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a b s t r a c t 

Deep learning technologies have played more and more important roles in Computer Aided Diagnosis 

(CAD) in medicine. In this paper, we tackled the problem of automatic prediction of Alzheimer’s Disease 

(AD) based on Magnetic Resonance Imaging (MRI) images, and propose a fully unsupervised deep learn- 

ing technology for AD diagnosis. We first implement the unsupervised Convolutional Neural Networks 

(CNNs) for feature extraction, and then utilize the unsupervised predictor to achieve the final diagnosis. 

In the proposed method, two kinds of data forms, one slice and three orthogonal panels (TOP) of MRI 

image, are employed as the input data respectively. Experimental results run on all the 1075 subjects 

in database of the Alzheimer’s Disease Neuroimaging Initiative (ADNI 1 1.5T) show that the proposed 

method with one slice data yields the promising prediction results for AD vs. MCI (accuracy 95.52%) and 

MCI vs. NC (accuracy 90.63%), and the proposed methods with TOP data yields the best overall prediction 

results for AD vs. MCI (accuracy 97.01%) and MCI vs. NC (accuracy 92.6%). 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimer’s Disease (AD) is a progressive brain disorder and the

ost common of dementia in the late life. AD leads to the death

f nerve cell and tissue loss throughout the brain, thus reducing

he brain volume in size dramatically through time and affecting

ost of its function [1] . The estimated number of affected peo-

le will double for next two decades, so that one out of 85 per-

ons will have the AD by 2050 [3] . Because the cost of caring the

D patients is expected to rise dramatically, the necessity of hav-

ng a computer aided diagnosis (CAD) system for early and accu-

ate AD diagnosis becomes critical [4] . Moreover, Mild Cognitive

mpairment (MCI) is an intermediate stage between Normal Cogni-

ion (NC) and clinical dementia. Exiting study [6] has shown that

CI subjects progress to clinical AD with an annual rate of approx-

mately 10–15%. Research on identifying MCI individuals who will

rogress to clinical dementia has received increasing attention in

ecent years [7] . 

Among many modalities of medical images, Magnetic Reso-

ance Imaging (MRI), Computed Tomography (CT), and Positron

mission Tomography (PET) scans contain information about the

ffects of AD on the structure and function aspects. Compared with

RI, CT and PET, MRI is the most standardized and widely avail-
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ble imaging modality in clinical practice [8] , and MRI examina-

ions can provide an opportunity to track different clinical phases

f AD. However, analyzing such MRI images consumes more time

or doctors and researches because each image contains millions of

oxels and tremendous information. 

There are many functional connectivity modeling methods

roposed for AD diagnosis, including the correlation-based meth-

ds [9] , graphical models [10] partial-correlation-based methods

11] , and sparse representation-based methods [12] . Furthermore,

everal types of features [12,13,21,23,26] were extracted from

RI image for AD prediction, such as gray matter density maps,

ortical thickness as well as volume and shape measures. Another

opular method [7] achieves the classification through segmenting

he whole brain into multiple anatomical or discriminative re-

ions and then extracting regional features. Some recent methods

14] introduced that the features extracted from neuroimaging

ata are not isolated and exhibit high correlations. Considering

he relationships among these features, tree guided sparse coding

ethods [16] and re-sampling schemes using Elastic net [17] have

een proposed for AD diagnosis. Although the low-level features

an be hand crafted with great success for certain applications,

ost of the hand-crafted features cannot be adapted to new

ondition because designing effective f eatures for new situations

sually requires new domain knowledge. Learning features from

ata of interest is considered as a plausible method of remedying
he limitations of hand-crafted features. 
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Deep learning systems are more effective in many research ar-

eas, such as image object detection [2] , image segmentation [5] ,

image saliency detection [9] , image classification [15] and remote

sensing image processing [19] . These systems have the ability to

extract high-level features from raw sensory data after using sta-

tistical learning over a large amount of data to obtain an effec-

tive representation of input data space. Among those systems, the

convolutional neural network (CNN) is a popular form since it

achieved breakthrough performance in AD diagnosis. Hosseiniasl

et al. [18] presented the deep 3D-CNN for learning generic and

transferable features across different domains, and it can detect

the characteristic AD biomarkers in one (source) domain and per-

form task specific classification in another (target) domain. Choi

and Jin [20] developed a deep CNN-based method for prediction

of cognitive decline and selection of subjects who would eventu-

ally convert to AD. Sarraf et al. [22] outlined the deep learning-

based pipelines which was employed to distinguish Alzheimer’s

MRI and fMRI from normal healthy control data for a given age

group. Hosseini-Asl et al. [23] proposed a method to predict the

AD with a deep 3D convolutional neural network, which is pre-

trained to capture anatomical shape variations in structural brain

MRI scans. Liu et al. [24] constructed a cascaded CNNs structure to

learn the multi-level and multimodal features of MRI and PET brain

images for AD diagnosis. Farooq et al. [25] proposed a CNN-based

pipeline for the diagnosis of Alzheimer’s disease and its stages us-

ing MRI images. 

Although CNN-based methods could learn highly discriminative

feature in medical images, there often arises the issue that labeled

data is often not enough to learn the filter banks in CNNs, espe-

cially in medical applications. CNNs are unable to train in param-

eter setting and learn highly discrimination visual features when

insufficient labeled datasets for training are available. This is the

reason that few studies have been investigated in applying CNN

to medical analysis due to the rare availability of labeled medical

image data. Recently, an investigation [27] showed that the unsu-

pervised CNN learns the filter banks by a traditional unsupervised

machine learning algorithm can extract the features successfully

in image classification tasks. This investigation employed the un-

supervised CNN structure to learn the features and followed by a

support vector machine (SVM) classifier to achieve the final clas-

sification result. However, the SVM is a supervised machine learn-

ing method which still requires labeled data to train and test the

classifier. Therefore, how to develop a fully unsupervised method

for achieving the medical image classification is still an open

problem. 

The fully unsupervised deep learning framework for medical

image classification, in our opinion, mainly contains two parts. The

first part is how to learn the features from input data by some un-

supervised machine learning methods. And the second part is how

to utilize the unsupervised classification methods to achieve the

final classification results. In this paper, we focus on the problem

of insufficient labeled data available in medicine, and propose a

fully unsupervised deep learning technology for AD diagnosis. The

proposed method includes the following two parts. Firstly, we em-

ploy an unsupervised CNN named PCANet for achieving the fea-

ture learning on MRI images. PCANet can learn the filters in CNNs

by a traditional unsupervised machine learning algorithm and ex-

tract the features through the first convolution stage, the second

convolution stage and the output stage. The main superiority of

PCANet is that it doesn’t involve the stochastic gradient descent

(SGD) method that requires a large number of labeled data, and

critically depends on expertise in parameter tuning and various

ad hoc tricks. Secondly, we address the unsupervised classification

method that is based on k -means to achieve the final prediction

for AD diagnosis. Moreover, two different views of MRI image are

introduced as input data in the proposed method, which includes
Please cite this article as: X. Bi, S. Li and B. Xiao et al., Computer aided

technology, Neurocomputing, https://doi.org/10.1016/j.neucom.2018.11.1
ne view of MRI image and three orthogonal panels (TOP) data

rom the three orthogonal views. 

The remainder of this paper is organized as follows.

ection 2 provides a brief introduction on PCANet and k -means.

he proposed method for AD prediction are presented in details

n Section 3 . Section 4 describes the experiments and comparative

nalysis. A discussion is provided in Section 4 . Section 5 concludes

his paper. 

. Preliminaries 

In this section, we provide the detailed descriptions on PCANet

nd k -means as preliminaries, and they will be utilized throughout

he proposed work in this paper. 

.1. PCANet 

The PCANet [27] employs two stages convolution filters learned

y principal component analysis for feature mapping, and binary

lock-wise histograms for outputting features. Specifically, PCANet

rstly unsupervised learn the abstract feature of object by exploit-

ng classic PCA algorithms with recent deep learning representa-

ion architectures. The eigenvectors which corresponding to larger

igenvalues are treated as the learned filter banks in the first two

onvolution layers. This is followed by simple binary hashing and

lock histograms for indexing and pooling the features. The main

teps of PCANet mainly includes the first convolution stage, the

econd convolution stage, and the output stage (including Hashing

nd Histogram generating). 

.1.1. The first convolution stage 

Given N input training MRI images of size r × s , for the i -th im-

ge I i ∈ R 

r×s , i ∈ [1 , N] , we take a patch of size k 1 × k 2 around each

ixel, collect all the overlapping patches, vectorize them and com-

ine them into a matrix X i of k 1 × k 2 rows and (r − k 1 + 1) × (s −
 2 + 1) columns. We then subtract patch mean from each patch for

ll the input images and combining them to obtain 

 = 

[
X̄ 1 , ̄X 2 , . . . , ̄X N 

]
∈ R 

k 1 k 2 ×N ( r−k 1 +1 ) ( s −k 2 +1 ) . (1)

here, X̄ i ∈ R 

k 1 k 2 k 3 ×(r−k 1 +1)(s −k 2 +1) (i ∈ [1 , N]) is the patch mean r e-

oved version of X i . Assuming that the number of filters in the

rst stage is L 1 , we employ PCA to learn the filter banks in this

tage. The solution is known as the L 1 principal eigenvectors of

X 

T corresponding to larger eigenvalues. The learned filters are

herefore expressed as 

 

1 
l = mat k 1 , k 2 ( q l (X X 

T )) ∈ R 

k 1 ×k 2 , l = 1 , 2 , ..., L 1 , (2)

here, mat k 1 , k 2 (v ) is a function that maps eigenvector to a matrix

 ∈ R 

k 1 ×k 2 . q l (X X 

T ) ∈ R 

1 ×k 1 k 2 denotes the L -th principal eigenvec-

ors of XX 

T , which captures the main variation of all of the mean-

emoved patches in training images. 

.1.2. The second convolution stage 

The second convolution stage almost repeat the same process

n the first stage, let the output of L -th filter in the first stage be

 

l 
i = I i ∗ W 

1 
l , I 

l 
i ∈ R 

r×s , i ∈ [ 1 , N ] , (3)

here, ∗ denotes the convolution, and the boundary of I i is zero-

added before convolving with W 

1 
l 

to make I l 
i 
have the same size

s I i . As same as the first stage, we collect all of the overlapping

atches of I l 
i 
, subtract the patch mean from each patch and obtain

 

l = 

[
Ȳ 

l 
1 , ̄Y 

l 
2 , . . . , ̄Y 

l 
N 

]
∈ R 

k 1 k 2 ×N(r−k 1 +1)(s −k 2 +1) , (4)

oncatenating Y 

l for all the filter outputs as 

 = 

[
Y 

1 , Y 

2 , . . . , Y 

L 1 
]

∈ R 

k 1 k 2 ×L 1 N(r−k 1 +1)(s −k 2 +1) . (5)
 Alzheimer’s disease diagnosis by an unsupervised deep learning 
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Fig. 1. Flow chart of the proposed PCANet + k -means clustering with one view of MRI image. 
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The filter banks W 

2 
l 

of the second stage are then learned by PCA

lgorithm as 

 

2 
l = ma t k 1 ×k 2 ( q l (Y Y 

T )) ∈ R 

k 1 ×k 2 , l = 1 , 2 , . . . , L 2 . (6)

here, L 2 is the number of filters in the second convolution stage.

ereafter, the L 1 learned filters W 

1 
l 

and L 2 learned filters W 

2 
l 

are

tilized as the convolution filter banks in the first and second

tages, respectively. 

.1.3. The output stage 

This stage includes two steps: Hashing and histogram generat-

ng. Firstly, for each input matrix I l 
i 

of stage 2, we get 

 

l 
i = 

L 2 ∑ 

l=1 

2 

l−1 H(I l i ∗ W 

2 
l ) , (7) 

here, H ( · ) is a Heaviside step function, whose value is one for

ositive and zero for otherwise. Eq. (7) converts the L 2 outputs of

he second stage back into a single integer valued matrix whose el-

ment values are in the range [0 , 2 L 2 − 1] . Secondly, for each of the

 1 matrix T l 
i 
, l ∈ [1 , L 1 ] , we partition it into B blocks, and compute

he histogram of integer values in each block with 2 L 2 bins. This is

ollowed by concatenating all B histograms into a vector (denoted

s Bhist(T l 
i 
) ). At last, the feature vector f i is estimated to a set of

lock-wise histograms for image representation: 

f i = 

[
Bhist(T 1 i ) , ..., Bhist(T L 1 

i 
) 
]T ∈ R 

1 ×( 2 L 2 ) L 1 B . (8) 

Moreover, in the histogram generating step, the local blocks of

CANet can be either overlapping or non-overlapping. In the pro-

osed method, for reducing the length of feature vector, we use

on-overlapping blocks. 

The feature vector of input images can be extracted by the

bove three stages in PCANet. Those stages don’t involve any

ardly training processes and have many tricks in parameter

etting. The hype-parameters in PCANet only include the filter

ize, the number of filters in each stage, and the block size for

istograms in the output layer. Through the grid search with either

ross-validation or a validation set, we can get the optimal filter

ize and the block size for local histograms. Moreover, the number

f filters in each stage, and some fine-tuning on the number of

lters are set according to marginal performance improvements.

nce these parameters are fixed, the training procedure of the

CANet will become very simple and efficient, since the filter

earning in the PCANet does not involve regularized parameters of

equiring numerical optimization solvers. 
Please cite this article as: X. Bi, S. Li and B. Xiao et al., Computer aided

technology, Neurocomputing, https://doi.org/10.1016/j.neucom.2018.11.1
.2. K-means clustering algorithm 

Clustering is a method to divide a set of data into a specific

umber of groups. One of the popular clustering methods is k -

eans clustering. The k -means clustering divides a collection of

ata into k number of disjoint cluster [28] , and it consists of two

eparate phases: the first phase is mainly to estimate k centroid

f each cluster, the second phase is to take each point belonging

o a given data set and assign it to the nearest centroid. There

re different methods to define the distance of nearest centroid.

ne of the commonly used methods is Euclidean distance. Once

he grouping is done it recalculate the new centroid of each clus-

er. Based on the new centroid, a new Euclidean distance is calcu-

ated between each centroid and each data point, and then assigns

he points in the cluster which have minimum Euclidean distance.

ach cluster in the partition is defined by its member objects and

entroid. When the sum of distances from all the objects in that

luster is minimized, the centroid and the cluster label for each

luster are determined over all clusters. 

. The proposed method 

.1. PCANet + k -means clustering with one view of MRI image 

We propose the unsupervised method by using PCANet and k -

eans for computer aided AD prediction. The proposed method

rstly utilizes one view of MRI image as the input data for pre-

icting MRI image. The sagittal slice centered at the center of hip-

ocampus in MRI image is fed into the PCANet. The PCANet can

erve as a simple but surprisingly competitive baseline for em-

irically justifying advanced designs of multistage features or net-

orks and can also be act as feature learner. As shown in Fig. 1 ,

he procedure of learning feature consists four stages: the first con-

olutional stage, the second convolutional stage, the hashing (non-

inear) and histogram estimation (pooling) stages. Through these

tages, the learned features from PCANet can be taken as input of

he followed k -means clustering for prediction. The k -means clus-

ering is adopted in the proposed method because of its simplicity

nd efficiency, and it is also an unsupervised classification method.

upposing a features matrix with size of x × y, x represents the fea-

ure vector of each data point learned from PCANet, and y repre-

ents the number of data points (or subjects). Let p y represents

he feature vector, and c k represents the cluster centroid, the main

teps of k -means for AD prediction based on the features learned

y PCANet are as follows: 

(1) Initialize number of cluster k and the cluster centers (de-

fined randomly). 
 Alzheimer’s disease diagnosis by an unsupervised deep learning 
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Fig. 2. Flow chart of proposed PCANet + k -means clustering with TOP data. 
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1 The SPM 12 toolbox can be downloaded from http://www.fil.ion.ucl.ac.uk/spm/ . 
(2) For each data point, calculate the Euclidean distance

d between the feature vector of current point and that of

centroid. 

(3) Assign the point to the nearest centroid based on distance d .

(4) After all data points have been assigned, recalculate the new

centroid of each cluster and renew the centroid. 

(5) Repeat steps 2–4 until the sum of distances from all the

points in that cluster is minimized. 

The k -means algorithm partitions a set of subjects into k clus-

ters, and the output of k -means is the cluster label for each sub-

ject. Comparing the cluster label with the real label corresponds to

the MRI subjects, we can obtain the final prediction accuracy. 

3.2. PCANet + k -means clustering with TOP views of MRI image 

Although one view of an MRI image can obtain acceptable re-

sults in AD prediction, when the number of subjects increased, the

input data with one slice cannot catch enough information to dis-

criminate AD. On the contrary, the processes of feature extraction

are time consuming and some extra information are involved if

all of the slices are used. Therefore, in the proposed method, we

can use three views of MRI image in the form of three orthogonal

planes (TOP) for feature extraction. As shown in Fig. 2 , three slices

is corresponded to axial, coronal and sagittal (indicated as { a, c, s })

view of an MRI image, the center of hippocampus are fed to the

PCANet for features extraction respectively. We obtain the three

feature vectors { v a , v c , v s }, and then concatenate the three fea-

tures as the final features v f of the subject. Through above stages,

the learned features v f from PCANet can be taken as input of the

followed k -means clustering for prediction. Similar with the clus-

tering processes introduced in Section 3.1 , the k -means clustering

algorithm is employed for dividing a set of feature vectors into k

clusters. Then we can obtain the prediction label for each feature

vector and compare it with the real label of the feature vector to

get the final prediction accuracy. 

4. Experiments 

4.1. Experiment dataset 

The experiment data used in the preparation of this paper is

obtained from Alzheimer’s disease Neuroimaging Initiative (ADNI)

database ( http://adni.loni.usc.edu/ ). The ADNI was launched in

2003 by the National Institute on Aging (NIA), the National In-

stitute of Biomedical Imaging and Bioengineering (NIBIB), and the

Food and Drug Administration (FDA). The primary goal of ADNI

is to test whether serial MRI, PET, other biological markers, and

clinical and neuropsychological assessment can be combined to

measure the progression of MCI and early AD. Determination of
Please cite this article as: X. Bi, S. Li and B. Xiao et al., Computer aided

technology, Neurocomputing, https://doi.org/10.1016/j.neucom.2018.11.1
ensitive and specific markers of very early AD progression is in-

ended to aid researchers and clinicians to develop new treatments

nd monitor their effectiveness, as well as lessen the time and

ost of clinical trials. In our experiments, the MRI image collection

ADNI1: Screening 1.5T” with 1075 subjects who have a screen-

ng scan is used for AD prediction. Those subjects were grouped

s three classes: (1) AD (Alzheimer’s disease), if screen diagnosis

as Alzheimer’s disease (243 subjects); (2) NC (Normal cognitive),

f screen diagnosis was normal (307 subjects); (3) MCI (Mild cog-

itive impairment), if screen diagnosis was mild cognitive impair-

ent (525 subjects). 

.2. Image preprocessing 

The MRI images are normalized into an International Consor-

ium for Brain Mapping template by Statistical Parametric Mapping

SPM12) 1 toolbox. Our configuration also includes a positron den-

ity template with no weighting image, and a 7th-order B-spline

or interpolation. The remaining parameters were set to their de-

ault. The dimension of normalized image is 79 × 95 × 79. The TOP

iews of MRI image are obtained by the MRIcron [29] software

ith changing the position of the cross at the center of the hip-

ocampus in each image. Fig. 3 shows an example of the TOP slices

btained from a normalized MRI image. 

.3. Experiment results 

In our experiments, we utilize the preprocessed MRI data with

075 subjects as input data, and evaluated the performance of the

roposed method from the prediction accuracy for each AD/NC,

D/MCI, MCI/NC, and AD/MCI/NC group. In the proposed method,

RI data are fed to the PCANet for feature extraction. The parame-

ers of PCANet are set as followed. The filter size of the network is

 1 = k 2 = 5 , and their non-overlapping blocks are of size 8 × 8, the

umber of filters L 1 = L 2 = 8 . When these parameters are fixed, we

an learn the features of AD through the first convolution stage,

he second convolution stage, and the output stage. 

The unsupervised predictor in our method are all selected as k -

eans clustering. We evaluate the prediction performance of the

roposed method from aspect of prediction accuracy analysis for

ach AD/NC, AD/MCI and MCI/NC group. The number of cluster is

et to k = 2, since there are only two categories in each group. Fur-

hermore, although k -means has the great advantage of being easy

o implement, the quality of the final clustering results depends

n the arbitrary selection of initial centroid. If the initial centroid

s randomly chosen, it will get different result for different ini-

ial centers. Therefore, in each experiment, the classification task
 Alzheimer’s disease diagnosis by an unsupervised deep learning 
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Fig. 3. Three TOP slices of a MRI image of an AD patient, from left to right: (a) in axial view, (b) coronal view and (c) sagittal view. 

Table 1 

Classification performance of the proposed method with different views of MRI 

image from the aspects of prediction accuracy. 

Methods Subject sizes Classification accuracy 

PCANet + k -means clustering 

with sagittal view of MRI 

image 

243 AD AD vs. MCI 95.52% 
AD vs. NC 76.32% 

MCI vs. NC 90.63% 

AD vs. MCI vs. NC 89.38% 

307 NC Average 87.96% 

PCANet + k -means clustering 

with TOP views of MRI 

image 

525 MCI AD vs. MCI 97.01% 
AD vs. NC 89.15% 

MCI vs. NC 92.6% 

AD vs. MCI vs. NC 91.25% 

Average 92.5% 
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Table 2 

Review of some other methods for AD prediction. The subject size and the 

classification accuracy of these methods are also provided. 

Methods Subject sizes Classification accuracy 

[17] 198 AD,409 MCI (pMCI and 

sMCI), 231 NC 

AD vs. NC 87.9% 
pMCI vs. NC 83.2% 

pMCI vs. sMCI 70.4% 

[30] 202 AD, 410 MCI, 236 NC 75% of data in training set: 

AD vs. NC 78.4% 

MCI vs. NC 71.2% 

90% of data in training set: 

AD vs. NC 85.7% 

MCI vs. NC 79.2% 

[31] 56 AD, 60 MCI, 60 NC AD vs. NC 89% 

MCI vs. NC 72% 

[8] 198 AD, 238 sMCI, 167 

pMCI 234 NC 

AD vs. NC 88.8% 
pMCI vs. sMCI 69.6% 

[32] 65 AD, 67 cMCI, 102 

ncMCI, 77 HC 

AD vs. NC 87.76% 

MCI vs. NC 76.92% 

[21] 211 AD, 91 NC AD vs. NC 98.84% (with 

spatially smoothing) 

AD vs. NC 84.50% (without 

spatially smoothing) 

AD vs. MCI NaN 

MCI vs. NC NaN 

[23] 70 AD, 70 MCI, 70 NC AD vs. NC 97.6% 

AD vs. MCI 95% 

MCI vs. NC 90.8% 
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T  
s repeated ten times, and the average of ten prediction results is

aken as the final prediction accuracy. Table 1 shows the final pre-

iction accuracy of the proposed method for each AD/NC, AD/MCI

nd MCI/NC group. The clustering results based on MRI image with

ne sagittal view are described in Fig. 4 , and the clustering results

ased on MRI image with TOP views of MRI image are shown in

ig. 5 , 

In recent years, several methods have been proposed to classify

he subjects based on MRI image for AD prediction. Since these

ethods used different datasets and preprocessing methods, a di-

ect comparison of these methods is difficult to achieve. A selection

f related methods along with the subject size and the reported

erformance is given in Table 2 . The method proposed in [17] com-

ined penalized regression and data resampling for feature extrac-

ion, and a SVMs classifier with Gaussian kernels was followed for

D prediction. In [30] , the independent component analysis (ICA)

as used as a feature extractor and coupled with a SVM classifier

or AD prediction. The method proposed in [31] used SVM classi-

er with the bagging method for AD vs. NC and a logistic regres-

ion model with a boosting algorithm for MCI vs. NC. In [8] , the

uthors achieved the AD prediction through extracting local inten-

ity patches and applying a graph-based multiple instance learn-

ng technique. Recently, deep learning methods have also been in-

estigated for AD prediction based on MRI images. The authors

n [32] utilized a deep fully-connected network pre-trained with

tacked autoencoders which is then fine-tuned for AD prediction.

he method [21] outlined deep learning-based pipelines to distin-

uish Alzheimer’s MRI and fMRI from normal healthy control data

or a given age group, and it well distinguished Alzheimer’s pa-

ients from healthy normal brains. The authors in [23] proposed

 method for AD prediction with a deep 3D convolutional neural

etwork, which is pre-trained to capture anatomical shape varia-

ions in structural brain MRI image. 
Please cite this article as: X. Bi, S. Li and B. Xiao et al., Computer aided

technology, Neurocomputing, https://doi.org/10.1016/j.neucom.2018.11.1
. Discussion 

In this paper, we have presented a fully unsupervised method

ith different views of MRI image to achieve automatic prediction

f patients with Alzheimer’s disease from MRI images. In the first

tage, we present the PCANet which the filter banks are prefixed by

he conventional unsupervised machine learning method to learn

he features of one view of MRI image for each subject. This is fol-

owed by an unsupervised classification method, which is based on

 -means clustering to achieve the final prediction. This method ob-

ains prediction accuracy 95.52% for AD vs. MCI, 76.32% for AD vs.

C, 90.63% for MCI vs. NC, 89.38% for AD vs. MCI vs. NC on all the

075 subjects in ADNI database. The average prediction accuracy

f the first method is 87.96%, which demonstrates the effective-

ess of the proposed method. Moreover, we also verify the predic-

ion performance, which utilize the TOP slices of MRI image for AD

rediction. We employ PCANet to extract three feature vectors cor-

esponding to the TOP slices of each subject respectively, and con-

atenate these three feature vectors as the final feature vector of

he subject. Then a k -means clustering is followed for AD predic-

ion. This proposed method achieves prediction accuracy to 97.01%

or AD vs. MCI, 89.15% for AD vs. NC, 92.6% for MCI vs. NC, 91.25%

or AD vs. MCI vs. NC on all the 1075 subjects in ADNI database.

he average accuracy of the second method is up to 92.5%, which
 Alzheimer’s disease diagnosis by an unsupervised deep learning 
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Fig. 4. Clustering result for (a) AD vs. MCI vs. NC, (b) AD vs. MCI, (c) AD vs. NC and (d) MCI vs. NC based on MRI image with one slice. Blue points indicate AD subjects, 

green points indicate MCI subjects and red points indicate NC subjects. Axis X, Y and Z represents the three features correspond to three largest eigen values among the 

feature vectors of all subjects. 
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is the highest performance among these methods. From the visu-

alization of clustering result shown in Fig. 4 , it can be found that

the clustering result is obvious, and the distance between clusters

is distinguished. At the same time, Fig. 4 (c) is also can be used

for explaining why our proposed methods achieve lower prediction

accuracy on AD vs. NC group than other groups. The tendency of

k -means to produce equal-sized clusters leads to bad results since

the distributions of AD and NC is ellipse shaped. 

From the performance of the proposed method, it can be found

that, although one slice of MRI image as the input data of the

proposed method can achieve acceptable results in AD prediction,

the TOP slices of MRI image as the input data achieves obviously

higher classification accuracy (PCANet with TOP slices achiever

4.54% higher than PCANet with one slice in average accuracy).

This can be explained by two reasons. Firstly, input data with on

slice catch enough discriminatory information to prediction the
Please cite this article as: X. Bi, S. Li and B. Xiao et al., Computer aided

technology, Neurocomputing, https://doi.org/10.1016/j.neucom.2018.11.1
D. Secondly, the TOP slices centered at the center of hippocam-

us catches more information of anatomical structures such as

ray matter, white matter, cerebrospinal fluid (CSF) and hippocam-

us that have been proven the effectiveness in AD prediction

33] . 

Compared with the state-of-the-art methods in AD prediction,

he proposed method achieves promising performance, i.e., up to

2.5% average prediction accuracy on the image collection “ADNI1:

creening 1.5T” with 1075 subjects. While, as shown in Table 2 ,

ome existing methods obtained slightly lower prediction accuracy

n limited number of subjects or with data selected on a specific

mage collection. Furthermore, it can be found from Table 2 that,

ecent proposed methods [21] and [23] perform better than our

roposed method. This can be explained as follows: (1). In [21] ,

he data with two modalities combined (rs-MRI and MRI) were

sed for AD prediction, and only 302 subjects with MRI modality
 Alzheimer’s disease diagnosis by an unsupervised deep learning 
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Fig. 5. Clustering result for (a) AD vs. MCI vs. NC, (b) AD vs. MCI, (c) AD vs. NC and (d) MCI vs. NC based on MRI image with TOP slices. Blue points indicate AD subjects, 

green points indicate MCI subjects and red points indicate NC subjects. Axis X, Y and Z represents the three features correspond to three largest eigen values among the 

feature vectors of all subjects. 

i  

l  

s  

8  

C  

(  

c  

o  

a  

[  

e  

t  

o  

c  

i  

i  

o  

[

6

 

t  

t  

fi  

t  

p  

t  

t  

(  

N  

1  

h  

s  

p  

m  

c

n ADNI database are selected for validation. (2). Method [21] uti-

ized a specified prepossessing step that spatially smoothed each

ubject by sigma = 3 mm, and the prediction accuracy decreased to

4.50% if this smooth step is canceled. (3). Method [23] used the

ADDe-mentia database which only includes MCI and NC subjects

without AD subjects) to pre-train a 3-D convolutional autoen-

oder. This is followed by fine-tuned fully connected upper layers

f the 3D-CNN for each task-specific AD classification, and 94.47%

verage prediction accuracy was achieved. Similar with method

21] , in method [23] , only 210 subjects (70 subjects for each cat-

gory) in ADNI database are selected for validation. On the con-

rary, in our proposed method, only one modality is used and all

f the subjects (1075 subjects, without any data selection or ex-

lusion) with MRI modality in ADNI database are chosen for val-

dation. The average prediction accuracy of our proposed method

s only 1.9% lower than method [23] while the scale of database

ur proposed method implemented on is much large than that of

23] . 
Please cite this article as: X. Bi, S. Li and B. Xiao et al., Computer aided

technology, Neurocomputing, https://doi.org/10.1016/j.neucom.2018.11.1
. Conclusions 

We regarded our work as an idea evidence that employing

he fully unsupervised method to achieve the automatic predic-

ion of patients with Alzheimer’s disease only from MRI image. We

rstly used an unsupervised CNN model which is based on PCANet

o learn the features from MRI images, and then used an unsu-

ervised classification method which is based k -means clustering

o achieve the classification task. Experimental results show that,

he proposed method achieves 92.5% average prediction accuracy

97.01% for AD vs. MCI, 89.15% for AD vs. NC, 92.6% for MCI vs.

C, and 91.25% for AD vs. MCI vs. NC) for AD prediction on all the

075 subjects of ADNI without only data selection or exclusion. We

ave also compared the performance of proposed approach with

tate of the art methods in AD prediction. The performance of the

roposed methods is promising, and it proves that the proposed

ethods can be implemented as parts of a CAD systems for effi-

ient AD diagnosis. 
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The proposed methods also have some limitations and poten-

tials which will be investigated in our future work, e.g., (1) fine

tuning the k -means method, or employing other clustering algo-

rithms such as k -means ++ , Gaussian mixture models, etc., to im-

prove the prediction accuracy for AD diagnosis; (2) combining the

3D-PCANet method with k -means that full 3D input data is used

to achieve the AD prediction; (3) further verifying the proposed

methods with even larger scale database. 
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