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Abstract.
Background: Amyloid-� (A�) accumulation in brain of patients with suspected Alzheimer’s disease (AD) can be assessed
by positron emission tomography (PET) in vivo. While visual classification prevails in the clinical routine, semiquantitative
PET analyses may enable more reliable evaluation of cases with a visually uncertain, borderline A� accumulation.
Objective: We evaluated different analysis approaches (visual/semiquantitative) to find the most accurate and sensitive
interpretation of A�-PET for predicting risk of progression from mild cognitive impairment (MCI) to AD.
Methods: Based on standard uptake value (SUV) ratios of a cortical-composite volume of interest of 18F-AV45-PET from MCI
subjects (n = 396, ADNI database), we compared three different reference region (cerebellar grey matter, CBL; brainstem,
BST; white matter, WM) normalizations and the visual read by receiver operator characteristics for calculating a hazard ratio
(HR) for progression to Alzheimer’s disease dementia (ADD).
Results: During a mean follow-up time of 45.6 ± 13.0 months, 28% of the MCI cases (110/396) converted to ADD. Among
the tested methods, the WM reference showed best discriminatory power and progression-risk stratification (HRWM of 4.4
[2.6–7.6]), but the combined results of the visual and semiquantitative analysis with all three reference regions showed an
even higher discriminatory power.
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Conclusion: A multi-analytical composite of visual and semiquantitative reference tissue analyses of 18F-AV45-PET gave
improved risk stratification for progression from MCI to ADD relative to performance of single read-outs. This optimized
approach is of special interest for prospective treatment trials, which demand a high accuracy.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
cause of dementia and is to be strongly suspected
in elderly patients with progressive memory impair-
ment [1, 2]. Following exclusion of other plausible
etiologies, the definitive diagnosis of AD still requires
confirmation postmortem through histopathological
detection of amyloid-� (A�) plaques and neu-
rofibrillary tangles [3]. However, biomarkers such
as diagnostic molecular imaging are assuming an
increasing role in the diagnosis of AD in living
patients, and in staging of disease progression [4].
Artificial intelligence-based algorithms applied to
multimodal imaging data have achieved 81% accu-
racy in predicting progression from the prodromal
mild cognitive impairment (MCI) to Alzheimer’s
disease dementia (ADD) [5]. In a comparison
between two molecular imaging modalities with
positron emission tomography (PET), the cerebral
metabolism indexed by the glucose analogue 18F-
fluorodeoxyglucose (18F-FDG) proved to be a better
predictor of current cognitive impairment than was
current A� burden indexed by 18F-florbetapir (18F-
AV45) PET [6]. Since A� accumulation may initiate
years before the neuronal injury of AD has progressed
to the point of reducing cerebral metabolism to FDG-
PET [7], it is important to define a threshold level
of A� accumulation that predicts future cognitive
deterioration. A machine learning method combining
A�-PET and fractal dimension analysis of white mat-
ter (WM) structure to MRI gave accuracy as high as
89% in predicting this progression [8]. Recent devel-
opments in A�-PET methodology afford improved
quantitation of A� burden in vivo [9, 10], which is
of proven diagnostic value [11, 12]. Thus, an abun-
dance of 11C-PiB PET studies attest to the relatively
higher baseline A� burden in amnestic MCI patients
destined to convert to ADD [13–15]. Furthermore,
a meta-analysis of stand-alone A�-PET and struc-
tural MR studies gave similarly high effect sizes for
predicting progression (Hedge’s g = 1.3) [16]. While
hybrid A�-PET/magnetic resonance imaging (MRI)
may gain increasing traction for diagnosis and the
prediction of AD progression [17], we foresee stand-

alone molecular imaging to remain predominant in
clinical practice.

The distinction between A�-positivity (A�+) and
negativity (A�-) is often achieved in the clinic by
means of a visual read of the PET scan. This distinc-
tion can be difficult to classify, especially in patients
with a low A� burden or a spatially circumscribed A�
accumulation. Visual and semiquantitative analyses
of A�-PET showed comparable results for A� quan-
tification [18] and predicting conversion from MCI
[19]. Nevertheless, a quantitative analysis seems apt
to be superior, especially for predicting progression,
due to its potentially more sensitive and reproducible
detection of physiologically-defined endpoints. Maps
of standard uptake value ratios (SUVR) relative to
an appropriate reference region are widely used in
the semiquantitative analysis of A�-PET. Although
the entire cerebellum and the cerebellar grey mat-
ter volumes have frequently been used as reference
regions with the A�-tracers 18F-AV45- and 11C-PIB,
the excessive variability observed in longitudinal PET
measurements raises some concerns about the fit-
ness of this approach [20]. Hence, a reference region
consisting of subcortical WM has recently emerged
as a preferred approach for monitoring longitudinal
A� changes [21–23]. This WM approach may be
inherently robust to interference from longitudinal
changes in cerebral perfusion with disease progres-
sion [24]. Furthermore, WM normalization of the
A�-PET signal gave higher correlation between PET
and biochemical findings in cerebrospinal fluid, indi-
cating a stronger relationship with pathology [25].

A major clinical question to be answered with
A�-PET entails the identification of those patients
with MCI who are likely to develop ADD in the
coming years, which is also an important pre-
condition for designing trials of disease-modifying
therapies. Therefore, we evaluated 18F-AV45-PET
results from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) dataset to show the impact
of different reference regions on the sensitivity for
predicting progression from MCI to ADD within a
minimum follow-up period of two years. To this end,
we compared and combined results of various semi-
quantitative approaches as well as the visual read,
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aiming to gain an improved categorization scheme
for predicting progression to ADD. We especially
focused on subjects with borderline pathological A�
accumulation of magnitude close to the established
semiquantitative thresholds [26], as these clinical
reads are especially problematic and thus most likely
to benefit from an optimization of risk prediction,
e.g., for inclusion in clinical trials.

MATERIAL AND METHODS

Alzheimer’s disease neuroimaging initiative

Data used in the preparation of this arti-
cle were obtained from the ADNI database
(http://adni.loni.usc.edu). The ADNI was launched
in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Admin-
istration (FDA), private pharmaceutical companies
and non-profit organizations, as a $60 million, 5-
year public-private partnership. The primary goal of
ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure
the progression of MCI and early AD. Determination
of sensitive and specific markers of very early AD
progression is intended to aid researchers and clin-
icians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of
clinical trials.

The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and
University of California – San Francisco. ADNI is
the result of efforts of many co-investigators from a
broad range of academic institutions and private cor-
porations, and subjects have been recruited from over
50 sites across the U.S. and Canada. The initial goal of

ADNI was to recruit 800 subjects but ADNI has been
followed by ADNI-GO and ADNI-2. To date these
three protocols have recruited over 1,500 adults, aged
55 to 90 years, to participate in the research, consist-
ing of cognitively normal older individuals, people
with early or late MCI, and people with early AD. The
follow up duration of each group is specified in the
protocols for ADNI-1, ADNI-2 and ADNI-GO. Sub-
jects originally recruited for ADNI-1 and ADNI-GO
had the option to be followed in ADNI-2. For up-
to-date information, see http://www.adni-info.org.
Pre-processed brain 18F-AV45-PET images and T1-
weighted (T1w) MPRAGE images were downloaded
from the ADNI database.

Patient selection and study design

We included 486 subjects from ADNI-GO and
ADNI-2 with a clinical diagnosis of MCI and present-
ing a brain 18F-AV45-PET/T1w MPRAGE dataset at
their study baseline. Further inclusion was defined by
≥24 months follow up or progression to ADD during
follow up. The last follow-up time-point or the time of
progression was extracted from the ADNI database.
90 subjects were excluded due to <24 months follow-
up without progression, resulting in a total number
of 396 evaluated subjects. We recorded age, gender,
years of education, ApoE alleles, and Alzheimer’s
Disease Assessment Scale (ADAS-Cog 13) score for
all patients. Details of the resulting study groups
including demographics are provided in Table 1.

Image data

ADNI 18F-AV45-PET acquisition and
pre-processing

The 18F-AV45-PET images had been acquired
using Siemens, GE, and Philips PET scanners accord-
ing to a standard dynamic 50–70 min acquisition

Table 1
Demographics and covariates of the whole study population and the subgroups of progressors

and non-progressors from mild cognitive impairment to Alzheimer’s disease dementia

All Progressors Non-progressors

Number of subjects 396 110 286
Age (y; mean ± SD) 72.4 ± 7.8 73.9 ± 7.5 71.8 ± 7.8
Gender (♂/♀) 226/170 62/48 164/122
Follow-up-time (mo; mean ± SD) 45.6 ± 13.0 40.2 ± 15.2 47.6 ± 11.4
Education (y; mean ± SD) 16.2 ± 2.7 16.0 ± 2.6 16.2 ± 2.7
APOE �4 (N of alleles; mean ± SD) 0.56 ± 0.66 0.82 ± 0.64 0.46 ± 0.64
ADAS-Cog 13 14.7 ± 7.0 20.3 ± 7.5 12.5 ± 5.4
ADAS annual decrease (N = 291) –0.47 ± 1.72 –1.96 ± 2.07 0.02 ± 1.24
Time to progression (mo; mean ± SD) 24.5 ± 15.4 24.5 ± 15.4

y, years; mo, months; SD, standard deviation; ADAS, Alzheimer’s disease assessment scale.

http://adni.loni.usc.edu
http://www.adni-info.org
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protocol following the intravenous injection of
370 ± 37 MBq of 18F-AV45. Data were corrected for
scatter and for attenuation, which was measured using
the CT scan for PET/CT scanners, or a transmis-
sion scan with 68Ge or 137Cs rotating rod sources
for stand-alone PET scanners. Images were recon-
structed using scanner-specific algorithms, and sent
to the University of Michigan, where they were
reviewed for artifacts and transmitted to the Labo-
ratory of NeuroImaging (LONI) for storage.

Downloaded 18F-AV45-PET images in DICOM
format had been pre-processed in four steps: 1)
motion correction by co-registration of single 5-min
frames; 2) time frame averaging (50–70 min p.i.);
3) reorientation in a standardized 160 × 160 × 96
matrix with 1.5 mm cubic voxels; 4) smoothing with
a scanner-specific filter function to an isotropic res-
olution of 8 mm. Partial volume correction was not
performed.

ADNI MRI acquisition and pre-processing
T1-weighted MRI scans had been acquired using

Siemens, GE, or Philips MRI scanners according to a
standard protocol [27] involving acquisitions of two
3-D MPRAGE imaging sequences per subject. Of
the two images acquired per subject and time-point,
the ADNI quality assurance team selected the better
image for pre-processing, based on the presence and
severity of commonly occurring image artifacts.

MRI pre-processing involved: 1) application of a
scanner-specific correction for gradient nonlinearity
distortion (Gradwarp) [28]; 2) correction for image
intensity non-uniformity (B1) [27]; 3) histogram peak
sharpening algorithm for bias field correction (N3)
[29]; 4) application of spatial scaling factors obtained
by phantom measurements. For images acquired
on Philips scanners, the B1 correction was already
implemented, and the gradient systems with this
instrument tended to be linear [27].

Image processing
All procedures were performed according to an

automatic protocol using the PMOD PNEURO tool
(V. 3.5 PMOD Technologies, Zürich): PET images
were rigidly co-registered to the corresponding MRI
to calculate a linear transformation (PET-2-MRI).
Individual MR images were nonlinearly co-registered
to the standard Montreal Neurological Institute
(MNI)-space MRI template (MRI-2-MNI), while
PET-2-MRI and MRI-2-MNI transformations were
used to resample the PET images into the MNI space.
T1-weighted MR images were segmented into gray
matter (GM), WM, and cerebrospinal fluid [30] to
generate a total of 83 individual brain VOIs for each
subject in the MNI-space, according to the atlas of
Hammers [31]. Inverse PET-2-MNI transformations
were used to resample VOIs from the Hammers
atlas to the native PET space, in which VOI cal-
culations were subsequently performed. All images
were visually checked for correct co-registration and
appropriate segmentation.

Image analysis
For the visual analysis, two experts with consider-

able experience in brain A� imaging independently
read the PET scans. The images received binary rat-
ing as either A�+ or A�–. Discrepant results were
read and decided by a third expert (majority read).

For the semiquantitative analysis, a composite
(COMP) cortical VOI comprising frontal, parietal,
temporal regions, and precuneal/posterior cingulate
gyrus was calculated as described previously [21].
Three established reference regions were used: 1)
cerebellar grey matter (CBL), 2) brainstem (BST),
and 3) subcortical WM (see Fig. 1). The WM refer-
ence tissue was generated by a subtraction method
(full atlas - individual grey matter), as this method
performed best in our previous study [32].

Fig. 1. Illustration of the three different reference regions with voxels containing reference region tissue highlighted in red and the remaining
brain in green for A) cerebellar grey matter (CBL); B) brainstem (BST); C) subcortical white matter (WM).
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Statistics

The results of the visual read were compared
between both expert readers using the Kappa coeffi-
cient. Mean (±SD) COMP-SUVR and single region
SUVR were calculated for all patients according to
the different reference regions listed above (CBL,
BST, WM) and compared between progressors and
non-progressors using a one-way ANOVA. Visual
read and semiquantitative PET classifications were
compared amongst each other by correlation analy-
sis (Pearson’s correlation coefficient) and by receiver
operator characteristics (ROC) to estimate the best
performing method for predicting a progression
from MCI to ADD, i.e., the method with greatest
area under the curve (AUC). ROCs were compared
using the ROC 2 curves tool, version 6 (ACOMED
statistic, Leipzig Germany), which implements the
non-parametric approach of DeLong [33]. 18F-AV45
cut-off values, sensitivities, and specificities were cal-
culated post hoc as those giving the best tradeoff
between sensitivity and specificity (i.e., the high-
est sum of sensitivity and specificity values) for
the discrimination between progressors and non-
progressors according to the three reference region
methods. Obtained cut-off values were then used to
classify semiquantitation by each reference tissue as
an A�-positive or A�-negative item. Hazard ratios
were calculated to investigate the additive risk for
single-item positivity compared to overall negative
subjects including the gender, age, APOE4 status,
education, ADAS, and the scanner type as covariates
and log-rank tests were performed for the compari-
son between positive read-outs for subjects with only
one positive rated item.

The number of positive items (n = 1 visual and n = 3
quantitative) was summed for each subject, resulting
in a minimum score of “0” and a maximum of “4”,
when all items were deemed positive. The summed
item score was compared to single items by ROC
analyses and the hazard ratio (HR) was calculated to
investigate the additive risk imparted by the combined
rating. For all statistical tests p-values < 0.05 were
assigned to be significant.

RESULTS

Demographics

Our final study population included 396 subjects
with the clinical diagnosis of MCI at their base-
line 18F-AV45-PET examination and a mean clinical

follow-up period of 45.6 ± 13.0 (range 3.7–77.9)
months. See Table 1 for details of the study popu-
lation.

The observed incidence of progression to ADD
during follow-up was 27.8% (110/396) and this
incidence was higher for subjects with a higher 18F-
AV45-PET SUVRCBL (see Fig. 2).

Visual read

With the visual read, 40.7% (161/396) of all sub-
jects were rated A�+. The binary reads of the first two
experts had a Kappa coefficient of 0.660 (p < 0.001)
with 54 (13.6%) discrepant reads, which required a
third expert reading for majority decision.

Semiquantitative results from different reference
regions

All mean SUVR (±SD) of the different refer-
ence region methods grouped by progression are
presented in Table 2. The SUVRs differed sig-
nificantly between progressors and non-progressors
(pCBL = <0.001, pBST = <0.001, pWM = 0.002). The
lowest SD for all groups was observed with the WM
reference. The semiquantitative read-outs correlated
significantly amongst each other and with the visual
read (all p < 0.001).

ROC analyses

When using for all subjects the COMP-SUVR
results for the three different reference regions and
the visual read, ROC analyses gave a mean (±SD)
AUC of 0.784 (±0.027) for the cerebellar grey matter
reference, 0.805 (±0.025) for the brainstem refer-
ence, 0.813 (±0.023) for the white matter reference,
and 0.766 (±0.027) for the visual read. The three
semiquantitative analyses did not significantly dif-
fer with respect to prediction of progressors, but the
BST and WM reference regions gave significantly
higher ROC AUCs when compared to the visual read
(p = 0.02 for BST and p = 0.03 for WM). In a sub-
group analysis with subjects who progressed within
one year after the amyloid PET scan, the AUCs did
not significantly differ among the three semiquanti-
tative analyses (AUCCBL = 0.769, AUCBST = 0.770,
AUCWM = 0.785), whereas all semiquantitative
approaches showed higher AUC values compared to
the visual read (AUCvisual = 0.739).

To determine the predictive performance at border-
line amyloid load, we sorted the patients according to
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Fig. 2. Number of all subjects initially presenting with mild cognitive impairment, divided into progressors (red bars) and non-progressors
(green bars) and the progression rate (black line) as a function of the upper SUVRCBL threshold for subjects included.

Table 2

COMP-SUVR CBL COMP-SUVR BST COMP-SUVR WM

All (n = 396) 1.38 ± 0.25 0.90 ± 0.17 0.93 ± 0.10
Progressors (n = 110) 1.56 ± 0.26 1.04 ± 0.15 1.01 ± 0.08
Non-progressors (n = 286) 1.31 ± 0.21 0.85 ± 0.14 0.90 ± 0.09
Effect size (Cohen’s d) Progressors versus non-progressors 1.00 1.12 1.06

Composite (COMP) standard uptake value ratios values (SUVR) of all subjects, the progressors and non-progressors for the three different
reference regions, i.e., cerebellar grey matter (CBL), brainstem (BST), and subcortical white matter (WM).

descending SUVR values (see Fig. 3). As expected,
AUC values decreased with descending SUVR
threshold values for all three investigated methods.
By far the most robust AUC as a function of thresh-
old was obtained using the WM reference, indicating
still high prediction of progression among borderline
cases.

We evaluated the optimal sensitivity and speci-
ficity of all methods by undertaking a ROC
analysis. The visual read showed a sensitivity of
79.1% and a specificity of 74.1%, which was
set as the reference standard. When demanding
the same sensitivity or specificity with adapted
SUVR thresholds for the three reference regions,
the WM reference showed the highest correspond-
ing specificity (76.9%) and sensitivity (80.0%)
(see Table 3).

Combined rating

When categorizing the subjects using the SUVR
thresholds with the highest individual summed sen-

sitivity and specificity for predicting progression
(SUVR ≥ 1.41 for CBL, ≥ 0.95 for BST, and ≥ 0.97
for WM) and including the gender, age, APOE4
status, education, ADAS, and the scanner type as
covariates, the progression rate increased as a func-
tion of the number of positive items (see Table 4).
When combining the four binarized methods spec-
ified above (visual read, CBL, BST, WM) to give
a score ranging from 0 to 4 positive items, 28.5%
(112/396) of all subjects and 32.7% (36/110) of those
subjects converting to ADD within the observation
period showed inconsistent results, i.e., not deemed
positive or negative in all four items. Of the 42 sub-
jects with only one positive read-out, 21.4% (9/42) of
subjects progressed to ADD within a mean follow-
up of 30.0 months (range 4.2–57.7 months). Four
of these nine converters were positive only for the
WM reference read-out, two of nine were positive in
the CBL and BST read-out, and one was rated posi-
tive only to visual read. The read-outs did not differ
in their predictive power in this small subanalysis
(p = 0.133).
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Fig. 3. A–C) Receiver operating characteristic curves for the predictive value for progression from mild cognitive impairment to Alzheimer’s
disease dementia for the three different reference region analyses against the visual read. D) AUC values for the visual read and the three
reference region methods when including subjects based on their SUVRCBL value. The solid lines define the trend for each method based on
the single values expressed as dots. Analyses including subjects with a SUVCBL < 1.143 are depicted in the grey sector because of insufficient
statistics for n ≤ 45. CBL, cerebellum; BST, brainstem; WM, white matter.

Table 3
Corresponding sensitivities and specificities for the four different

analytical methods

MCI analysis (n = 396) Sensitivity (%) Specificity (%)

Visual read 79.1 74.1
CBL reference 79.1 72.0
BST reference 79.1 73.8
WM reference 79.1 76.9
Visual read 79.1 74.1
CBL reference 71.8 74.1
BST reference 78.2 74.1
WM reference 80.0 74.1

MCI, mild cognitive impairment; CBL, cerebellar grey matter;
BST, brainstem; WM, white matter.

Comparing visual with semiquantitative read-outs,
six out of 396 MCI subjects were rated positive only
to visual read but negative in any of the three semi-
quantitative read-outs, including only one (16.7%)
progressor to ADD. 39 out of 396 MCI subjects were
rated positive in any semiquantitative approach but

were not positive to visual read, of whom 14 (35.9%)
progressed to ADD.

Progression risk

The four methods differed in their predictive
power for risk of progression. A positive A�-PET
result using WM reference, with a HR of 4.4
[2.6–7.6], showed the best discriminatory power
and progression-risk stratification compared to a
negative A�-PET result, followed by the visual
read (HR = 3.8 [2.2–6.5]), the BST normalization
(HR = 3.7 [2.2–6.2]), and the CBL normalization
(HR = 2.8 [1.8–4.5]). For the prediction of progres-
sors, the ROC analyses of the combined rating with
all four methods showed a mean (±SD) AUC of
0.824 (±0.023), a significantly better performance
compared to that of the visual read or the CBL ref-
erenced SUVR alone (pvisual < 0.001; pCBL = 0.005),
but not compared to the BST and WM referenced
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Table 4
Number of positive items in the four methods with the number and percentage of subjects, sensitivity and specificity and the incidence of

progression for all subgroups

Positive items 0 1 2 3 4

All subjects
Number of subjects (N/ %) 182/46.0 42/10.6 36/ 9.1 34/8.6 102/25.8
Age 69.9 ± 7.5 74.7 ± 9.8 73.4 ± 7.5 72.5 ± 8.2 75.3 ± 5.7
Gender (♂/♀) 102/80 20/22 21/15 17/17 66/36
Education (y; mean ± SD) 16.5 ± 2.5 16.4 ± 2.8 15.2 ± 3.0 15.3 ± 2.5 16.0 ± 2.8
APOE �4 (N of alleles; mean ± SD) 0.29 ± 0.50 0.40 ± 0.59 0.86 ± 0.68 1.06 ± 0.74 0.83 ± 0.65
ADAS 11.9 ± 5.2 14.1 ± 7.6 15.2 ± 5.5 17.2 ± 7.2 18.7 ± 7.6
ADAS annual decrease 0.2 ± 0.9 –0.4 ± 1.5 –0.5 ± 1.4 –0.7 ± 2.1 –1.8 ± 2.2
Progressors/ non-progressors (N) 9/173 9/33 12/24 14/20 66/36
Progression rate (%) 5.5 21.4 33.3 42.9 64.0
Time to progression 23.0 ± 17.7 27.0 ± 18.9 30.7 ± 18.8 27.6 ± 16.0 22.7 ± 13.8
Sensitivity (%) 100 90.9 82.7 71.8 58.2
Specificity (%) 0 60.5 72.0 80.4 87.4

Fig. 4. Kaplan-Meier analyses for the progression-free survival rate within the observation period of the five subgroups (0–4) of patients
initially presenting with mild cognitive impairment, according to the multi-analytical item rating, where a score of 4 indicates positivity in
all items. ***p < 0.001.

SUVRs (pBST = 0.140; pWM = 0.493). When includ-
ing also the APOE status (0/ ≥1), binarized age
(median split into younger/older subjects), binarized
ADAS score (median split) and binarized years of
education (median split), a rating from 0–8 showed
an even higher mean AUC value of 0.854 (±0.021).
The non-PET data alone resulted in an AUC value of
0.756 (±0.027).

The evaluation of the additive risk from a higher
number of positive items showed that each additional
positive item increased the progression risk signifi-
cantly resulting in a HR for the combined rating of
1.6 [1.4–1.9] (X2 = 185.71, p < 0.001). This was also
reflected by the progression-free survival times of the
various groups (Fig. 4).

DISCUSSION

We present a multi-analytical approach using 18F-
AV45 amyloid PET images to predict progression
to ADD in patients presenting with MCI. We sys-
tematically investigated the impact of using three
different reference regions for SUVR calculation on
the estimated risk for progression and compared
these semiquantitative approaches with a concor-
dance visual read. Furthermore, we combined the
results of all four methods and evaluated the risk of
progression as a function of the aggregate number of
positive items. Semiquantitative analysis by a WM
reference gave the best performance in predicting
progression among the four single approaches. How-
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ever, and most importantly, the combined results of
three semiquantitative and visual analyses provided
the overall best stratification; among those cases with
four positive A�+ readouts, 64% progressed to ADD
within a mean progression time of only 23 months.

Biomarkers of A� deposition have been integrated
into the criteria for the early diagnosis of AD [1, 2].
Unfortunately, a standardized read-out with thresh-
olds for normality is lacking, which hampers the
widespread clinical implementation of such tools
[34]. The development of an accurate biomarker-
based predictor for the individual risk of progression
from MCI to ADD would be of great clinical inter-
est [35]. Visual reading remains the standard practice
with 18F-AV45-PET imaging. An earlier comparison
of visual read and quantitative 18F-AV45-PET anal-
yses showed equivalent fitness of the two approaches
for identifying A�+ status in subjects with MCI [19].
However, especially in borderline cases with a low
A� burden, a visually-based prediction of risk for pro-
gression to clinically manifest ADD is challenging.
We now report a sensitivity of 79.1% and a specificity
of 74.1% for predicting disease progression by the
visual read-out, while similar levels were achieved
for brainstem and white matter reference, whereas
slightly lower levels were observed for the cerebellar
reference.

In recent longitudinal A�-PET studies with 18F-
AV45, forebrain WM proved to be a better reference
region than was the usual standard of entire cere-
bellum [21–23]. For patients whose cerebrospinal
fluid A�1-42 concentrations had suggested stable or
increased brain A� burden to follow-up, the PET
SUVRs with WM normalization showed results con-
curring best with the biochemical findings [23].
In addition, the inter-subject variability was low-
est for the WM reference analysis, indicating that
this approach gives rise to fewer interfering factors
than does entire cerebellum normalization [21]. This
seems especially pertinent given that effects of longi-
tudinal, disease-related changes in cerebral perfusion
on SUVR might be better accommodated with the
WM reference region [24]. Overall, our data show
a slightly, but not significantly, higher discrimina-
tory power with a WM reference compared to results
with the CBL and BST reference regions or the visual
read. For subjects with a low or high amyloid burden,
the clinically used visual read seems to be sufficient,
without need for an additional semiquantitative eval-
uation. Interestingly, when considering those MCI
subjects with borderline SUVRCBL values, we found
an increasing discrepancy between the discriminatory

powers of the different read-outs. While discrimi-
natory power remained approximately stable using
the WM reference, there was significantly reduced
power with CBL or BST reference regions and the
visual read for those patients with a SUVRCBL close
to the established positivity threshold value [26].
This observation suggests that the predictive accu-
racy for future progression is increased by using a
WM reference. Indeed, we consider that WM ref-
erence normalization has superior diagnostic value
especially for the borderline subjects. It is precisely
in such cases that a correct categorization of A� status
is of particular importance, especially if they should
be candidates for therapeutic trials, since inclusion
of false-positive cases would diminish the power of
such studies.

The three semiquantitative analyses all showed
comparable sensitivities, which was highest (80.0%)
using the WM reference region, to be compared
with 74.1% specificity recorded for the visual read.
Therefore, all three SUVR methods seem equally
appropriate for use when high specificity is required.
However, the semiquantitative approaches offer the
opportunity to deliver higher sensitivity or speci-
ficity by threshold modification if required, e.g., when
conducting therapeutic trials in an exclusively A�-
positive study group.

We evaluated the combined and separate predictive
values of four 18F-AV45-PET evaluation methods
among patients with MCI at the time of scanning.
The composite positivity rating with all four meth-
ods showed the highest capability for predicting
progression to ADD, which indeed exceeded the sen-
sitivities for the separate use of any single method.
The total number of positively-rated results signif-
icantly affected the estimated risk of progression.
Thus, the progression rate increased as a function
of the number of positive items, from only 5.5% in
those with no positive item to 64% in those with four
results items, i.e., an 11-fold higher risk to convert
compared to the consistently negative patients. When
comparing the different groups, we note that the over-
all negative subjects were significantly younger than
were subjects with multiple positive read-outs. This
might lower the statistical progression risk of negative
cases, as the incidence of ADD is age-dependent.

We found discrepancies between the item-
positivity in 28.5% of all subjects, and in 32.7% of the
subjects converting to an ADD within the observation
period. This may suggest that the different read-outs
contain supplemental or incompletely overlapping
information predictive of a progression from MCI
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to ADD. The combined evaluation of all results may
give an improved trade-off, minimizing the weight-
ing of each methods’ disadvantages, thus improving
diagnosis in borderline cases which are difficult to
discriminate visually [36]. In other words, the com-
bined evaluation of several semiquantitative analyses
using different reference regions might average out
method-specific biases, as might arise due to the rela-
tively high non-specific binding of A� tracers in WM,
or due to the inherently high inter-subject variability
in longitudinal measurements with a CBL reference
region [20].

In conclusion, the combined evaluation of the
results of visual read and three SUVR methods for
18F-AV45-PET improved the power for predicting
progression of MCI to ADD, especially in those
cases with a low A� burden lying near the positiv-
ity threshold. Given that the PET data were acquired
during the interval of 50–70 min after tracer injec-
tion, our analyses may not be optimal for all cases,
since confounding effects of any cerebral perfusion
changes occurring during the scan might not be
properly accommodated. In consideration of this pos-
sibility, full dynamic data acquisitions would have
been preferable, although we note that such long PET
recordings are hardly practicable in a clinical set-
ting. Furthermore, we did not apply partial volume
correction in this study, such that degree of brain
atrophy might contribute to group differences. Rou-
tine implementation of our method would require a
semi-automated data analysis pipeline for calculat-
ing and scoring the three different reference tissue
normalization methods, in conjunction with the ordi-
nary visual read. Based on our experience, we find
this to be feasible through modification of commer-
cially available software packages. Our approach
should be especially useful for therapeutic trials,
where reliable prediction of the risk for progression
from MCI to ADD is critical for appropriate patient
selection.

Conclusion

We aimed to optimize diagnostic algorithms for
using 18F-AV45-PET to predict progression to ADD
in MCI patients with at least two-year follow-up. For
this analysis, we compared the visual read with three
different reference region normalizations (CBL, BST,
WM) and evaluated the combined use of the results of
all four read-outs. Among the single methods, SUVR
relative to the WM was clearly the best predictor of
progression. Combining the four read-outs showed

even higher discriminatory power, with each positive
rated item increasing the progression risk signifi-
cantly. Our approach should be beneficial in contexts
where high predictive accuracy is demanded, e.g., for
prospective treatment trials.
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