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a b s t r a c t 

The detection and pathogenic factors analysis of Parkinson’s disease (PD) has a practical significance for 

its diagnosis and treatment. However, the traditional research paradigms are commonly based on single 

neural imaging data, which is easy to ignore the complementarity between multimodal imaging genetics 

data. The existing researches also pay little attention to the comprehensive framework of patient detec- 

tion and pathogenic factors analysis for PD. Based on functional magnetic resonance imaging (fMRI) data 

and single nucleotide polymorphism (SNP) data, a novel brain disease multimodal data analysis model 

is proposed in this paper. Firstly, according to the complementarity between the two types of data, the 

classical correlation analysis method is used to construct the fusion feature of subjects. Secondly, based 

on the artificial neural network, the fusion feature analysis tool named clustering evolutionary random 

neural network ensemble (CERNNE) is designed. This method integrates multiple neural networks con- 

structed randomly, and uses clustering evolution strategy to optimize the ensemble learner by adaptive 

selective integration, selecting the discriminative features for PD analysis and ensuring the generalization 

performance of the ensemble model. By combining with data fusion scheme, the CERNNE is applied to 

forming a multi-task analysis framework, recognizing PD patients and predicting PD-associated brain re- 

gions and genes. In the multimodal data experiment, the proposed framework shows better classification 

performance and pathogenic factors predicting ability, which provides a new perspective for the diagnosis 

of PD. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

As a typical neurodegenerative disease, Parkinson’s Disease (PD) 

ainly occurs in people over 60 years ( Benka Walln et al., 2015 ).

wing to the degeneration and apoptosis of dopaminergic neurons 

n the midbrain, most patients with PD show symptoms of resting 

remor, motor retardation and myotonia ( Lv et al., 2019 ). In addi- 

ion, some patients are accompanied by sleep disorders, autonomic 

ervous dysfunction and cognitive impairment ( Sveinbjornsdottir, 

016; Videnovic, 2017 ). With the aging of population, PD is pro- 

eeding a serious challenge to public health. At present, the com- 

rehensive and clear understanding of its pathogenesis is yet not 

vailable. Therefore, the detection and pathogenic factors analysis 

f PD are urgent task in brain science. 

In the traditional research paradigms, due to the complexity of 

linical manifestations of PD, neuroimaging, gait and finger move- 
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ent are all included in the mainstream approaches of detection 

nd pathogenic factors analysis of PD ( Liu et al., 2017; Netter- 

heim et al., 2019 ). Dissimilar gait analysis and finger movement 

nalysis, the neuroimaging methods such as electroencephalograph 

EEG), computed tomography (CT) and functional magnetic reso- 

ance imaging (fMRI) have realized direct measurement of brain 

unction and structure. With the intuition and reliability, neu- 

oimaging techniques play a more important role in exploring the 

athogenic factors of PD ( Li et al., 2017 ). Furthermore, compared 

ith EEG and CT, fMRI has obvious advantages in temporal and 

patial resolution, so it has a broader application prospect in the 

tudy of PD ( Griffanti et al., 2016 ). 

Many existing studies have attempted to apply fMRI alone to 

dentifying PD patients and detecting lesions, but rarely consider 

he fusion of multiple modal data, especially the fusion of imag- 

ng data and genetic data to explore this problem. For example, 

rojsi et al. (2017) applied covariance projection approach in com- 

ination with a bootstrapped permutation test to classify the PD 

atients. Borchert et al. (2016) used the seed-based correlation 

https://doi.org/10.1016/j.media.2020.101830
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101830&domain=pdf
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nalysis to detect the lesions of PD. However, with the deepening 

f the fMRI-based research on PD, researchers have noticed that it 

s difficult task only by analyzing the fMRI data if we want to have

 complete understanding of PD ( Lei et al., 2019; Wang et al., 2018;

iu et al., 2019 ). On the other hand, the latest studies have shown

hat the pathogenic mechanism of PD is closely related to genes. To 

ate, at least 23 loci and 19 genes have taken part in the process

f PD ( Chang et al., 2017 ). Moreover, some significant potential as- 

ociations between genes and brain regions may reveal their inter- 

ctions, which arouses the interest of researchers ( Bregman et al., 

017 ). Therefore, the fusion of fMRI data and gene data is a feasi-

le way to explore the pathogenic factors of PD comprehensively, 

hich is also the focus of this paper. 

In the multimodal fusion researches of PD, machine learning 

echnology has some unique advantages in the processing of high- 

imensional data and small sample size compared with conven- 

ional statistical methods ( Liu et al., 2016 ). In particular, Tang 

t al. (2019) observed the great potential of artificial neural net- 

ork (ANN) in multimodal data analysis of PD. Furthermore, Bi 

t al. (2018) proposed an improved neural network method, which 

reatly improved the recognition accuracy of patients with brain 

iseases. Although the methods of ANN have shown quite satisfac- 

ory performance in the multimodal fusion study of PD, its poten- 

ial has not been fully studied. Therefore, how to tap the potential 

f ANN in PD multimodal fusion researches is a objective of this 

tudy. 

Furthermore, most of current multimodal data fusion analyses 

f PD using imaging and genetic data pay close attention to a sin- 

le process, which is easy to ignore the study of the comprehensive 

nalysis framework. Hao et al. (2020) emphasized the significance 

f fusion features construction in multimodal fusion analysis by 

onsistent metric constraint feature selection method. Zeng et al. 

2016) demonstrated the practicability of classification method in 

usion research by a new deterministic learning technology. Gupta 

t al. (2018) highlighted the role of feature selection method in 

usion research of PD. However, it must be noted that the design 

f a multimodal data fusion analysis framework for PD based on 

achine learning technology is more conducive to utilizing com- 

lementary information of different modal data and providing as- 

istance for clinical diagnosis. This problem is a potential driving 

orce of this study. Therefore, the design of a multimodal fusion 

ramework for PD based on machine learning is another objective 

f our study. 

In order to realize the above objectives, the fMRI and single nu- 

leotide polymorphism (SNP) data are applied to performing mul- 

imodal fusion analysis of PD. Firstly, We test a variety of corre- 

ation analysis methods, and select the optimal method to extract 

he associations between genes and brain regions as the fusion fea- 

ures of multimodal data. Secondly, an improved neural network 

odel of clustering evolutionary random neural network ensemble 

CERNNE) is proposed. This method chooses the appropriate neu- 

al network for large-scale random integration, and introduces the 

dea of hierarchical clustering for adaptive dynamic optimization. 

inally, with CERNNE as the core, we construct the multimodal 

usion framework for PD to realize multi-task analysis of feature 

onstruction, patient recognition and pathogenic factors prediction. 

he framework is assessed by the real multimodal data of PD pa- 

ients. The experiments suggest that the proposed comprehensive 

ramework can effectively realize the recognition of PD patients 

nd lesion detection, which is helpful to understand the pathogen- 

sis of PD. 

. Materials and methods 

In this section, we mainly introduce the multimodal data fusion 

nalysis framework of PD proposed in this paper, which realizes 
2 
he functions of feature construction, patient recognition and le- 

ion detection. The framework consists of the following four parts 

ncluding multimodal data preprocessing, fusion features construc- 

ion, sample classification and PD-associated genes and brain re- 

ions prediction. The overall flow chart of the framework is shown 

n Fig. 1 . 

.1. Multimodal dataset and preprocessing 

In this paper, 104 samples are used to train and validate the 

ramework, including 55 PD patients (male / female: 37 / 18; mean 

ge: 66.9 ± 4.5 years) and 49 healthy controls (male / female: 24 

 25; mean age: 69.3 ± 5.3 years). Specifically, 69 samples from 

arkinson’s Progression Markers Initiative (PPMI) database includ- 

ng 55 PD patients and 14 healthy controls (HC). In order to ex- 

and the sample size to realize better framework training effect, 

e further obtain 35 HC from the Alzheimer’s Disease Neuroimag- 

ng Initiative (ADNI) database, which are matched to the samples 

f PPMI database in the term of gender and age, and have fMRI 

nd SNP data. Both Alzheimer’s Disease (AD) and PD are neurode- 

enerative diseases, which makes PPMI and ADNI have great sim- 

larity in determining the standard of HC. All HC from ADNI and 

PMI databases are free from other neurological diseases. In order 

o eliminate the potential impact of data mixing on the model, the 

canning parameters of fMRI data we selected from the two co- 

orts are almost the same. Meanwhile, the SNP explored in the ex- 

eriment are shared by both database cohorts. All data acquisition 

ork has been approved by relevant institutions, and participants 

ave signed written informed consent. 

All fMRI data is preprocessed by the software of DPARSF. The 

pecific process is as below. The data format is converted into 

IFTI format and the first 10 fMRI functional volumes are dis- 

arded. Subsequently, the head motion and time slices of fMRI im- 

ges are realigned, and the EPI template is used for image regis- 

ration. Finally, using Gauss smoothing (full width at half maxima 

 6mm), linear model and signal filtering (0.01-0.08HZ), the irrel- 

vant variable interferences such as global signal and white matter 

ignal are removed. 

SNP is included in this study as a genetic material. The prepro- 

essing of SNP is performed by PLINK software. Firstly, the sample 

ecall rate is set to 95%. Next, the minimum allele frequency, geno- 

yping rate and the threshold of Hardy-Weinberg test are set at 

.03, 0.95 and 1e-5, respectively. After the above quality control, 

e retain high quality SNP information for the next experiment. 

.2. Multimodal fusion features 

In computer and data science, the biological interactions be- 

ween brain regions and genes can usually be detected by coding 

orrelation of brain region and SNP sequences, which is also one of 

ccepted methods at present. Researchers have tried and achieved 

ome satisfactory results to verify the feasibility of this method 

 Hao et al., 2017; Du et al., 2020 ). Our research is based on this

oncept for in-depth exploration and tries to use a more practical 

nd generalizable method. 

The preprocessed fMRI image is segmented into 90 regions of 

nterest (ROIs) by anatomical automatic labeling (AAL) template, 

nd the functional time series of each ROI is extracted, its length is 

f l. Subsequently, for SNPs through quality control, we query their 

eference SNP (rs) number in National Coalition Building Institute 

NCBI) and Ensemble website to determine the genes they belong 

o. Then we group the SNPs according to their corresponding genes 

nd arrange the SNP groups according to SNP position in gene. We 

elect groups with SNP count more than sl as the candidate genes 

nd recode the genes discretely. Specifically, the four bases A, T , C

nd G in SNP are recoded to 1, 2, 3 and 4 respectively according 
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Fig. 1. Overview of the proposed method. 
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o the PLINK (1.07) Documentation ( Purcell, 2012 ), thus the dig- 

tal sequence of gene group is obtained. Ultimately, the time se- 

ies length of ROI is usually larger than the gene sequence length. 

herefore, the time series length of ROI is intercepted to make it 

qual to the gene sequence length. Pearson correlation analysis is 

sed to calculate the associations between ROIs and genes as fu- 

ion features ( Eq. 1 ). 

 ea r,s = 

l 
∑ 

w r s s −
∑ 

w r 

∑ 

s s √ 

l 
∑ 

w r 
2 − ( 

∑ 

w r ) 
2 
√ 

l 
∑ 

s s 2 − ( 
∑ 

s s ) 
2 

(1) 

here w r represents the functional time series of a ROI, s s is the 

ene sequence, and l represents the length of each ROI or gene. 

In addition, in order to verify the robustness of Pearson correla- 

ion analysis in multimodal data fusion, we use canonical correla- 

ion analysis (CCA, Eq. 2 ) and correlation distance (CD, Eq. 3 ) as the

omparison methods, and the calculation equations are as follows. 

CA r,s = 

βT 
∑ 

12 γ√ 

βT 
∑ 

11 β
√ 

γ T 
∑ 

22 γ
(2) 

D r,s = 1 − l 
∑ 

w r s s −
∑ 

w r 

∑ 

s s √ 

l 
∑ 

w r 
2 − ( 

∑ 

w r ) 
2 
√ 

l 
∑ 

s s 
2 − ( 

∑ 

s s ) 
2 

(3) 

here β represents the weights of ROIs and γ represents the 

eights of genes. 
∑ 

11 represents a covariance matrix of ROIs and 

 

22 represents a covariance matrix of genes. 
∑ 

12 represents a co- 

ariance matrix of ROIs and genes. 

.3. Clustering evolutionary random neural network ensemble 

As an important branch of machine learning technology, the 

NN still has considerable potential in high-dimensional data pro- 

essing. A novel improved method of neural network is proposed 
3 
n this paper. We introduce the idea of evolutionary learning to de- 

ign an ensemble learning model based on the neural network. In 

his model, a suitable neural network is selected as a single com- 

uting node for large-scale random integration, and clustering evo- 

ution strategy is used to enhance the variousness of the ANN base 

earners in the model through dynamic adaptive selection. The im- 

lementation process is as follows. 

In the initial stage of building the model, all sample data are 

arked as { x i , y i } N , where x i = { f 1 , f 2 , f 3 , . . . , f m 

} denotes the fea-

ure set composed of m fusion features of the sample i , y i de- 

otes the category label of sample i , “ + 1 ′′ denotes the normal per-

on, and “ − 1 ′′ denotes the patient with PD. We randomly extract 

0 % of all samples as test set marked as { x i , y i } t test at the first.

hen we randomly choose the left samples at a ratio of 7 : 3 each

ime, as training set { x i , y i } r train 
and corresponding validation set 

 x i , y i } s v alidate 
of a neural network base classifier in the ensemble

earning model. That is to say, the training set of each base classi- 

er is different, which is helpful to improve the diversity of base 

lassifiers. 

After determining the data partitioning strategy, the training set 

 x i , y i } r train 
, which is randomly extracted each time, is used as a

raining sample of the neural network base classifier. At the same 

ime, the input features of base classifier are randomly selected 

rom all fusion features, and the number of input features is de- 

ned as follows: 

 = f ix 
√ 

m (4) 

here m equals to the quantity of all fusion features. Through the 

bove methods, we construct a single neural network base classi- 

er, and use the corresponding validation set { x i , y i } s v alidate 
to eval-

ate the classification performance of the base classifier. Further- 

ore, in order to construct an initial ensemble learner, the process 
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f constructing the base classifier is repeated z times, and once 

he training of the base classifier is completed, the base classifier 

oes not need to be retrained in the subsequent clustering evolu- 

ion process. 

The initial ensemble learner is clustering evolved to improve 

he robustness and accuracy. The setting of clustering index is the 

recondition of clustering evolution. We take the similarity be- 

ween neural networks as the clustering criterion which is the dis- 

greement measure (DM). Suppose there are two neural network 

ase classifiers ANN U and ANN V . We count the classification re- 

ults of the two classifiers. Among them, z 11 equals the quantity 

f validation samples correctly recognized by ANN U and ANN V at 

he same time. On the contrary, z 00 represents the quantity of val- 

dation samples misidentified by both ANN U and ANN V . Similarly, 

 10 equals the quantity of validation samples that can only be rec- 

gnized by ANN U , and z 01 equals the number of validation sam- 

les that can only be recognized by ANN V . As a result, the DM UV 

etween ANN U and ANN V is defined as: 

M UV = 

z 01 + z 10 

z 01 + z 10 + z 00 + z 11 

. (5) 

The value of DM UV is negatively correlated with the similarity. 

 smaller value indicates that there is a higher similarity between 

NN U and ANN V , and it is more likely to be viewed as the same

luster. 

Based on the above similarity index, we calculate the similarity 

etween neural network classifiers in the initial ensemble learning 

odel, and construct the following similarity matrix Matrix (s ) : 

atrix (s ) = 

[ 

DM (1 , 1) . . . DM (1 ,z) 

. . . . . . . . . 

DM (z, 1) . . . DM (z,z) 

] 

(6) 

here DM (z, 1) indicates the disagreement measure between ANN z 

nd ANN 1 . This paper applies the linkage hierarchical clustering al- 

orithm to clustering the base classifiers with high similarity. The 

pecific process is as follows. In the initial stage of clustering evo- 

ution, each base classifier is regarded as an initial cluster. Next, 

e calculate the disagreement measures of different base classi- 

ers as the clustering criteria. If there is a maximum similarity be- 

ween two base classifiers (the value of DM is minimum), the two 

ase classifiers will be defined as a new cluster in the clustering 

volution. Then the base classifier with the best performance in 

 cluster is retained for the next clustering evolution. The above 

rocess is a process of clustering evolution. For training the model, 

his process is iterated multiple times, and the termination con- 

ition is that the evolution times reaches the preset threshold. In 

he process of clustering evolutions, the number of base classifiers 

s decreased. In order to control the iteration process, the step size 

f iteration is set to cl, which makes us gradually find out the set 

f high similarity base classifiers. The quantity of neural network 

ase classifiers retained in the final ensemble model is as follows: 

NN ensemble = z − w × cl (7) 

here w denotes the evolution times corresponding to the peak 

erformance of the ensemble learner and z denotes the number of 

nitial base classifiers. All the above procedure of the CERNNE is 

ummarized in Algorithm 1 . 

.4. Classification mechanism 

The neural network ensemble model evolved by multiple clus- 

ering evolutions is regarded as the final model of classification. 

e design a voting method as the final decision strategy of the 

nsemble learner. Considering that each base classifier in the final 

ERNNE has satisfactory classification performance, each classifier 

s given equal voting right. When a test sample x is input into the 
4 
odel, each learner in the model will give a classification result, 

orming a classification result set: 

esult = { f 1 ( x ) , f 2 ( x ) , . . . , f k ( x ) } (8) 

here f k (x ) indicates the classification result of the k − th base 

lassifier. We count all the classification results by the Eq. (9) : 

abel A = 

k ∑ 

i =1 

I( f i (x ) = A ) (9) 

here I(∗) is the indicator function. If the test sample x is pre- 

icted to be belong to category A by the i − th base classifier, the 

alue of I( f i (x ) = A ) is 1, otherwise the value is 0. Then, the la-

el with the largest value is the final category of the unclassified 

ample. The calculation equation is defined as: 

 = argmax (Label) . (10) 

.5. Parkinson’s Disease-associated genes and brain regions 

After several clustering evolutions of neural network ensemble, 

he base classifiers with the greatest diversity and the best classi- 

cation performance in ensemble learning model are retained. It is 

ell known that input features have a great influence on the clas- 

ification ability of the base classifier, which means that the input 

eatures in the retained base classifier have important potential in- 

ormation. Therefore, we design a multi-stage analysis scheme to 

ook for the most recognizable features. 

In the first stage, due to multiple clustering evolutions, differ- 

nt fusion features in the base classifier contribute to classification 

o a certain extent. The features occur in multiple base classifiers 

epeatedly, which means that it may have a significant positive im- 

act on classification. Therefore, all features in the retained base 

lassifier are counted. And we use frequency as the criterion to se- 

ect e high-frequency features, which will be used to further search 

or the PD-associated genes and brain regions. 

In the second stage, we have completed the preliminary screen- 

ng of features through the frequency in the process of extract- 

ng high-frequency features, however, the correlations between 

artly high-frequency features with relatively low frequency and 

isease may not be stable. Therefore, we use the backward se- 

uence search algorithm to test all the e high-frequency features 

n descending frequency order, and determine the most recogniz- 

ble fusion features. The selected e high-frequency features are di- 

ided into several feature subsets, and the partitioning strategy is 

s follows. The first g features of high-frequency features are taken 

s feature subset1 . Then, with h as step size, the quantity of fea- 

ures in the feature subset is gradually increased in descending 

rder of frequency until all high-frequency features are contained 

ithin the feature subset. Finally, different feature subsets are used 

s training features of the traditional neural network ensemble. 

he classification performances of different subsets will be tested. 

hese features with strong recognition ability can better reflect the 

ifference between PD and HC, which also means that the brain 

egions and genes fused by these features may have more strong 

orrelations with PD and deserve further analysis. 

In the third stage, the most recognizable fusion features are 

nalyzed separately. On the one hand, the fusion features repre- 

ent the correlations between brain regions and genes, which has 

utstanding explicability. On the other hand, these features have 

trong recognition ability, which shows that they have obvious dis- 

inction between patients and normal people. The brain regions 

ontained in these features are more likely to have functional or 

tructural lesions, and the genes contained in these features are 

ore likely to have abnormal expressions. Therefore, the brain re- 

ions and genes contained in the fusion features are extracted as 

 single component, and their frequencies appearing in the most 
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Algorithm 1 CERNNE learning process. 
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ecognizable features are counted separately. The high-frequency 

omponents (i.e. specific brain regions or genes) imply that they 

ay be more closely related to the disease. 

.6. Parameters optimization 

The type of base classifier, the number of cluster evolutions and 

he number of initial ANN base classifiers are free parameters in 

he CERNNE model. Optimizing these parameters can effectively 

romote the overall performance of the model. 

Firstly, the types of neural networks are various and have their 

wn characteristics. To find the best type of neural network as the 

ase classifier, we preliminarily test the integrated performance 

f back propagation neural network (BP NN), probabilistic neural 

etwork (PNN), Elman neural network (Elman NN), learning vec- 

or quantization neutral network (LVQ NN) and competitive neu- 

al network (Competitive NN). Specifically, we use different types 

f neural networks as base classifiers, and set the number of base 

lassifiers to K to construct a initial random neural network en- 

emble. Then, for five different types of neural network ensemble, 

he linkage hierarchical clustering evolution strategy is adopted to 

nd the performance peaks. We choose the base classifier type 

ccording to the pre-determined standard. We mainly consider 

he performance peak of the ANN ensemble learner. Specifically, 

he neural network ensemble with the highest performance peak 

hows that this type of neural network is more suitable as the base 

lassifier of ensemble learning model. 

After determining the type of base classifier, the number of ini- 

ial base classifiers and the number of clustering evolutions also 

ave an impact on the construction speed and classification per- 

ormance of ensemble learning model. In this paper, a grid search 
5 
trategy is designed to find the optimal parameter combination. 

ssuming that the optimal ANN base classifiers number is between 

he interval of [ c, d] by repeated experiments, we use different 

NN base classifiers number in the interval to construct ensem- 

le learners. Next, clustering evolution is used to make each neu- 

al network ensemble reach its peak performance, and the number 

f clustering evolutions corresponding to different ensemble learn- 

rs’ peak is counted. When building the optimal CERNNE model, 

e choose the minimum number of clustering evolutions to re- 

uce the time cost of building the ensemble learner as much as 

ossible. At the same time, the number of base classifiers is also 

elected a less value, which also helps to reduce time complexity. 

. Results 

.1. Constructing fusion features 

For each preprocessed sample, the functional time series of 90 

rain regions were obtained from fMRI data, and 23595 SNPs were 

xtracted from genetic data. In order to ensure the effectiveness 

f fusion feature construction, we controlled the length of ROI and 

NP sequences so that all sequences were converted to the same 

ength. In detail, we retained 45 SNP groups with more than 40 

NPs, and discretized the first 40 SNPs of each SNP group to obtain 

 gene digital sequence with a length of 80. Meanwhile, the func- 

ional time series of brain regions were also adjusted to 80. The 

bove length threshold we selected was determined by repeated 

xperiments. Because the relatively long sequence could ensure the 

obustness of correlation analysis, and provide better differenti- 

ted fusion features. According to the multimodal fusion feature 

onstruction scheme, the Pearson correlation analysis of brain re- 
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Fig. 2. The ensemble performance of different base classifiers. We compare the performances of different classifiers, including BP NN, PNN, Elman NN, Competitive NN and 

LVQ NN. 
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ions and genes was carried out. Consequently, each sample was 

bstracted into a set of 4050-dimensional fusion features, which 

ere used as the basis for subsequent analysis. 

.2. Selecting the type of base classifier 

We used various types of neural networks as base classifiers 

o construct different neural network ensembles, and compared 
6 
he performance of the ensemble learners to determine the most 

uitable base classifier type. The candidate base classifier types 

ncluded BP NN, PNN, Elman NN, Competitive NN and LVQ NN. 

pecifically, the number of hidden layers of BP NN, Elman NN and 

VQ NN was set to 5, and the parameters of other networks were 

et to the default parameters of MATLAB platform. In addition, 

he number of iterative training for all neural network base clas- 

ifiers was 300. For any type neural network ensemble, we set the 
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Fig. 3. The optimal quantity of base classifiers. In fact, we search for the optimal 

combination of parameters in a wider range, and determine the optimal range of 

parameters, and display the parameter search results in this range in detail. 
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Fig. 4. The most recognizable features. The first 300 fusion features have the high- 

est classification performance, reaching 88.57%. 
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uantity of training samples and random input features of its base 

lassifier to 50 and 64 respectively, and the quantity of initial base 

lassifiers in the ensemble learner was set to 500. Subsequently, 

ve different types of neural network ensemble models were clus- 

ering evolved 40 times with 10 as step size, and their performance 

urves in all the clustering evolutions were depicted in Fig. 2 . 

In Fig. 2 , with the clustering evolution times increased, the clas- 

ification performance of the ensemble learner rose steadily, and 

tarted to converge after reaching the peak value. Even though 

he accuracy fluctuated in a small range, the overall performance 

ended to be stable. According to the pre-determined basis clas- 

ifier selection criteria, we found that the BP NN ensemble had 

he highest classification performance and the fastest convergence 

peed among all types of neural network ensemble, which showed 

hat it has the potential to be the best base classifier. In addition, 

t is noteworthy that there are two peaks in the evolution process 

f random PNN ensemble, which may indicate that it is difficult 

or them to achieve stable performance in the evolution process. 

ased on the above analysis, it is concluded that BP NN has better 

otential in clustering evolution, so it is regarded as the optimal 

ype of base classifier to build the final CERNNE model proposed 

n this paper. 

.3. Training the optimal CERNNE model 

We employed BP NN to construct the optimal clustering evolu- 

ionary random neural network ensemble. In the experiment, we 

ound that the different initial base classifier numbers required 

he different optimal clustering evolution times, which affected the 

erformance of CERNNE model. However, we only tested the case 

hen the number of initial base classifiers equals 500 ( Fig. 2 (a)). 

herefore, we further searched for the optimal quantity of initial 

ase classifiers to improve the construction efficiency and perfor- 

ance. In the experiment, we analyzed the evolution process of 

nsemble learners with different initial base classifier numbers and 

reliminarily determined the search range of the optimal initial 

ase classifier number in the interval [30 0,50 0] through a large 

ange of parameter search. At the same time, the relationship be- 

ween the initial base classifier numbers and the optimal clustering 

volution times was also displayed in Fig. 3 . We found that when 

he number of base classifiers was enough, the clustering evolu- 

ions could make the ensemble learners with different initial base 

lassifiers number reach the peak performances, and the perfor- 
7 
ance peaks were relatively close. But we noticed that when the 

umber of BP NN base classifiers was 380, the number of cluster 

volutions was the least. Therefore, considering the cost of clus- 

ering evolutions, we finally used 380 as the initial base classifiers 

umber. This meant that when the performance peaks were at the 

pproximate level (86.5%-91%), the CERNNE was constructed by us- 

ng 380 as the quantity of initial base classifiers. It took only 8 

lustering evolutions to achieve the performance peak and had the 

astest construction efficiency. 

.4. Extracting fusion features with recognition ability 

After many tests on the ensemble performance of the opti- 

al CERNNE, the average classification accuracy was 88.6%. The 

esults showed that clustering evolution improves the diversity of 

ase classifiers and the validity of input features. According to the 

ulti-stage analysis scheme in the section of methods, in the first 

tage, we counted the frequency of input features in the base clas- 

ifiers which were in the optimal CERNNE model, and extracted 

00 high-frequency features for the next stage of analysis. The 

bove operation reduced the searching range of the most recog- 

izable feature to 400 dimensions. 

Then, in order to extract the most recognizable part of high- 

requency features, the backward sequence search algorithm was 

sed to test all possible combinations of high-frequency features 

n descending order of frequency. The 400 high-frequency features 

ere divided into several subsets of fusion features. Specifically, 

he first feature subset consisted of the first 70 high-frequency 

eatures. Then we increased the number of features in the sub- 

et gradually according to the frequency descending with 5 as the 

tep size until the subset contains all 400 high-frequency features. 

hese feature subsets were inputted the traditional random BP NN 

nsemble to test their classification ability. The results were shown 

n Fig. 4 . There were several local peaks in the curve, but the peak

oint was (300 , 0 . 8857) . In addition, the trend of the curve near

his point changed obviously, and the curve showed a downward 

rend after the number of features exceeded 300, which indicated 

hat the recognition ability of the last 100 fusion features was 

eak and may interfere with classification. Therefore, we regarded 

he first 300 dimensional high-frequency features as the most rec- 

gnizable features, and visualized the first 20 fusion features in 

ig. 5 . 
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Fig. 5. The top 20 features with the strongest recognition ability. The node represents a single brain region or gene. 

Table 1 

The quantitative comparison of optimal fusion feature on multimodal data. 

Method Optimal Fusion Feature Accuracy of SVM Overlap with GERNNE 

Pearson + CERNNE 300 0.904 

Pearson + RF 670 0.785 202 ( p = 2.764806 e -27) 

Pearson + RSVME 260 0.619 94 ( p = 1.642645 e -6) 

Pearson + t -test 499 0.714 147 ( p = 2.764806 e -32) 

CCA + t -test 412 0.785 192 ( p = 3.817671 e -03) 

CD + t -test 447 0.738 159 ( p = 4.08077 e -12) 

The t -test is two-sample t -test. 

The p value is acquired by the hypergeometric test. 
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.5. Method comparison and verification 

Although satisfactory results have been achieved in extracting 

he most recognizable features based on the proposed model. The 

ultimodal fusion as an emerging field, the validity of fusion fea- 

ures still needs to be verified. In this study, a variety of fusion 

eature construction and analysis methods were combined into a 

ew model and compared with the model proposed in this paper. 

he fusion feature construction methods included canonical cor- 

elation analysis and correlation distance, feature analysis meth- 

ds included random support vector machine ensemble (RSVME), 

andom forest (RF) and two-sample t -test. Among them, the con- 

truction parameters of RF and RSVME, such as the number of base 

lassifiers and the number of input features, were the same as the 

roposed CERNNE model. By analyzing the quantity and classifica- 

ion performance of the most recognizable feature subsets detected 

y other models, we verified the rationality of the most recogniz- 

ble features extracted by our model. The results were displayed 

n Table 1 . 

From the comparison results, in the number of the most rec- 

gnizable features, Pearson + RF was the largest, while the pro- 

osed model was the lesser. In addition, we found an interest- 

ng result. If the most recognizable features extracted by different 

ethods were used as the training features of support vector ma- 

hine (SVM), the classification performance of feature extracted by 

ur model was the best, which showed that the features extracted 

y proposed model were more effective. In order to further verify 

his hypothesis, we analyzed the overlapping parts of the most rec- 

gnizable features extracted by our method and the most recogniz- 

ble features extracted by other methods. The results showed that 

he larger the overlapping parts were, the better the performance 

f the method was. At the same time, the results of hypergeo- 

etric distribution test also proved that these overlaps were not 

andomly generated. Based on the above analysis, we found that 
8 
he features extracted by other methods may contain more inter- 

erence information, while our method improved this situation. 

In order to further prove the validity of the fusion features 

nd clustering evolutions, CERNNE was compared with other mod- 

ls including single classifier method and statistical method un- 

er multimodal fusion feature and unimodal feature respectively. 

he experimental results were shown in Fig. 6 . Under the classi- 

al statistical method, the classification performance of multimodal 

usion feature was better than that of unimodal feature, which 

howed the benefit of data fusion to classification. After the op- 

imization of the model proposed in this paper, the classification 

bility was obviously improved compared with the other methods, 

specially the single classifier method. It also proved the rational- 

ty and advantages of clustering evolution strategy and ensemble 

earning in this paper. 

.6. Predicting abnormal brain regions and risk genes 

We isolated genes and brain regions from the most recogniz- 

ble features extracted by our model, and analyzed the frequen- 

ies of genes and brain regions respectively. The higher the fre- 

uencies of brain regions and genes were, the greater the differ- 

nce between patients and normal people was. Therefore, they 

ay be more likely to have a potential association with the dis- 

ase. We showed the information of high-frequency brain regions 

nd genes in Fig. 7 and Fig. 8 . The high-frequency brain regions 

nd genes included Thalamus, Caudate nucleus, Amygdala, Angular 

yrus, GABBR1, CSMD1, C6orf10, HLA-DRA and BTNL2. We noticed 

hat most of the high frequency brain regions and genes had in- 

uence on human emotion, memory, cognition and behavior, and 

any literatures revealed that they were directly or indirectly re- 

ated to PD from the aspects of pathology, neurocognition and ge- 

etics ( Gilat et al., 2018; Bot et al., 2018; Saeed, 2018 ). 
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Fig. 6. The comparison results of classical single modal features with the multimodal features. The CE denotes the number of clustering evolutions, where the performance 

of CERNNE is tested when CE is 3, 4, 5, 8 and 9, respectively. 

Fig. 7. The locations and frequencies of pathogenic brain regions. The figure 7(a) denotes the frequency information of abnormal brain areas. The figure 7(b) denotes the 

location information of abnormal brain regions. 
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. Discussion 

.1. Consistency with the literature 

We verified the validity of our results from some conventional 

tudies. For example, Garg et al. (2015) noticed thalamic morpho- 
9 
ogical abnormalities in PD patients. Dirkx et al. (2017) reported 

hat the changes of cerebello-thalamo-cortical circuit were respon- 

ible for resting tremor in PD patients. Abnormal dopaminergic 

enervation in the caudate nucleus led researchers to believe that 

his region was the key area for the onset of PD ( Bohnen et al.,

015 ). The pathological analysis also provided evidence to confirm 
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Fig. 8. The frequencies of genes. The total number of candidate genes examined in this study was 45, and the high-frequency genes were more likely to be risk genes. 
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hat caudate denervation could lead to excessive daytime sleepi- 

ess in PD patients ( Politis, 2018 ). van Mierlo et al. (2015) found

 significant association between amygdala atrophy and depres- 

ion in PD patients by voxe-based morphometry (VBM) test. Sub- 

equently, many researchers also reported that amygdala was in- 

olved in apathy, anxiety and other pathologies of PD ( Thobois 

t al., 2017 ). Garcia-Esparcia et al. (2018) identified abnormal mito- 

hondrial activity in the angular gyrus of PD patients by metabolic 

ests. 

In the risk genes predicted by our method, the potential as- 

ociation between some genes and PD also has been confirmed 

y many genomics studies. The whole exon sequencing showed 

hat the mutation of CSMD1 gene resulted in abnormal comple- 

ent activation, which was an important single gene mutation fac- 

or in PD ( Patel, 2017; Ruiz-Mart-nez et al., 2017; Shahmoham- 

adibeni et al., 2016 ). The results of multiple genome-wide asso- 

iation analysis and meta-analysis also showed that HLA-DRA gene 

as involved in the pathogenesis of PD and was an important risk 

ene ( Alexis, 2012; Jamshidi et al., 2014 ). Recently, Gusev et al. 

2019) further found that the multipoint chromatin interaction be- 

ween HLA-DRB gene and BTNL2 gene was an important cause of 

any nervous system diseases including PD through the analysis of 

hromosome conformation capture in human brain cells. In addi- 

ion, some literatures also reported that GABBR1, C6orf10 and other 

enes were more or less related to PD ( Consortium, 2011; Patel, 

017; Perrone-Bizzozero, 2019 ). 

.2. Method performance analysis 

The results of our study reveal that altered fusion features of 

atients with PD could be detected automatically by CERNNE. The 

roposed method not only provides an efficient and reliable ap- 

roach to identify PD patients, but also explores the multimodal 

athogenic factors of PD. 

Distinguishing the patients accurately is a long-term challenge 

n traditional PD studies, which attracts the attentions of many re- 

earchers. In the classical single classifier methods, Zhang et al. 

2016) tried to apply SVM with linear kernel to speech detection 
10 
f PD patients, and the results showed that the recognition ac- 

uracy was only 68.5%. Faris et al. (2016) extracted features from 

peech data, and combined multi-source optimization algorithm 

ith BP feedforward neural network to achieve 77.31% recognition 

ccuracy for PD patients. Adeli et al. (2016) improved the accuracy 

o 73.6% through joint feature sample selection (JFSC) and robust 

inear discriminant analysis (RLDA) based on fMRI data. On the 

ther hand, the conventional ensemble learning model is also ap- 

lied in the classification of PD. According to the characteristics of 

esting fMRI data, Galdi et al. (2018) proposed a method of com- 

ining consensus-based feature extraction with random forest, and 

chieved nearly 80% recognition accuracy. Drotr et al. (2016) also 

ested a variety of ensemble learning methods in the experiment. 

mong them, the ensemble AdaBoost classifier achieved 78.9% ac- 

uracy, 79.2% specificity and 82.4% sensitivity. With the rise of 

eep learning methods, Um et al. (2017) used the popular convolu- 

ional neural metwork (CNN) method to analyze the sensor data of 

earable devices. The classification accuracy is between 77% and 

0%, which indicates the potential of CNN method in the detec- 

ion of PD. Prince et al. (2019) suggested that CNN-ensemble can 

e used to analyze multimodal data of PD patients including gait, 

oice and memory data, and the classification accuracy of CNN- 

nsemble was stabilized at 82%. 

We found that the accuracy of CERNNE model was better than 

hat of most above methods, and even not inferior to the current 

opular deep learning technology. Our classification performance 

dvantages are mainly due to the following reasons. Compared 

ith single classifier method, multi-learner ensemble can effec- 

ively avoid performance fluctuations and increase the robustness 

f classification performance ( Chen et al., 2019 ). Different from the 

raditional random integration of multiple base classifiers, the in- 

roduction of clustering evolution eliminates redundant or invalid 

eatures and improves the diversity of different base classifiers in 

he ensemble model, which ensures the performance of the en- 

emble learning model proposed in this paper. Finally, the informa- 

ion complementary advantage of multimodal data and appropriate 

arameter optimization can also help to promote the classification 

erformance. 



X.-a. Bi, X. Hu, Y. Xie et al. Medical Image Analysis 67 (2021) 101830 

4

p

m

c

o

w

i

t

s

H

t  

s

r

o

s  

f

r

a

a

5

a

T

c

t

t

b

r

p

a

c

n

C

c

i

C

D

d

A

d

d

g

(

n

R

A  

A

B  

B  

B  

B  

 

B  

B  

 

C  

 

 

C  

C  

C

D  

D  

D  

F  

G  

G  

G  

G  

 

G  

 

G  

G  

 

H  

H  

J

L  

L  

 

.3. Limitations and future directions 

Although our method has achieved satisfactory results in sam- 

le classification and lesion detection, it must be noted that the 

ethod still has some limitations. Even though mixed use of data 

an contribute to model generalization, considering the limitations 

f the experimental data in quantity and acquisition methods, we 

ill obtain more homologous data in the future to conduct more 

n-depth research and verification on the disease-associated fac- 

ors detected in this paper. This study mainly focuses on the fu- 

ion analysis of fMRI and gene data by sequence coding correlation. 

owever, the proposed method also has considerable potential for 

he fusion of other multimodal data ( Chen et al., 2018 ). In future

tudies, we will try to use more complex and effective coding cor- 

elation methods to encode different sequences, and incorporate 

ther modal data such as protein data and gait data into the fu- 

ion research of PD ( Wang et al., 2018; Wei et al., 2019 ). Finally,

or a few atypical pathogenic factors we found, due to the lack of 

elevant existing research, we will collect more data, design new 

lgorithms, and further cooperate with clinicians to explain its role 

nd rationality in PD. 

. Conclusions 

This paper attempts to design a practical multimodal fusion 

nalysis framework. The main contributions include three parts. 

he interactions between genes and brain regions are detected by 

orrelation analysis, and the fusion features with more recogni- 

ion ability are constructed according to the advantages of mul- 

imodal information complementarity. In this paper, a new ensem- 

le learner is proposed to analyze the fusion features, and the 

ecognition accuracy of 88.57% in patients with PD is achieved. The 

athogenic factors of PD at the level of gene and brain function im- 

ge are detected by searching for features that are meaningful for 

lassification. These works provide a new perspective for the diag- 

osis and lesions analysis of PD. 
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