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a b s t r a c t 

Developing predictive intelligence in neuroscience for learning how to generate multimodal medical data 

from a single modality can improve neurological disorder diagnosis with minimal data acquisition re- 

sources . Existing deep learning frameworks are mainly tailored for images, which might fail in han- 

dling geometric data (e.g., brain graphs). Specifically, predicting a target brain graph from a single source 

brain graph remains largely unexplored. Solving such problem is generally challenged with domain frac- 

ture caused by the difference in distribution between source and target domains. Besides, solving the 

prediction and domain fracture independently might not be optimal for both tasks. To address these 

challenges, we unprecedentedly propose a Learning-guided Graph Dual Adversarial Domain Alignment (LG- 

DADA) framework for predicting a target brain graph from a source brain graph. The proposed LG-DADA 

is grounded in three fundamental contributions: (1) a source data pre-clustering step using manifold 

learning to firstly handle source data heterogeneity and secondly circumvent mode collapse in genera- 

tive adversarial learning, (2) a domain alignment of source domain to the target domain by adversarially 

learning their latent representations, and (3) a dual adversarial regularization that jointly learns a source 

embedding of training and testing brain graphs using two discriminators and predict the training tar- 

get graphs. Results on morphological brain graphs synthesis showed that our method produces better 

prediction accuracy and visual quality as compared to other graph synthesis methods. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

One major objective of existing machine learning-based meth- 

ds in medical imaging aims to alleviate the high costs of acquiring 

ultiple medical scans as well as handling medical datasets with 

ncomplete imaging modalities. For instance, a subject might have 

 magnetic resonance imaging (MRI) scan and lacks a positron 

mission tomography (PET) scan. However, feeding incomplete 

ultimodal data into a learning-based framework for early disease 

iagnosis is challenged by missing multimodal medical images, 

hich can provide a more holistic understanding of the underly- 

ng mechanisms of the target disease when available. To handle 

his problem, some of the existing works discarded samples with 

issing data. However, such techniques led to reducing the perfor- 

ance of the predictive model since it learns from a limited num- 
∗ Corresponding author at: BASIRA lab ( http://basira-lab.com/ ). 

E-mail address: irekik@itu.edu.tr (I. Rekik). 
1 GitHub code: https://github.com/basiralab/LG-DADA 
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er of observations. Existing methods aiming to solve this problem 

an be categorized into machine learning based and deep learning 

ased approaches. For instance, in the first category ( Huynh et al., 

016 ) proposed a voxel estimation method that used structured 

andom forest algorithm to predict a CT image from an MRI image. 

nother learning based work ( Jog et al., 2013 ) proposed to syn- 

hesize a T2-weighted MRI data from a T1-weighted data using an 

nsemble of regression trees. 

For the deep learning based category, Bano et al. (2018) de- 

igned a fully convolutional network (XmoNet) for cross-modality 

R image synthesis. Li et al. (2014) used convolutional neural net- 

orks (CNN) to predict positron-emission tomography (PET) image 

f a specific sample from MRI image. In a follow-up work, Ben- 

ohen et al. (2019) combined a fully convolutional network with 

 conditional Generative Adversarial Network (GAN) to predict PET 

rom CT. A typical GAN ( Goodfellow et al., 2014 ) consists of two 

eural networks: a generator trained to synthesize an output that 

pproximates the real data distribution, and a discriminator trained 

o differentiate between the fake and real images. With its remark- 

https://doi.org/10.1016/j.media.2020.101902
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101902&domain=pdf
http://basira-lab.com/
mailto:irekik@itu.edu.tr
https://github.com/basiralab/LG-DADA
https://doi.org/10.1016/j.media.2020.101902
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ble synthesis potential, GAN has been used in a variety of medical 

maging applications ( Yi et al., 2018 ) including missing data im- 

utation task. For instance, Olut et al. (2018) used GAN to gener- 

te missing Magnetic Resonance Angiography (MRA) from T1- and 

2-weighted MRI images. However, most of the existing methods 

re only applied to Euclidian structured data such as MRI scans 

nd electrocardiogram (ECG) signals ( Cho et al., 2018 ). Hence, they 

ight fail in handling non-Euclidian structured data or ‘ geometric 

ata’ types such as graphs and manifolds ( Bronstein et al., 2017 ). 

Recently, the nascent field of geometric deep learning (GDL) 

as cross-pollinated network neuroscience , where GDL architectures 

ere trained on brain graphs or connectomes to diagnose neuro- 

ogical diseases. The brain connectome is a graph representation 

f biological activity across a set of anatomical regions of interest 

ROIs) in the brain. For instance, Ktena et al. (2017) used Graph 

onvolution Network (GCN) ( Kipf and Welling, 2016 ) to learn a 

imilarity metric between two functional brain graphs extracted 

rom resting-state fMRI (rs-fMRI) data for Autism Spectrum Dis- 

rder (ASD) diagnosis. Later on, Parisot et al. (2017) proposed to 

redict the disease state (healthy or affected) of a subject from a 

artially labeled graph using GCN. Nodes of the brain graph rep- 

esent functional brain connectivities of a subject extracted from 

s-fMRI images and edges represent the similarity between sub- 

ects using their brain connectomes and their phenotypic informa- 

ion (age and gender). Another recent work ( Arslan et al., 2018 ) 

ntroduced a gender prediction framework (i.e., male or female) 

ased on functional brain graphs extracted from rs-fMRI. Using 

CN, they selected the most relevant ROIs for gender classifica- 

ion. While these frameworks presented promising results on brain 

raphs, they overlooked the problem of ‘graph synthesis’ . Especially, 

redicting a target brain graph from a source graph where each is 

erived from different metrics (i.e, they have different statistical 

istributions) remains largely unexplored. 

However, to make such a cross-domain prediction there is a 

eed to handle the problem of domain fracture resulting in the 

ifference in distribution between the source and target domains. 

everal works aimed to solve this problem by proposing a GAN- 

ased framework. For instance, Pan et al. (2018b) used cycle- 

onsistent GAN to predict PET images from MRI data. They used 

 bi-directional domain mapping (i.e., domain alignment) where 

hey first mapped the MRI source domain to the PET target do- 

ain and then learned the reverse mapping. The synthesized PET 

ata were used for early Alzheimer’s Disease diagnosis. Addition- 

lly, Yang et al. (2018) assumes that cycle GAN does not have 

 constraint between the generated target image and its ground 

ruth target image. So they added a structure-consistency loss to 

he original cycleGAN and adopted it to predict MRI data from 

T data. However, these GAN-based methods focused mainly on 

ynthesizing medical images rather than geometric data while 

any works demonstrated the ability of GAN in accurately learning 

rom graphs. ( Wang et al., 2018 ) recently introduced GraphGAN, a 

raph embedding method where graphs were projected into a low- 

imensional space. As existing graph representation methods were 

ooted in generative or discriminative learning frameworks, this 

ork consists of a GAN-based method that combines both classes. 

oreover, Liu et al. (2017) demonstrated how GAN can learn topo- 

ogical features of any kind of graph. Specifically, they proposed a 

raph topology interpolator method to divide a graph into multi- 

le subgraphs. Then, in order to better capture topological features, 

he subgraphs were fed to GAN. 

Several neuroscientists have long suspected that abnor- 

al mental behaviour shown in disordered subjects correlate 

o specific connectivity features of the brain. For instance, 

ahjoub et al. (2018) proposed a brain graph-based representa- 

ion named multiplex to distinguish between late MCI and AD sub- 

ects and detected biomarkers which are morphological connectiv- 
2 
ties that fingerprint the difference between both stages. More re- 

ently, Mhiri et al. (2020) proposed a high-resolution brain graph 

eneration framework and discovered several discriminative func- 

ional connectivities in the produced brain graphs. We notice here 

hat such results were not derived from a flat data representation 

e.g, MRI), but from a deeper one named brain graph which is a 

iring map of the neural connections in a human brain ( Fornito 

t al., 2013 ). This is explicable because a connectional biomarker 

f a neurological disorder means that if an ROI is considered as 

he most affected brain region at a specific stage of that disorder 

he other ROI connected to it will also be affected. Hence, once 

quipped with the ability to construct the brain graphs, neurosci- 

ntists will be able to discover more biomarkers which help them 

evelop more personalized treatments and advance the surgical 

nterventions. However, to date they have lacked complete med- 

cal dataset necessary to fully investigate these hypotheses since 

he existing ones usually have missing modalities. Thus, to cir- 

umvent the need to acquire multiple brain modalities such as 

unctional MRI or diffusion MRI for the purpose of extracting re- 

pectively a functional brain graph and a structural brain graph, a 

rain graph synthesis framework need to be developed. To fill this 

ap, we unprecedentedly propose a GAN-based framework for pre- 

icting target brain graphs from a single source graph. Typically, 

redicting brain connectomes has several applications in network 

euroscience. First, different connectional aspects of the brain (i.e, 

ource and target brain graphs) can provide complementary infor- 

ation of the whole brain which helps boost brain disease diag- 

osis as in Liu et al. (2016) and Wang et al. (2020) . For instance,

iu et al. (2016) proposed a connectomic feature selection strategy 

o early identify the high-grade glioma (HGG) subjects with sur- 

ival time over 650. The most reliable features of structural and 

unctional brain graphs respectively derived from diffusion tensor 

maging (DTI) and rs-fMRI were selected then fed into an SVM 

lassifier to predict the disease outcome. Another recent paper 

 Wang et al., 2020 ) proposed learning-based framework for multi- 

lass ASD classification using multi-modal brain data extracted 

rom rs-fMRI. More specifically, a sparse representation classifier 

SRC) ( Wright et al., 2008 ) was leveraged to classify multi-view 

SD connectivity features which are extracted from white mat- 

er and gray matter data. Second, the brain graph synthesis task 

elps understand the holistic connectional map of the brain. If the 

enerated graphs are very reliable and biologically sound, one can 

se them to create integral connectional maps of the brain called 

onnectional brain template (CBT) ( Dhifallah et al., 2019 ). Mainly, 

t aims to produce a normalized connectional representation of 

 population using multi-view brain graphs. The generated CBTs 

rom four connectomic datasets were shown to be effective in pre- 

erving the connectivity patterns of the population. Such concept 

as recently leveraged in Goktas et al. (2020) to predict the evolu- 

ion trajectory of a brain graph where an adversarial conncetome 

ncoder learned the CBT’s embeddings which are passed on to a 

ample selection block for the target prediction task. 

So far, we have identified only a single work on brain graph 

ynthesis ( Zhu and Rekik, 2018 ) which proposed a machine 

earning-based framework leveraging multi-kernel manifold learn- 

ng (MKML) technique to predict multiple target brain graphs 

ested in different domains from a single source brain graph. This 

andmark work handled the domain shift problem by mapping 

ach pair of source and target brain graphs onto a shared space 

here their distributions are aligned and domain shift is reduced 

sing canonical correlation analysis (CCA). Although promising, the 

xisting image synthesis frameworks based on deep learning and 

he CCA-based framework ( Zhu and Rekik, 2018 ) are limited to re- 

arding the domain shift between the source and target data and 

ultimodal image prediction as independent tasks. More specifi- 

ally, they solved both problems in a sequential manner: they first 
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Fig. 1. Conventional domain alignment methods and proposed dual adversarial domain alignment for target graph prediction. (A) In this illustration we explicit the strategy 

adopted in several medical image synthesis works that is: aligning the source to the target data then predicting the target data. Unfortunately, such strategy is limited 

to solving the data prediction and domain alignment tasks separately. Moreover, most frameworks based on Adversarial Network (GAN) cannot handle the source data 

heterogeneity which causes the mode collapse problem. (B) To address these issues, we first propose to cluster the data into homogeneous groups which helps disentangle 

heterogeneous source data distributions. Next, we propose for each cluster two adversarial domain alignment models: (1) prediction-independent domain alignment where 

we simply move the source domain to the target domain, (2) prediction-dependent domain alignment where we synergistically integrate the target graph prediction in 

the domain alignment learning. Hence, with a single unified adversarial framework we enforce each of the domain alignment and the graph prediction tasks to boost the 

performance of each other while handling the data heterogeneity. 
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earn how to align the source data to the target data, second they 

redict the target data using the aligned source-to-target domains 

 Fig. 1 A). 

To address these limitations, we propose a unified Learning- 

uided Graph Dual Adversarial Domain Alignment (LG-DADA) ar- 

hitecture, which predicts a target brain graph from a source 

raph while aligning both domains. Specifically, we leverage the 

dversarially-regularized generative autoencoder (ARGA) proposed 

n Pan et al. (2018a) which extended the concept of autoencoder 

nd GAN ( Goodfellow et al., 2014 ) to graphs. ARGA comprises a 

enerator G defined as a GCN ( Kipf and Welling, 2016 ) and a

iscriminator D align defined as a multilinear perceptron. However, 

RGA was originally designed for a graph embedding task and not for 

raph prediction and domain alignment. In this work, we propose to 

xtend it for jointly solving the domain shift problem and graph 

rediction. Although ARGA is a good starting point for solving our 

roblem, it is an instance of GANs, which generally suffer from 

he mode collapse problem ( Goodfellow, 2016 ). This issue occurs 

hen training the generator G . Ideally, one would learn a gener- 

lizable generator, which is able to generate diverse target samples 

overing well the distribution of the target data domain. Still, in 

ractice, the generator ends up producing graphs that approximate 

 few examples of target graphs (i.e., one mode), thereby identi- 

ying a single mode of the real data distribution. To circumvent 

his problem, we propose to cluster the source with heterogeneous 

istribution into different homogeneous clusters, where a cluster- 

pecific generator is constrained to generating a specific mode of 

he target data distribution. Moreover, we aim to simultaneously 

ridge the distribution shift between source and target graph do- 

ains and synthesize the target graph by an alternative bidirec- 
3 
ional learning where bridging the domain shift step improves the 

arget graph prediction and vice versa in an iterative progressive 

anner ( Fig. 1 B). Fundamentally, our LG-DADA framework has four 

tages: 

(1) Feature extraction and clustering . We represent both source 

and target brain graphs, each encoded in a matrix, by fea- 

ture vectors. Next, to better learn the inherent statistical 

distribution of the source data to align with the target, we 

propose to cluster the source graphs into different homoge- 

neous groups. Then, for each cluster we proceed to the next 

three steps for target graph prediction. 

(2) Adversarial domain alignment . We propose to align the source 

domain to the target domain using training samples. This 

prediction-independent domain alignment is regularized us- 

ing one discriminator D align that maps the distribution of the 

source domain to the target domain. 

(3) Dual adversarial regularization . We propose a prediction- 

dependent domain alignment where we learn a source em- 

bedding for training and testing samples by alternating be- 

tween two discriminators: the first one D align matches the 

distribution of the embedded source graphs with the dis- 

tribution of the original source graphs, and the second one 

D pred enforces the embedded source distribution to match 

the distribution of the predicted target graphs of training 

subjects. 

(4) Target brain graph prediction . To predict the target graph we 

first learn a connectomic manifold of the source embed- 

ding using the training and testing subjects and the aligned 

source-to-target graph embedding using the training sub- 
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jects. To predict the target brain graph of a testing subject, 

we select the closest neighboring source graphs to the test- 

ing graph then average their corresponding target graphs. 

. Related works 

.1. Graph synthesis 

So far, seminal geometric deep learning works have been suc- 

essfully leveraged in a few undirected graph synthesis tasks. Some 

tudies employed Recurrent Neural Network (RNN) to sequentially 

enerate subgraphs consisting in a subset of nodes and their con- 

ectivities from the whole graph ( Su et al., 2019; Liao et al., 2019 ).

n the first work ( Su et al., 2019 ), two RNNs were used to learn

he nodes embeddings and another RNN was used to generate the 

dges linking the embedded nodes of the subgraph. A second work 

 Liao et al., 2019 ) assumed that the subgraph generation process of 

tandard recurrent networks does not depend on the overall graph 

opology. So, they proposed to use a graph neural network along 

ith an attention mechanism to link the generated subgraphs to 

ach other while leveraging the graph topology. On the other hand, 

 few studies leveraged Graph AutoEncoder (GAE) for molecular 

raph synthesis. For example, Bresson and Laurent (2019) proposed 

wo successive decoders to generate the molecule structure. The 

rst one generates the formula of the molecule and passes it to 

he second decoder which creates the structure of the molecule 

n terms of nodes and their connectivities. More recently, Flam- 

hepherd et al. (2020) proposed an autoencoder based on message 

assing neural network. The graph decoder iteratively used the 

ode’s neighbors information called message to generate the graph 

tructure. However, despite their success in handling graph synthe- 

is tasks, these frameworks are only designed to generate graphs 

rom the same domain (e.g, a molecular graph from a molecular 

ormula). Thus, they have limited generalizability to synthesizing 

arget graphs from a totally different source domain, thereby over- 

ooking the potential domain shift between source and target do- 

ains. 

.2. Domain alignment 

To overcome the limitation of existing graph synthesis works, 

ne can leverage the concept of domain alignment also known as 

omain adaptation ( Wilson and Cook, 2020; Hoffman et al., 2018; 

oldo et al., 2020 ). It mainly refers to the task of predicting la-

els of target samples, given a labeled source domain (e.g, train- 

ng set) and an unlabeled target domain (e.g, testing set) where 

oth domains have different statistical distributions ( Redko et al., 

020; Wilson and Cook, 2020 ). This task was proposed to reduce 

he need for costly labeling the samples in the target domain. Do- 

ain alignment has benefited various applications in many practi- 

al scenarios, including but not limited to image-to-image transla- 

ion ( Zhu et al., 2017; Choi et al., 2018 ), and medical image seg-

entation and reconstruction ( Shen and Gao, 2019; Zhou et al., 

019 ). Most of the existing works performed an adversarial do- 

ain alignment where a min-max loss function was used to match 

he source distribution to the target one. For example, CycleGAN 

roposed in Zhu et al. (2017) adopted a cycle consistency loss to 

ap two non-overlapping domains such as mapping a horse to 

 zebra. However, the existing image-to-image translation works 

i.e, including CycleGAN) are inefficient in learning the mapping 

mong multiple domains using a single GAN model. Thus, StarGAN 

dded to the input data a label vector representing the target do- 

ain to guide the distribution alignment ( Choi et al., 2018 ). From 

 medical data analysis perspective, Shen and Gao (2019) proposed 

 self-supervised learning framework performing a multi-channel 

RI alignment for the purpose of brain tumor segmentation task. 
4 
nother adversarial domain alignment framework named Tomo- 

AN was proposed in Zhou et al. (2019) to synthesize missing 

inograms which refers to different viewing angles of Computed 

omography (CT) and used the resulting views to reconstruct CT 

mages. Critically, the aforementioned frameworks were only de- 

igned for image alignment which cannot be generalized to the 

eometric data types including graphs. Additionally, to the best of 

ur knowledge up to now no existing works have investigated the 

omain alignment task for brain graph prediction. 

. Methodology 

In this section, we detail our joint graph prediction and do- 

ain alignment framework. We illustrate in Fig. 2 the four pro- 

osed steps: (1) extraction and clustering of source and target 

rain graphs, (2) alignment of the source to the target domain, (3) 

ual adversarial regularization of source graph embedding, and (4) 

rediction of target brain graph. For easy reference, we summarize 

he major mathematical notations in Table 1 . 

.1. Brain graph feature extraction and clustering 

We aim in the following step to align the source feature vec- 

ors to the target vectors using ARGA. However, training such a 

AN-based framework might fail in aligning all source samples 

o all target samples due to the generative mode collapse is- 

ue ( Arjovsky et al., 2017 ), which would eventually align train- 

ng source graphs to a single target graph mode. To handle this 

roblem, we first cluster training and testing source brain graphs 

 S into homogeneous clusters with high inter-subject similari- 

ies using multiple kernel manifold learning (MKML) technique 

 Wang et al., 2017 ). We choose MKML for its three major advan-

ages. First, it outperformed other clustering methods such as PCA 

 Jolliffe and Cadima, 2016 ) and t-SNE ( Maaten and Hinton, 2008 )

hen dealing with biological dataset ( Wang et al., 2017 ). Second, 

y learning multiple kernels that efficiently fit the statistical dis- 

ribution of the data it provides a better similarity matrix be- 

ween brain graphs. Third, it uses graph diffusion to overcome the 

roblem of learning weak similarities between samples. Therefore, 

KML produces a similarity matrix of size (n × n ) modeling the 

imilarities between pairs of source graphs, with c diagonal blocks 

epresenting different clusters. Next, the obtained source similar- 

ty matrix is mapped into a lower dimensional space using t-SNE 

 Maaten and Hinton, 2008 ) resulting in a latent matrix of size 

n × c) . Once we obtain the latent matrix, k-means algorithm is 

sed to cluster the subjects ( Fig. 2 A). To predict the target graph

f a testing subject, we first pre-cluster both testing and training 

ource brain graphs. Next, we identify the cluster c tst including the 

esting subject and train LG-DADA using the set of training subjects 

n c tst − 1) in cluster c tst . Last, we test the trained LG-DADA on the 

eft-out testing sample. 

.2. Domain alignment of source and target domains 

To predict a target brain graph from a source graph, we assume 

hat n s subjects similar to a given subject in the source domain 

hould be also similar in the target domain. So we hypothesize 

hat the target graph of a testing subject should be predicted by 

veraging the target graphs of the training subjects that share sim- 

lar local neighborhoods across source and target domains. To do 

o, we propose to learn a target and a source connectomic mani- 

olds that capture the relationship between subjects in the target 

nd source domains, respectively. We further propose to learn the 

onnectomic manifolds using the embeddings of graphs that re- 

ult from ARGA model training using the original graphs and their 

earned similarity matrix. Hence, we can learn the target graph 
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Fig. 2. Proposed framework of Learning-guided Graph Dual Adversarial Domain Alignment (LG-DADA) for target brain graph prediction from a single source graph. (A) 

Feature extraction and clustering. Extraction of feature vectors from source and target brain graphs for each training subject. In this illustration, we have left the n th 

subject out for testing, hence it only has a source graph. Then, we use multiple kernel manifold learning to cluster the source brain graphs. (B) Domain alignment. For each 

cluster, we train one ARGA model to align the source domain to the target domain in the low-dimensional latent space and regularized by a discriminator D align . (C) Dual 

adversarial regularization. We regularize the source embedding of training and testing subjects by alternating between two discriminators D align and D pred . (D) Target graph 

prediction. It consists of learning a source manifold, that nests the encoded graphs of the training and testing subjects, and a target manifold that nests the encoded graphs 

of the training subjects. To predict the final testing target graph, we select the training subjects most similar to the testing subject in both manifolds. 

5 
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Table 1 

Major mathematical notations used in this paper. 

Mathematical notation Definition 

C number of clusters 

n c number of subjects in cluster c

n number of subjects 

m number of features 

d number of features of the embedded graph 

F t r+ t s 
S 

stacked source feature vectors of (n c ) training and testing subjects in R n c ×m 

F tr 
k 

stacked k source or target feature vectors of (n c − 1) training subjects in R (n c −1) ×m 

ˆ F tr 
T predicted target brain graphs of (n c − 1) training subjects in R (n c −1) ×m 

S t r+ t s 
S 

adjacency matrix between n c subjects using their source graphs in R n c ×n c 

S tr 
T adjacency matrix between (n c − 1) subjects using their target graphs in R (n c −1) ×(n c −1) 

ˆ S t r+ t s 
S 

reconstructed similarity matrix between n c subjects using their source graphs in R n c ×n c 

ˆ S tr 
T reconstructed similarity matrix between (n c − 1) subjects using their target graphs in R (n c −1) ×(n c −1) 

Z tr 
T embedding of the aligned source-to-target graphs using training subjects of cluster c in R (n c −1) ×d 

Z t r+ t s 
S 

source graph embedding using training and testing subjects in R n c ×d 

χ T connectomic manifold quantifying the relationship between the training subjects using their aligned source-to-target embedded 

graphs in R (n c −1) ×(n c −1) 

χ S connectomic manifold quantifying the relationship between the training and testing subjects using their source embedded graphs in 

R 
(n c ) ×(n c ) 

W 

(l) weight matrix used as filter to learn the graph convolution encoder in R n c ×l or R (n c −1) ×l where l is the number of neurons in the 

activated layer 

G DA (F tr 
S , S 

tr 
T ) generator used for domain alignment taking as input the training source graphs F tr 

S and the adjacency matrix computed using the 

target graphs S tr 
T 

G S (F t r+ t s 
S 

, S t r+ t s 
S 

) generator used for source embedding taking as input the source graphs of training and testing subjects F t r+ t s 
S 

and their adjacency 

matrix computed using the source graphs S t r+ t s 
S 

D align discriminator used for domain alignment taking as inputs the real data distribution F tr 
S or F t r+ t s 

S 
and the embedded graphs Z tr 

T or Z t r+ t s 
S 

D pred discriminator used for the dual adversarial regularization of the training and testing source graph embeddings taking as inputs ˆ F tr 
T and 

F tr 
T 
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mbedding using target graphs and their learned similarity matrix. 

owever, knowing that source and target domains have different 

tatistical distributions there is a need to handle the fracture ex- 

sting between both domains. Thus, we contribute in learning the 

ource-to-target embeddings using the source graphs of the train- 

ng subjects and the similarity matrix learned using their target 

raphs. 

We aim to use a GCN as an encoder to learn the latent repre-

entation (i.e., embedding) of the brain graphs ( Fig. 2 B). Basically, 

ur generator G (F , S ) takes as input the training source graphs

 

tr 
S 

and their adjacency matrix S tr 
T 

that encodes the similarities 

etween training subjects using their target graphs. We further 

ropose to learn the graph adjacency matrix using MKML algo- 

ithm ( Wang et al., 2017 ). Instead of using one predefined kernel 

e.g., Euclidian distance), this algorithm adopted multiple kernels 

o learn the similarity between data points with high dimension- 

lity and heterogeneous distribution. Such data might not be well 

epresented with ordinary distance metric (e.g., Euclidean distance) 

 Wang et al., 2017 ) that might fail to capture heterogeneous data 

istribution. Our GCN encoder is constructed with two layers de- 

ned as follows: 

 

(1) = f ReLU (F , S | W 

(0) ) ; (1) 

 

(2) = f linear (Z 

(1) , S | W 

(1) ) , (2) 

here Z 

(1) and Z 

(2) are the results of computing the first and the 

econd layers, respectively. Z 

(2) represents the desired alignment 

f source graphs to the target graphs. W 

(l) is a weight matrix used 

s a filter to learn the convolution of the layers l in the GCN. Rec- 

ified Linear Unit, ReLU(. ) is the activation function of the first 

ayer and a linear function is used for the second layer. As in GCN 

 Kipf and Welling, 2016 ), the graph convolution function f (. ) is de- 

ned as follows: 

f φ(F (l) , S | W 

(l) ) = φ( ̃  D 

− 1 
2 ̃  S ̃  D 

− 1 
2 F (l) W 

(l) ) . (3) 

φ is the activation function for a specific layer (l) , ˜ S = S + I

here I is the identity matrix, and 

˜ D ii = 

∑ 

j ̃
 S i j is a diagonal ma- 
6 
rix. As suggested in Pan et al. (2018a) we propose to decode the 

mbedded graph Z by reconstructing the target adjacency matrix 
ˆ 
 . Specifically, we measure it by computing the sigmoid function of 

he dot product of embedded graphs z j of the subject (i.e., node) j

nd the transposed embedded graphs z � 
i 

of the subject i : 

ec ( ̂  S | Z ) = 

1 

1 + e −(z � 
i 
·z j ) 

. (4) 

The goal of training this first autoencoder ARGA 

tr 
T is to minimize 

ts reconstruction error, so that its overall optimization energy is 

ritten as follows: 

 = E G (F , S ) [ log Dec ( ̂  S | Z )] . (5) 

The key idea in this step is conditioning the embedded graphs 

y the prior distribution of the source graphs. This is modeled by 

n adversarial regularizer D align that enforces the latent representa- 

ion to match the prior distribution of the source domain. This dis- 

riminator is a multi-layer perceptron, considered as a binary clas- 

ifier, tries to minimize the error in discriminating between real 

ata distribution (source graphs) and fake one generated from our 

ncoder. Hence, we formulate the cost function of the prediction- 

ndependent alignment of source and target domains as follows: 

in 

G DA 

max 
D align 

E p (real) 
[ log D align (F tr 

S )] + E p ( fake ) 
[ log (1 − D align (Z 

tr 
T ))) ] , (6) 

here E is the cross-entropy cost, Z 

tr 
T 

is the embedding of the 

ligned source-to-target graphs generated from our graph encoder 

 DA (F tr 
S 

, S tr 
T 
) and D align is the binary classifier with maximum log 

ikelihood objective. 

.3. Dual adversarial regularization for source graph latent 

epresentation 

To predict the target graphs of a testing subject, we propose to 

elect its nearest training neighbors in the embedded source do- 

ain ( Fig. 2 C). Then, we average their corresponding aligned em- 

edded target graphs which represent the predicted target graphs. 

o do so, we learn a second ARGA for source graph latent rep- 

esentation of training and testing subjects ARGA 

t r+ t s . Specifically, 



A. Bessadok, M.A. Mahjoub and I. Rekik Medical Image Analysis 68 (2021) 101902 

w

o

a

A

A

s

t

T

d

g

v

o

r

a

d

(

(

o

a

S

p

3

t

t

l  

s

s

t

i

h

s

c

b

(

t

g

o

t

i

p

w

w

c

w

b

g

L

4

4

N

(

j

i

a

g

h

a

t

o

d

h

(

a

s

g

s

s

4

e

d

3  

b

M

n  

w

f  

a

o  

b

c

4

m

2 http://fcon _ 10 0 0.projects.nitrc.org/indi/abide/ . 
e stack the source feature vector of a testing subject below those 

f the training samples used in the first ARGA 

tr 
T , then we gener- 

te their latent representation using the generator G S (F t r+ t s 
S 

, S t r+ t s 
S 

) . 

lthough regarded as an efficient source graph embedding model, 

RGA 

t r+ t s 
S suffers from one major limitation: it does not align the 

ource domain to the target domain as ARGA 

tr 
T . It basically solves 

he domain shift and brain graph prediction problems separately. 

o iron out such weakness, we propose a prediction-dependent 

omain alignment where we simultaneously integrate the target 

raph prediction and the domain alignment tasks into a single ad- 

ersarial learning model, where each tasks boosts the performance 

f the other task in a progressive manner. Specifically, we aim to 

egularize the source embedding of training and testing subject by 

lternating two discriminators: at each epoch, we activate just one 

iscriminator : 

1) the discriminator D align matches the distribution of the source 

embedding Z 

t r+ t s 
S 

generate d from our encoder G S (F t r+ t s 
S 

, S t r+ t s 
S 

) 

with the training and testing source graphs ( Fig. 2 C). And the 

resulting embedded source domain Z 

t r+ t s 
S 

is then fe d to the 

block of target graph prediction illustrated in ( Fig. 2 D) for target 

graphs prediction of the testing subject. Next, we predict the 

target graphs corresponding to each source graph in the train- 

ing set using nested leave-one-out cross-validation. We fed the 

predicted target brain graphs to a second discriminator D pred 

that will regularize, in the next epoch, the source graph em- 

bedding of the training and testing subjects. 

2) the discriminator D pred regularizes ARGA 

t r+ t s 
S by enforcing the 

embedded source distribution to match the distribution of the 

predicted training target graphs. Specifically, it distinguishes be- 

tween the real target graph of the training samples F tr 
T 

and their 

predicted target graphs ˆ F tr 
T 

. So we define the energy function of 

ARGA 

t r+ t s 
S when training both discriminator as follows: 

L = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

min G S E p ( fake ) 
[ log (1 − D align (Z 

t r+ t s 
S 

))) ] 
max D align 

E p (real) 
[ log D align (F t r+ t s 

S 
)] 

+ E p ( fake ) 
[ log (1 − D align (Z 

t r+ t s 
S 

)) ] 
max D pred 

E p (real) 
[ log D pred (F tr 

T )] 

+ E p ( fake ) 
[ log (1 − D pred ( ̂  F tr 

T )) ]) . 

(7) 

Accordingly, the predicted target graphs boost the alignment 

f source domain to the target domain and simultaneously the 

ligned source graphs improve the prediction of the target graph. 

ince both tasks rely on each other, we are jointly solving both 

roblems within a unified adversarial framework. 

.4. Target graphs prediction for the testing subject 

To predict the target graph of the testing subject belonging to 

he cluster c, we assume that when a training subject is similar 

o the testing subject in the source domain, they are also simi- 

ar in the target domain. So we aim in this step to find the most

imilar training subjects to the testing subject using their learned 

ource embeddings. We further propose to enforce a local consis- 

ency in source and target neighborhoods for the selected train- 

ng source neighbors. Mainly, we select source training graphs that 

ave a large overlap in nearest neighbors across the embedded 

ource and target domains. A selected training source sample be- 

omes more reliable with larger local neighborhood overlaps across 

oth domains. To do so, we learn a connectomic manifold (MKML) 

 Wang et al., 2017 ) χ S that quantifies the relationship between 

raining and testing subjects using their aligned source and tar- 

et embeddings, and learn a second connectomic manifol χ T using 

nly the training aligned source-to-target embeddings ( Fig. 2 –D). 

Next, we first identify in the source domain the top K-closest 

raining subjects to the testing subject by sorting the learned man- 

fold χ S . Second, we find for each of the K selected training sam- 
7 
les its nb nearest neighbors in both manifolds χ S and χ T . Third, 

e store the nb samples in L S and L T lists in order to assign a 

eighted similarity score w (k ) for each training subject k . Last, we 

ompute their overlap using the following formula: 

 (k ) = exp (( 
L S ∩ L T 

nb 
) × χS(ts, k )) . (8) 

Finally, we average the target graphs of the selected nb neigh- 

ors with the highest w scores in order to estimate the target 

raph of the testing subject. We detail the steps of our proposed 

G-DADA framework in the Algorithm 1 . 

. Results and discussion 

.1. Connectomic dataset 

A set of 150 structural T1-w MRI data for 75 ASD and 75 

C subjects extracted from Autism Brain Imaging Data Exchange 

ABIDE 2 ) public dataset was used. Both hemispheres of each sub- 

ect were reconstructed using FreeSurfer ( Fischl, 2012 ). Then us- 

ng Desikan–Killiany Atlas we parcellated the hemispheres into 35 

natomical regions. Each subject has three morphological brain 

raphs (MBG) using the following cortical measurements in each 

emisphere: mean sulcal depth, maximum principal curvature and 

verage curvature. Each MBG is encoded in a symmetric ma- 

rix that quantifies the morphological similarity between pairs 

f ROIs. Morphological brain networks have been recently intro- 

uced to investigate brain morphology on a connectional level in 

ealth ( Dhifallah et al., 2019; Nebli and Rekik, 2020 ) and disease 

 Alzheimer’s Disease Neuroimaging Initiative et al., 2018; Banka 

nd Rekik, 2019; Lisowska et al., 2017; Mahjoub et al., 2018; Sous- 

ia and Rekik, 2018 ). Mainly, we used the morphological brain 

raphs as a proof-of-concept for predicting a target graph from a 

ource graph where both source and target domains have different 

tatistical distributions. 

.2. Parameter setting 

We construct our encoder with two layers, the hidden and the 

mbedding layers, each comprising 32 neurons. We construct both 

iscriminators D align and D pred with two layers composed of 64 and 

2 neurons, respectively. As in ARGA ( Pan et al., 2018a ), we fix

oth learning rates of the encoder and discriminators to 0.001. For 

KML parameters ( Wang et al., 2017 ), we set the number of ker- 

els to 10 and we fix the number of clusters to c = 3 . We note that

e evaluated our framework when varying the number of clusters 

rom c = 2 to c = 4 . The best performance was achieved for c = 3

nd the improvement was negligible when increasing the number 

f clusters to c = 4 . For target graph prediction, we set the num-

er of source neighbors to 5. The same parameters are used for all 

omparison methods. 

.3. Comparison methods 

We compared our LG-DADA method with two state-of-the-art 

ethods that do not use a pre-clustering step: 

• ADA: We use for this method the original ARGA ( Pan et al., 

2018a ) for adversarial domain alignment (ADA), where we 

move the source domain to the target one. For the reg- 

ularization we use only one discriminator D align as in 

Pan et al. (2018a) and for the input target adjacency matrix es- 

timation we use the MKML algorithm ( Wang et al., 2017 ). 

http://fcon_1000.projects.nitrc.org/indi/abide/
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Algorithm 1 Learning-guided graph dual adversarial domain alignment for target graph prediction. 

1: INPUTS: Set of source brain graphs: { F 1 S , . . . , F 
i 
S 
, . . . F n 

S 
} ;Set of target brain graphs: { F 1 T , . . . , F 

i 
T 
, . . . F n 

T 
; C: number of clusters; T : number of 

epoch; K: number of steps for iterating both discriminators; CV : number of folds in cross-validation strategy 

2: Cluster the source brain graphs F S by learning a similarity matrix using MKML algorithm: 

3: for c=1,…,C do 

4: Use leave-one-out cross-validation to generate training and testing subject from source and target graphs of the cluster c. 

5: Learn adjacency matrices S using MKML algorithm:(1) S tr 
T 

for target graph of training samples F tr 
T 

(2) S t r+ t s 
S 

for source graph of 

training and testing samples F t r+ t s 
S 

6: Domain alignment and target graph embedding for training subjects using ARGA 

tr 
T : Z 

(1) = f ReLU ( F 
tr 
S 

, S tr 
T 

| W 

(0) ); Z 

tr 
T 

= f linear (Z 

(1) , S tr 
T 

| 
W 

(1) ) 

7: for iterator = 1,2,3, …, T do 

8: for k = 1,2, …, K do 

9: Sample m entities { z (1) ,…, z (m ) } from latent matrix Z 

tr 
T 

10: Sample m entities { f (1) ,…, f (m ) } from the prior distribution F tr 
S 

11: Update the discriminator D align with its stochastic gradient: � 

1 
m 

∑ m 

i =1 [ log D align ( f 
i ) + log (1 − D align ( z 

i ))] 

12: end for 

13: Update the graph autoencoder with its stochastic gradient by Eq.(5). 

14: end for 

15: Dual adversarial regularization and source graph latent representation of training and testing subjects ARGA 

t r+ t s 
S : Z 

(1) = 

f ReLU (F t r+ t s 
S 

, S t r+ t s 
S 

| W 

(0) ); Z 

t r+ t s 
S 

= f linear (Z 

(1) , S t r+ t s 
S 

| W 

(1) ) 

16: for iterator = 1,2,3, …, T do 

17: if iterator = odd then Activate D align 

18: for k = 1,2, …, K do 

19: Sample m entities { z (1) ,…, z (m ) } from latent matrix Z 

t r+ t s 
S 

20: Sample m entities { f (1) ,…, f (m ) } from the prior distribution F t r+ t s 
S 

21: Update the discriminator D align with its stochastic gradient: � 

1 
m 

∑ m 

i =1 [ log D align ( f 
i ) + log (1 − D align ( z 

i ))] 

22: end for 

23: Update the graph autoencoder with its stochastic gradient by Eq.(5). 

24: Target graph prediction for the training subjects:(1) Exclude testing subject from Z 

t r+ t s 
S 

to get Z 

tr 
S 

(2) Use leave-one-out cross- 

validation to generate new testing subject from Z 

tr 
S 

and also from Z 

tr 
T 

25: for i = 1, …, CV do 

26: Generate the new nested source and target graph embeddings: (1) stack the source graph embeddings of training and the 

new testing subject: Z̄ 

t r+ t s 
S 

(2) exclude the testing subject from the new target graph embedding: Z̄ 

tr 
T 

27: Learn a connectomic manifold using MKML algorithm for each of the new generated source and target graph embeddings: 

χ̄ t r+ t s 
S 

and, χ̄ tr 
T 

28: Predict the target graph 

ˆ F i 
T 

of the testing subject i using the weighting strategy defined by Eq.(8). 

29: end for 

30: Stack vertically all the predicted target graphs of the training subjects: ˆ F tr 
T 

. 

31: else Activate D pred 

32: for k = 1,2, …, K do 

33: Sample m entities { ˆ F (1) ,…, ̂ F (m ) } from the predicted target graph 

ˆ F tr 
T 

34: Sample m entities { f (1) 
T 

,…, f (m ) 
T 

} from the prior distribution of the real target graph F tr 
T 

35: Update the discriminator D pred with its stochastic gradient: � 

1 
m 

∑ m 

i =1 [ log D pred (f i 
T 
) + log (1 − D pred ( ̂ F i ))] 

36: end for 

37: Update the graph autoencoder with its stochastic gradient by Eq.(5). 

38: end if 

39: end for 

40: Predict the missing target graph of the testing subject:(1) Learn a connectomic manifold using MKML algorithm for each of the 

outputs of step (6) and (15), Z 

tr 
T 

and Z 

t r+ t s 
S 

respectively, to get χ T and χ S (2) Predict the target graph of the testing subject using the 

weighting strategy defined by Eq.(8). 

41: OUTPUT: Return the predicted brain graph of the testing subject F ts 
T 

. 

42: end for 

4

w

t

t

• CCA-DA: We compared LG-DADA with the proposed network 

prediction method in Zhu and Rekik (2018) , where both source 

and target domains are mapped into a new share space us- 

ing CCA algorithm ( Hardoon et al., 2004 ). Then, a cross-domain 

weighting strategy is adopted to predict the target brain graph 

of the testing subjects. 
R

8 
.4. Evaluation using cross-validation 

Following the graph pre-clustering step, we evaluate our frame- 

ork using leave-one-out cross-validation (LOO-CV) on each clus- 

er and report the average prediction results. We also use LOO-CV 

o evaluate the benchmark methods ( Pan et al., 2018a; Zhu and 

ekik, 2018 ). 
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Fig. 3. Comparison of LG-DADA against state-of-the-art methods using pearson correlation coefficient (PCC). Source graph 1: the maximum principal curvature. Source graph 

2: mean sulcal depth. Source graph 3: average curvature. ADA: the adversarial domain alignment using ARGA ( Pan et al., 2018a ) with a learned similarity matrix computed 

using MKML algorithm. CCA-DA: the multi-target prediction method proposed in Zhu and Rekik (2018) where CCA is used for domain alignment. LG-DADA: the proposed dual 

adversarial regularization for source-to-target domain alignment using MKML for adjacency matrix estimation and using weighting strategy for training samples selection. 
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.5. Evaluation metrics 

To evaluate our framework, we used Pearson correlation coeffi- 

ient (PCC) ( Egghe and Leydesdorff, 2009 ) and mean absolute error 

MAE) ( Lin et al., 1990 ). PCC measures the strength of the relation-

hip between F i 
T 

the ground truth graph of a representative subject 

 and the predicted target graph 

ˆ F i 
T 

. We propose first to compute 

he PCC for each representative subject in the dataset. Then, we 

onsider the average of all resulting PCCs as the final measure to 

valuate our framework. On the other hand, the MAE represents 

he prediction error measured using the average absolute differ- 

nce between the ground truth graphs and their corresponding 

redicted graphs. Thus, a small MAE means a better performance. 

imilar to PCC, we consider the average of MAEs across all subjects 

s the final measure to evaluate our framework. 

.6. Results and benchmarking 

In this work, we proposed LG-DADA, a geometric deep learning 

ramework which jointly performs a domain alignment of source 

nd target brain graphs and predict target brain graph from a sin- 

le source brain graph. First, following a pre-clustering step to cir- 

umvent the issue of generative mode collapse where a very lim- 

ted number of modes are generated, LG-DADA learns for each 

luster how to move the source domain to a target domain by em- 

edding source brain graphs of training samples and their learned 
9 
djacency matrices using their target brain graphs. Second, it per- 

orms a source graph embedding of training and testing subjects 

n order to search the most similar training samples to the testing 

ubject in the source domain. Third, it learns a connectomic mani- 

old for each of these resulting latent representations of the source 

nd target domains in order to search for a local shared neighbor- 

ood in both domains. Once the shared neighbors across domains 

re identified, the target graph of the testing subject is predicted 

y averaging the target graphs of these selected neighbors. 

We conducted three different experiments, each taking one of 

he three morphological brain graphs as a source graph and the 

wo remaining ones as target graphs to predict. We display in 

ig. 3 the average PCC for each experiment (e.g., using source 

raph 1 to predict target graphs 1 and 2). Our method achieved 

he best prediction performance across all experiments when vary- 

ng the source and target graphs, demonstrating its adaptiveness 

o diverse combinations of source and target domains. This also 

hows that LG-DADA can handle different profiles of domain shifts. 

pecifically, our method produced the highest PCC result when 

onsidering the maximum principal curvature as the source do- 

ain ( Fig. 3 A). As illustrated in ( Fig. 3 D), LG-DADA has a better

verall average PCC across different experiments than both ADA 

 Pan et al., 2018a ) and CCA-DA methods ( Zhu and Rekik, 2018 ). We

ote that despite the significant outperformance of CCA-based do- 

ain alignment ( Zhu and Rekik, 2018 ) in comparison with other 

aseline techniques, our LG-DADA consistently outperformed this 
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Fig. 4. Comparison of LG-DADA against state-of-the-art methods using mean absolute error (MAE). Source graph 1: the maximum principal curvature. Source graph 2: mean 

sulcal depth. Source graph 3: average curvature. ADA: the adversarial domain alignment using ARGA ( Pan et al., 2018a ) with a learned similarity matrix computed using 

MKML algorithm. CCA-DA: the multi-target prediction method proposed in Zhu and Rekik (2018) where CCA is used for domain alignment. LG-DADA: the proposed dual 

adversarial regularization for source-to-target domain alignment using MKML for adjacency matrix estimation and using weighting strategy for training samples selection. 
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ethod across all experiments using both evaluation metrics. This 

igher performance can be explained by the fact that our LG-DADA 

an solve the data fracture issue and the multi-view graph pre- 

iction task simultaneously while CCA-DA framework solved each 

f these problems independently. This points to the advantage of 

he synergy existing between the domain alignment and the graph 

rediction tasks modeled by our dual regularization step that effi- 

iently learns the source graph embedding Z 

t r+ t s 
S 

while performing 

n alignment of the source graphs to the predicted training target 

raphs. Moreover, CCA performs a domain alignment of source to 

arget domain without learning their optimized inherent represen- 

ations for the target prediction tasks (i.e., supervised by the target 

rediction task). Hence, leveraging ARGA to learn the latent repre- 

entation of homogeneous brain graphs allows a better alignment 

f the source and target domains. 

Fig. 4 A–C show the lowest MAE produced by LG-DADA when 

onsidering different source graphs. In particular, it outperformed 

he ADA method that trained an ARGA using a single discriminator 

o regularize both domain alignment and source graph embedding. 

uch good results demonstrate the advantage of our proposed dual 

dversarial regularization for source graph embedding in addition 

o the pre-clustering step for disentangling heterogeneous distri- 

utions and avoid GAN mode collapse ( Goodfellow et al., 2014; 

oodfellow, 2016; Arjovsky et al., 2017 ). This can be explained by 

he fact that the clustering step allows to transform the heteroge- 
t

10 
eous data into homogeneous distributions each presents a single 

ode of the data. Hence a GAN model can easily trained on homo- 

eneous data. Fig. 5 displays the residual network (i.e., the abso- 

ute difference between the predicted and ground truth networks) 

or a randomly selected subject. Notably, LG-DADA produced a re- 

uced residual error when predicting target graph 1 (derived from 

he maximum principle curvature) from the source graph (derived 

rom sulcal depth) in comparison with benchmark methods. As for 

redicting target graph 2 (derived from the average curvature), LG- 

ADA outperformed ADA, however it produced a slightly higher 

esidual than CCA-DA. We included this example in our results to 

how that while the average results of LG-DADA were remarkable 

nd outperform comparison methods, our method might lag be- 

ind for a few particular subjects. 

.7. Limitations and recommendations for future work 

Although our method produced the best results in predicting 

ifferent tar get brain graphs from a source graph, it has a few 

imitations. First , we predicted each target graph independently. 

e aim in the future to jointly predict all target graphs from 

he source graph. Specifically, we will improve the domain align- 

ent step by leveraging a recent GAN-based method ( Pei et al., 

018 ) that is able to align different data distributions using mul- 

iple adversarial regularizers. However, this method only works 
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Fig. 5. Visual comparison between the original and the predicted target graph of a representative testing subject using three different methods: ADA ( Pan et al., 2018a ), 

CCA-DA ( Zhu and Rekik, 2018 ) and LG-DADA. We display the residual error computed using mean absolute error metric between the original brain graph and the predicted 

graph. Source brain graph is mean sulcal depth. Target brain graphs are the maximum principal curvature (Target graph 1) and average curvature (Target graph 2). 
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n images so we aim to adopt it to geometric data. Second , in

ur LG-DADA framework, we used the standard autoencoder. How- 

ver, as demonstrated in Pan et al. (2018a) , we can use the vari-

tional autoencoder ( Pu et al., 2016 ) which added some improve- 

ent to autoencoder model. Particularly, one can use variational 

CN which outperformed the standard GCN in very recent study 

 Tiao et al., 2019 ). Third , we can increase the number of neurons

f the encoder and the dual discriminators, as recommended by 

an et al. (2018a) . To effectively define the number of layers and 

he number of neurones in each layer we can leverage a frame- 

ork ( Alvarez and Salzmann, 2016 ) that can automatically esti- 

ate these parameters and thus improve the computation cost of 

raining our LG-DADA framework. Moreover, this study was limited 

o only evaluating our framework on morphological brain graphs. 

lthough our evaluation connectomic dataset is heterogeneous, it 

ould be interesting to test our model on multimodal graphs such 

s functional ( Mhiri and Rekik, 2020 ) and structural ( Wen et al.,

017 ) brain graphs which are highly heterogeneous. Notably, our 

ramework produced the lowest error and the highest PCC when 

redicting three target brain graphs from different source graphs, 

hich demonstrates the potential utility of our predictive frame- 

ork in disease diagnosis tasks. In this paper, we primarily focused 

n brain graph synthesis which is a challenging task, however, we 

im in our future work to leverage the predicted target graphs 

n early disease identification such as classifying mild cognitive 

mpairment subjects and Alzheimer’s disease subjects.. Ultimately, 

ur target brain graph prediction framework from a source graph 

rovides a new and exciting venue for better predicting missing 

rain graphs while preserving the real connectivity patterns exist- 

ng between brain regions. Thus, we will investigate in our future 

ork the discriminative power of the predicted brain graphs in the 
11 
iagnosis of different neurological disorders such as Alzheimer’s 

isease ( Soussia and Rekik, 2019; 2018 ). 

. Conclusion 

In this work, we introduced LG-DADA, a geometric deep learn- 

ng framework for target brain graph prediction from a single 

ource graph. Our key contribution consists in designing: (1) a do- 

ain alignment of source domain to the target domain by learn- 

ng their latent representations, and (2) a dual adversarial regular- 

zation that synergistically learns a source embedding of training 

nd testing brain graphs using two discriminators and predicts the 

raining target graphs. We evaluated our framework on morpho- 

ogical brain graphs of healthy and disordered subjects. In our fu- 

ure work, we will first leverage cycleGAN, a recent GAN-based al- 

orithm ( Zhu et al., 2017 ), to improve domain alignment by mov- 

ng the source to the target and translating back the target to the 

ource domain while leveraging our proposed dual discriminators. 

his algorithm has been widely used for medical image synthesis 

asks ( Hiasa et al., 2018 ). We aim to adopt it for graph synthesis

ask. Second, we will learn a joint alignment of all source and tar- 

et graphs that will maximize the correlation between these do- 

ains (i.e., source and target) and, third we will predict all tar- 

et graphs simultaneously. It would be also interesting to include 

ther brain graphs such as functional or structural ( Liu et al., 2016 )

nd to compare our model to existing domain adaptation methods 

 Hoffman et al., 2017; Tzeng et al., 2017 ). 
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