where  for h = 1, . . . , k*.

13. Update ψ h, h ≥ 2 from its full conditional distribution

where  for h = 1, . . . , k*.

14. Update ηit for t = 1, . . . , mi, i = 1, . . . , n from the conditionally independent 

posteriors

where εit is the row of E corresponding to the ith subject at time t.
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7.4. Full conditional distributions of L2R2

7.4.1. Full conditional distribution for Δ

From equation (6), we can write

This implies

where  and YB,l = Y − WΓ − Zb − Σl′≠l δl′Xul′vl′T.

7.4.2. Full conditional distribution for U

From equation (6), we can write

This implies

where .

7.4.3. Full conditional distribution for V

From equation (6), we can write

This gives
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where .

7.4.4. Sampling Γ by columns

Sampling the coefficient matrix one element at a time would be time consuming and less 

attractive in high-dimensional settings. Another approach is to convert the whole matrix into 

a vector and sample the vector at once, but this requires a covariance matrix with dimension 

qd × qd, which can be quite large and requires considerable memory making it infeasible. 

We propose a columnwise sampling scheme, which allows for computationally efficient 

sampling with a feasible dimension of the conditional covariance matrix (Khondker et al., 

2013). Let YΓ = Y − XUΔV − Zb, we can write YΓ = WΓ+ E. For k = 1, ⋯, d, we can 

reorder and partition

In the above partition, yΓ,k is the kth column of YΓ, and YΓ,−k and Γ−k are the matrices after 

dropping the kth column of YΓ and Γ, respectively. θkk is the element for the kth row and 

kth column of Θ; θk is the kth column of Θ after dropping θkk; and Θ−kk is the matrix after 

dropping the kth row and kth column of Θ. We can write

This gives us

where Σγk = {θkkWTW+ (τγIq)}−1.

7.4.5. Sampling b

Given that vec(bi) ∼ N(0,Σb) with Σb = τbId, the full conditionals for b can be derived in a 

similar way to Γ. Let b̃
k be the kth column of b. Update b̃

k from
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where Σbk = (θkkZTZ+τbInpb)−1. yb,k is the kth column of Yb = Y–XB–WΓ; and Yb,−k and 

bk is the matrix after dropping the kth column of Yb and b, respectively.

Full conditionals for all other parameters are straightforward.
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Fig. 1. 
The characteristics of the ROIs and SNPs from the ADNI data set and their association.
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Fig. 2. 
The longitudinal characteristics of the ROI volumes in the ADNI data set. (a) The 

trajectories of the volumes of left lateral ventricle for all subjects. (b) and (c) The LOESS 

estimates of two volume trajectories based on the subjects with different SNP alleles.
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Fig. 3. 
Simulation results depicting the estimated ROC curves of the true positive rates and false 

positive rates for B. The four columns correspond to the settings (i) p = 50, d = 50; (ii) p = 

100, d = 100; (iii) p = 200, d = 100; (iv) p = 400, d = 100. The first row shows the 

coefficients of the SNPs and the second row shows the coefficients of the interactions 

between the SNPs and subject age. The lines represent the L2R2 (black solid), BRRR (red 

dotted), BCCA (purple dashed), G-SMuRFS (blue dot-dash), and MMA (green dashed).
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Fig. 4. 
Simulation results from one randomly selected replication with p = 50, d = 50, and 

moderately sparse B. (a) and (b) The true and estimated splines for a randomly selected 

standardized ROI volume. (c) The scatterplot showing the true mean versus the predicted 

mean at one year after the subject’s last observation using model (5). (d) The Gelman and 

Rubin’s shrink factors at different iterations for all the parameters in B.
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Fig. 5. 
The thresholded estimates of the main genetic effects and the SNP-age interaction effects on 

ROIs based on the ADNI data set with the top 10 genes.
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Fig. 6. 
The estimated spline functions for (a) and (b) all the ROIs, (c) and (d) selected ROIs with 

declining volumes, and (e) and (f) selected ROIs with increasing volumes based on the SNPs 

from the ADNI data set with the top 10 genes and top 40 genes, respectively.
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Fig. 7. 
The effects of SNP alleles on the trajectories of two ROIs in the ADNI analysis. Black solid 

line represents the overall effects characterized by the basis functions and coefficients in Γ. 

The blue dashed, magenta dot-dash, and red dotted lines are the trajectories of the ROIs 

altered by the SNP with AA, Aa, and aa, respectively. ‘A’ represents the major allele and ‘a’ 

represents the minor allele of a SNP.
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Fig. 8. 
Heatmaps of the standardized estimates of the SNP-age interaction coefficients in the (a) and 

(c) left and (b) and (d) right brain hemispheres. (a) and (b) represent the estimates with the 

top 10 genes, and (c) and (d) represent the estimates with the top 40 genes. Standardized 

estimates with absolute value smaller than the threshold were set to zero.
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Fig. 9. 
The SNP-specific networks of ROIs based on the ADNI data set with the top 10 genes. The 

first row depicts the locations of ROIs that are correlated with the SNPs rs10501604, 

rs475639, rs677909, and rs10501608 in gene PICALM; the second row shows those of 

rs3826656, rs3865444, rs988337, rs1354106 in gene CD33; the third row shows those of 

rs3752237 and rs3752240 in gene ABCA7 and rs12734030 and rs650877 in gene CR1; the 

last row shows those of APOE34 (APOE), rs880436 (BIN1) and rs6458573 (CD2AP). The 

sizes of the dots represent the absolute magnitudes of the regression coefficients. Warmer 

and cooler colors represent ROIs located in superior and inferior anatomical sites of the 

brain, respectively.
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Fig. 10. 
The SNP-specific networks of ROIs based on the ADNI data set with the top 40 genes, 

which show the locations of ROIs that are correlated with SNPs rs4513489 (CCR2), 

rs2273684 (PRNP) and rs6088662 (PRNP). The sizes of the dots represent the absolute 

magnitudes of the regression coefficients. Warmer and cooler colors represent ROIs located 

in superior and inferior anatomical sites of the brain, respectively.
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Fig. 11. 
Histograms and QQ plots of the posterior means of the random effects for two random 

selected ROIs over all subjects in the analysis of ADNI data set with the top 10 genes.
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Table 1

Top-ranked ROIs based on the diagonal of  and columns of V based on the top 10 genes.

V1 V2 V3

sup.t.gy.R mid.t.gy.R caud.neuc.L prec.L

sup.t.gy.L mid.t.gy.L thal.L per.cort.L

mid.t.gy.L sup.t.gy.R caud.neuc.R tmp.pl.L

mid.t.gy.R hiopp.R glob.pal.L per.cort.R

inf.t.gy.L amyg.R post.limb.R ent.cort.R

parah.gy.L unc.L putamen.L mid.f.gy.R

inf.f.gy.R unc.R nuc.acc.R ling.gy.R

lat.f-o.gy.L inf.t.gy.R post.limb.L sup.f.gy.L

inf.f.gy.L sup.t.gy.L insula.R pec.R

unc.R inf.t.gy.L subtha.nuc.L sup.p.lb.L
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Table 2

Top-ranked ROIs based on the diagonal of  and columns of V based on the top 40 genes.

V1 V2 V3

insula.R hiopp.R per.cort.R glob.pal.R

insula.L hiopp.L sup.p.lb.L post.limb.R

amyg.R inf.t.gy.R per.cort.L thal.L

hiopp.L sup.t.gy.R tmp.pl.R caud.neuc.R

sup.t.gy.R unc.L sup.p.lb.R caud.neuc.L

unc.L mid.t.gy.R me.f.gy.L nuc.acc.R

unc.R insula.R lat.ve.R ant.caps.R

mid.t.gy.L amyg.R pstc.gy.L glob.pal.L

hiopp.R mid.t.gy.L prec.L subtha.nuc.L

mid.t.gy.R inf.o.gy.L tmp.pl.L subtha.nuc.R
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