
Bioimage informatics

Morbigenous brain region and gene detection with

a genetically evolved random neural network cluster

approach in late mild cognitive impairment

Xia-an Bi 1,2,*, Yingchao Liu1,2, Yiming Xie1,2, Xi Hu1,2, Qinghua Jiang3,* and for the

Alzheimer’s Disease Neuroimaging Initiative

1Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, 2College of Information Science and

Engineering, Hunan Normal University, Changsha, China and 3Center for Bioinformatics, School of Life Science and Technology,

Harbin Institute of Technology, Harbin, China

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on September 26, 2019; revised on December 12, 2019; editorial decision on December 25, 2019; accepted on January 18, 2020

Abstract

Motivation: The multimodal data fusion analysis becomes another important field for brain disease detection and
increasing researches concentrate on using neural network algorithms to solve a range of problems. However, most
current neural network optimizing strategies focus on internal nodes or hidden layer numbers, while ignoring the
advantages of external optimization. Additionally, in the multimodal data fusion analysis of brain science, the prob-
lems of small sample size and high-dimensional data are often encountered due to the difficulty of data collection
and the specialization of brain science data, which may result in the lower generalization performance of neural
network.

Results: We propose a genetically evolved random neural network cluster (GERNNC) model. Specifically, the fusion
characteristics are first constructed to be taken as the input and the best type of neural network is selected as the
base classifier to form the initial random neural network cluster. Second, the cluster is adaptively genetically
evolved. Based on the GERNNC model, we further construct a multi-tasking framework for the classification of
patients with brain disease and the extraction of significant characteristics. In a study of genetic data and functional
magnetic resonance imaging data from the Alzheimer’s Disease Neuroimaging Initiative, the framework exhibits
great classification performance and strong morbigenous factor detection ability. This work demonstrates that how
to effectively detect pathogenic components of the brain disease on the high-dimensional medical data and small
samples.

Availability and implementation: The Matlab code is available at https://github.com/lizi1234560/GERNNC.git.

Contact: bixiaan@hnu.edu.cn or qhjiang@hit.edu.cn

1 Introduction

Late mild cognitive impairment (LMCI) is a late stage of mild cogni-
tive impairment (MCI). LMCI commonly causes slight cognitive
dysfunction and easily converts to dementia involving Alzheimer’s
disease (AD), frontotemporal dementia or Lewy body dementia,
which is an irreversible process. Early diagnosis of LMCI is an im-
portant step toward preventing dementia and has a great signifi-
cance to patients or medical development. At present, the
multimodal data fusion analysis is an emerging area for exploring
the multiple pathogenic factors of LMCI. It can extract the most sig-
nificant characteristics and further find out the morbigenous factors

(e.g. abnormal brain regions and genes) via the multimodal fusion
characteristics, while how to choose the appropriate methods for
analyzing the multimodal data is still an increasing challenge.

Neural network technology has been an essential research direc-
tion in the field of machine learning. Owing to the variable activa-
tion of the internal nodes and the adjustability of the connection
weights among the nodes, the neural network can adapt to the com-
plex data analysis tasks in many research fields, especially life scien-
ces (Lutnick et al., 2019). In recent years, increasing neuroscientists
have noticed that many machine learning methods including neural
network possess unique advantages in sequence learning, medical
image processing and prediction (Cui et al., 2016; Erickson et al.,

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2561

Bioinformatics, 36(8), 2020, 2561–2568

doi: 10.1093/bioinformatics/btz967

Advance Access Publication Date: 23 January 2020

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/8/2561/5714740 by U
niversity of C

alifornia, San Francisco user on 01 June 2020

http://orcid.org/0000-0002-2715-3360
https://github.com/lizi1234560/GERNNC.git
https://academic.oup.com/


2017; Liu et al., 2019; Wei et al., 2018), which may provide an at-
tractive approach to the emerging multimodal study of brain
science.

On account of the heterogeneousness and complexity of the
brain data, a great deal of effort is invested to bring potential of
neural network in brain science into full play. For example, the
neural network can successfully assist the medical personnels to
study on brain tumor detection (Havaei et al., 2017), brain image
automatic segmentation (Moeskops et al., 2016) and brain image re-
construction (Zhu et al., 2018) through learning the existing large-
scale neural imaging. At present, many researchers use the neural
network technology to diagnose brain diseases and explore the
pathological mechanism, and the results reveal that the technology
is effective in diagnosis of these diseases (Deshpande et al., 2015).
Moreover, the researchers detect the activation patterns of brain in
different states of motion by modifying the number of hidden layers
in deep neural network. With the convolutional neural network
technology, the medical staffs can also make more reliable survival
prediction for people with brain diseases (Cole et al., 2017). These
researches show that the neural network is a powerful means in clas-
sification, and exhibits a great classification effect (Naseer et al.,
2016). The technological advances of neural network provide a vital
approach to explore the function of the brain and the pathogenesis
of the brain disease.

With the deepening development of the brain science research,
new tasks are frequently put forward in the aspects of multidimen-
sional medical data handling, dimensional reduction and precision
medicine (Du et al., 2019; Wang et al., 2019). For example, the cost
of data acquisition is expensive and time-consuming in the emerging
study of multimodal data fusion in brain science (Dosenbach et al.,
2017), which limits the accumulation of public data, especially gen-
etic and functional magnetic resonance imaging (fMRI) data. Owing
to the specialization of medical datasets, there are a few public and
multimodal databases that possess a small amount of brain disease
data. Furthermore, the brain science data generally has high-
dimensional characteristics and the direct input of high-dimensional
data will lead to the computational difficulty or ‘dimension disaster’,
which undoubtedly increases the complexity of the data analysis
task. In the traditional research paradigms, the classical methods of
processing high-dimensional data include independent component
analysis (Smith et al., 2015) and principal component analysis
(Artoni et al., 2018), which are likely to cause the loss of raw infor-
mation. A dimension reduction methods based on artificial bee col-
ony algorithm and clustering are further proposed and make up for
the shortcomings of conventional methods in solving high-
dimensional data problems (Li et al., 2001; Rao et al., 2019).
Similarly, multiple unsupervised feature selection method of dimen-
sional reduction based on sparse linear regression is formulated in
recent research (Zheng et al., 2018). These studies clarify that the
characteristic selection based on machine learning can eliminate re-
dundant characteristics to achieve the purpose of dimensional reduc-
tion (Xu et al., 2019). Additionally, it is well known that the neural
network is a typical ‘data-hungry’ technique (Qu et al., 2019).
Therefore, it is a valuable and challenging task for how to maintain
the generalization performance of neural network and extract the
potential correlation information from the high-dimensional multi-
modal brain science data under the condition of small samples.

In addition, most current researchers concentrate on the single
brain science research task. For example, Hao et al. (2017) and Du
et al. (2016) both improved canonical correlation analysis (CCA) to
fuse MRI and single nucleotide polymorphisms (SNPs) data, and
found out the significant characteristics associated with AD or MCI.
Deshpande et al. (2015) applied the reformative artificial neural net-
work to classifying attention deficit hyperactivity disorder and nor-
mal people, and the result suggested that the method exhibited the
satisfactory classification performance. More importantly, the de-
sign of a multi-tasking framework based on neural network for
brain diseases could be a significant but easily overlooked assign-
ment which integrates characteristic learning, sample classification
and significant characteristic extraction.

In order to meet the above challenges, this article expands the fu-
sion study of multimodal brain scientific data including genetic and
fMRI data under the condition of small samples based on the neural
network technology. Different from the general optimization strat-
egies, we propose a novel genetically evolved random neural net-
work cluster (GERNNC) model to accomplish the outside
optimization of neural network. A random neural network cluster
(RNNC) model is first constructed through random selection of
samples and characteristics and then the continuous evolutions are
carried out to form the GERNNC model. This method integrates a
large number of randomly constructed neural networks and introdu-
ces the genetically evolved idea to conduct adaptive iterative opti-
mization, which ensures the generalization performance of the
cluster in small samples. Additionally, this study applies the
GERNNC model to the sample identification and morbigenous fac-
tor extraction of brain diseases, and forms a multi-tasking brain sci-
ence data analysis framework. Finally, we verify the validity of the
method in the multimodal data of LMCI. Our work provides a refer-
ence for the extensive application of neural network in brain science
research and presents a propagable and rapid analytical framework
for many brain disease studies.

The remainder of this article is arranged in the following fashion.
In Section 2, we describe the proposed GERNNC model and the
overall framework of multimodal data analysis. Section 3 shows the
experimental results and some discussions. Sections 4 and 5, respect-
ively, give the limitations and conclusions.

2 Materials and methods

In this section, we fuse the fMRI and genetic data to perform the
multimodal data analysis and further introduce the GERNNC
model. The framework of data analysis and diseases detection with
GERNNC is summarized in Figure 1.

2.1 Multimodal fusion characteristics
First, the average time series of the brain regions are got. According
to the anatomical automatic labeling (AAL) template, each subject’s
brain is divided into 90 brain regions, and the first 60 time points
for each brain region are extracted as an average time sequence.
Each participant is given the average time series of 90 brain regions.
Second, the gene sequences are got. The gene corresponding to each
SNP after pre-processing is calculated, and the frequency of each
gene is calculated and sorted in descending order. For experimental
accuracy, we extract the first 36 genes, and further extract the first
30 SNPs from each gene to match the average time series of each
brain region, using 1, 2, 3 and 4 to encode the discrete values of
base A, T, C and G. Each subject is given 36 gene sequences. Finally,
the fusion characteristics are constructed. For each subject, the
Pearson correlation coefficient of the brain region and the gene is
calculated, and the 3240-dimensional fusion characteristics are
eventually obtained. We treat a brain region as a region of interest
(ROI); therefore, each dimensional fusion characteristic is called a
‘region of interest-gene’ (ROI-G) pair. The ROI-G pairs are denoted
as C ¼ fc1; . . . ; cm; . . . ; cMg and we see the ROI-G pairs as the input
to the neural network.

2.2 GERNNC design idea and algorithm
2.2.1 Neural network

It is well known that neural network is a strong and powerful tool.
On account of differences in connection nodes, activation functions
and training methods for nodes in the neural network
(Schmidhuber, 2015), a variety of neural networks are created. To
better find out the most appropriate neural network for establishing
the GERNNC model, we first choose five general neural networks
as base classifiers of RNNC model.

The backpropagation neural network (BPNN) is one of the most
outstanding algorithms, which can realize the advantage of the non-
linear mapping (Ma and Meng, 2019). A single BPNN is constructed
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and trained using the training set and the fusion characteristics, the
training error of which is denoted as:

EBPNN ¼
1

2

XD
d¼1

ðĥd � hdÞ2 (1)

where D represents the quantity of output layer, ĥd represents the
output of BPNN and hd represents the target output.

The probabilistic neural network (PNN) is a simple neural net-
work on the basis of Bayesian decision theory (Specht, 1990), which
possesses the properties of short training time and good expansion
performance. The input–output relationship of output layer is
denoted as:

uij sð Þ ¼ 1

ð2pÞ
1
2rd

e�
ðs�sij Þðs�sij ÞT

r2 (2)

T ¼ argmax

PL
j¼1 uij sð Þ

L

 !
(3)

where uij sð Þ and T, respectively, represent the input–output rela-
tionships of hidden layer and output layer. sij represents the jth sam-
ple of ith class, r represents the smoothing factor and L represents
the number of neurons in ith class.

The Elman neural network (ENN) has the better stability and
functions of local memory and feedback, which can process time-
varying data (Kremer, 1995). The training error of ENN is denoted
as:

EENN ¼
1

2

�
h tð Þ � ^hðtÞ

�T
h tð Þ � ^hðtÞ
� �

(4)

where ^hðtÞ represents the output of ENN at t time and h tð Þ repre-
sents the target output at t time.

The competitive neural network (CNN) has the merits of simple
structure and simple learning algorithm. The output vector is
denoted as:

Z ¼ Vw (5)

where V represents the input vector of CNN and w represents the

connection weight.
The learning vector quantization neural network (LVQNN) is a

simple and powerful neural network classification method (Chen
et al., 2017). The output class of LVQNN is determined by the

weights of input layer versus competition layer and competition
layer versus output layer. The five neural networks are, respectively,
integrated by the ensemble learning idea.

2.2.2 GERNNC algorithm

We develop the traditional neural network by combining the ensem-

ble idea with the genetically evolved idea to design the GERNNC
model. The model is accomplished in two main steps. First, the en-
semble idea is introduced to effectively integrate multiple neural net-

works for building an RNNC model, where the randomness is
reflected in the random selections of samples and characteristics
from the entire sample set and characteristic set. Second, the genetic-

ally evolved idea is introduced into the constructed RNNC to elim-
inate the neural network with poor classification performance and

increase the explanatoryness of the cluster.
We aim to design a neural network model capable of distinguish-

ing patients from normal controls (NC) and extracting the most
discerning characteristics. The sample set is denoted as S ¼
f x1; y1ð Þ; x2; y2ð Þ; . . . ; xn; ynð Þg and divided into training set Strain

and testing set Stest. xn represents nth sample that has M fusion char-
acteristics and yn represents the label of nth sample. We severally
exploit the five neural networks to construct five RNNCs by ran-

domly selecting a samples and b characteristics. In each RNNC, we
construct K base classifiers and integrate the multiple neural net-

works to circumvent the negative influences of superabundant
parameters in a single neural network. The classification performan-
ces of five clusters at stable state in the genetically evolved process

are evaluated and contradistinguished to find out the optimal neural
network.

Based on the cluster with optimal base classifier, the binary sys-
tem that possesses the superiorities of easier implementation and

comprehensibility is employed to initialize characteristics, where ‘1’
represents the randomly selected characteristic and ‘0’ represents the

Fig. 1. Multimodal data analysis and diseases detection framework with GERNNC. We fuse gene and neuroimaging data to form characteristic matrix, where cK represents

characteristic vector in a base classifier. A total of K base classifiers are constructed to integrate a cluster that is genetically evolved and q characteristics with the most discern-

ing abilities are extracted to further find out abnormal ROIs and pathogenic genes
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unpicked characteristic. Therefore, the cluster with K base classifiers
is constituted by a binary matrix C 2 R

K�M, which is expressed as:

c1;1 c1;2 c1;3

c2;1 c2;2 c2;3

..

. ..
. ..

.

� � � c1;M

� � � c2;M

. .
. ..

.

cK;1 cK;2 cK;3 � � � cK;M

2
6664

3
7775 (6)

where cK;M represents mth characteristic of kth base classifier in the
cluster. Since the characteristics are randomly selected, one of the
expressions for the cluster is likely to be (7).

0 1 1
1 0 1
..
. ..

. ..
.

� � � 0
� � � 1
. .

. ..
.

0 0 1 � � � 1

2
6664

3
7775 (7)

The quantity of ‘1’ is b in each base classifier, which is regarded
as the input of each neural network. We consider the cluster with
the binary system as the initial RNNC model.

In order to enhance the stability of RNNC model, we adopt gen-
etically evolved idea for cluster optimization. Through the ongoing
procedure of genetic evolution, a large number of high-performance
base classifiers are preserved to allow the evolved cluster to cover
the most useless information of the pre-evolutionary cluster, and
lots of superior base classifiers in the cluster are generated every
time to make the performance of the cluster continuously close to
optimal. The genetically evolved process is executed by three steps
of selecting, crossing and variation. The selecting procedure is based
on the fitness evaluation of the base classifier. The classification ac-
curacy of each neural network in the cluster is computed and
defined as the fitness function to appraise the performance of neural
network. The fitness function is formulated as:

f ink ¼
gtrue;k

G
(8)

where gtrue;k represents the quantity of truly classified samples in the
kth neural network and G represents total amount of samples in the
testing samples. It is noted that the neural network with highest fit-
ness function value has strongest classification ability and will be
selected to form all base classifiers. On the contrary, the network
with the lowest fitness function value is picked out and replaced by
that with the highest value. The crossing procedure is performed to
acquire the recombination of characteristics in partial base classi-
fiers, which keeps most base classifiers with strong classification per-
formance and generates superior base classifiers. Since some base
classifiers are not selected in the process of crossing, the variation
procedure is carried to escalate the diversity and performance of
base classifiers by changing the binary characteristic from ‘1’ to ‘0’
or ‘0’ to ‘1’ in some classifiers. The genetically evolved process is
continuously go on until the constraints are reached as follows:

minðpÞ
s: t: DACC < e (9)

p � P

where ACC represents the accuracy of cluster. p is the genetically
evolved times and P is the largest value of that. Equation (9) means
that when the accuracy of cluster tends to be stable within the range
of P, the genetically evolved process is terminated, resulting in the
optimized RNNC model. The construction procedure of GERNNC
is shown in Algorithm 1.

2.3 Hyperparameter tuning
To better optimize the model, we apply the optimal neural network
to running the cluster with different quantities of base classifiers for
many experiments in the genetically evolved process to confirm the
optimal combination of base classifiers’ number and genetically
evolved times. The quantity of neural networks having the highest
stable classification accuracy is observed at each experiment and the

corresponding minimum number of genetic evolutions is considered
as the optimal times, which ensures the lowest space–time complex-
ity and avoids the overfitting. Through the grid search approach, all

results are marked to pick out the optimal combination.
Consequently, we find out the optimal hyperparameter of the most

suitable number of neural networks via using the tuning methods.

2.4 Extraction of morbigenous brain regions and genes
The GERNNC model is primarily used for characteristic selection,
and the 3240-dimensional ROI-G pairs that have been built are the
classification characteristics. Through the genetically evolved pro-

cess, the base classifiers in the final cluster have strong identification
ability and the characteristics in each base classifier have powerful

capability of identification. With the aim of selecting the optimal
characteristics, the frequencies of the selected characteristics in each
base classifier are first summed to get the frequencies of occurrence

for all characteristics based on the final cluster. According to fre-
quencies, these characteristics are sorted in descending order. With

the decreasing of the frequency, the distinguishing ability of the
ROI-G pair corresponding to each frequency becomes weaker and
weaker; therefore, the first t characteristics are extracted from 3240-

dimensional ROI-G pairs to further find out the optimal characteris-
tics. We choose the first r (r � t) characteristics as the input of the
reconstructed RNNC and increase the number of characteristics

with the step of 5 to test the classification performance of each char-
acteristic set. The characteristics having the highest accuracy are

seen as the optimal characteristics, which are considered to be the
most conspicuous characteristics that distinguish patients from nor-
mal people in the whole characteristic set.

There are two elements of ROI and gene in each characteristic,
the abnormalities of which further incarnate significance of optimal

characteristics set. For estimating the contribution of each ROI or
gene to identify patients and normal people, we split the optimal

characteristics into ROIs and genes, and count the frequencies of
ROIs or genes. The frequencies are used to measure the extent of the
anomaly for an ROI or a gene, the larger frequency means that the

element is more abnormal. In the context of statistical analysis for
optimal characteristics, it can be used to find out the morbigenous
genes and brain regions.

Algorithm 1 The GERNNC Algorithm

Input: Original dataset S¼{(x1, y1), (x2, y2), . . ., (xn, yn)},

Original characteristic set C

Output: The lowest genetically evolved times

1: Initialize S, C, k, w, where k is the quantity of base classi-

fiers, w is the genetically evolved termination condition

2: Partitioned the S into Strain and Stest

3: for i¼1 to k do

4: Randomly select a subset of samples and charac-

teristics from Strain and C

5: Generate {base_classifieri}

6: Update binary matrix C using (6)

7: end for

8: repeat

9: Calculate the fitness function using (8)

10: Selecting

11: Crossing

12: Variation

13: until w

14: Select the lowest genetically evolved times when the clas-

sification accuracy of RNNC is stable

2564 X.-a.Bi et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/8/2561/5714740 by U
niversity of C

alifornia, San Francisco user on 01 June 2020

Deleted Text:  


3 Results

3.1 Data acquisition and preprocessing
The genetic and fMRI data were acquired from the public database
of Alzheimer’s Disease Neuroimaging Initiative (ADNI, adni.loni.
usc.edu/). Since 2003, the ADNI was dedicated to collecting neuroi-
maging data, genetic data and biomarkers of various subjects includ-
ing AD, LMCI and NC, making great contributions to the research
of AD and other cognitive disorders. We collected 26 LMCI patients
and 36 NC from the ADNI database, containing fMRI and SNP
data. The selected dataset required the participant to remain at rest
with closed eyes, no thinking and no task. The research was sup-
ported by the Banner Alzheimer’s Institute, etc. and all participants
have signed the informed consent. Table 1 summarized the basic in-
formation of the participants.

For the fMRI image, the Philips Medical System was employed
to scan brains, with a field strength of 3.0 T, a flip angle of 80.0�, a
slice thickness of 3.3 mm, a TR (Time of Repeatation) of 3000.0 ms
and a TE (Time of Echo) of 30.0 ms. The images were preprocessed
by DPARSF toolbox within MATLAB (MathWorks, Inc., version
2014b). The image processing steps included the format conversion,
removing the first 10 volumes, correcting time slices and head action
parameters, space standardization, Gaussian smoothing (FWHM,
Full Width at Half Maximum¼6 mm), removing covariate and tem-
poral filtering. Using the AAL template, the fMRI image of each
sample was divided into 90 brain regions, containing corresponding
time series.

For the SNP data preprocessing, the PLINK was utilized for the
quality control. The sample recall threshold was set to 95% to
evaluate overall quality of data. Moreover, the thresholds for
Hardy–Weinberg equilibrium test, minimum allele frequencies and
genotyping rates were further set to 1e�4, 99.9% and 5%, respect-
ively, resulting in 82 400 SNPs.

3.2 Constructions of characteristics and GERNNC model
The proposed method was validated using LMCI-related data in this
study. All experimental sample data were provided by ADNI. For
the quality control, these data need a series of preprocessing. For
each participant, 90 brain regions and 82 400 SNPs were retained to
establish the multimodal fusion characteristics. Through the
designed fusion approach in the section of methods, we extracted
the sequence information from 90 brain regions and 36 genes to
carry out the correlation analysis, and finally constructed 3240 fu-
sion characteristics which are also called the ROI-G pairs.

In order to select the best type of neural network, we evaluated
the integrated performances of the five different types of neural net-
work including BPNN, PNN, ENN, CNN and LVQNN. The 57 fu-
sion characteristics and 36 samples were randomly selected as the
training set of a neural network at each time. The number of neural
networks in each type of RNNC was set to 300, and the genetically
evolved process was carried out to stabilize classification performan-
ces of clusters. The integrated performances of five neural networks
clusters were summarized in Figure 2. We found that with the in-
crease of genetically evolved times, the classification accuracies of
five clusters were gradually stable. The variation trend of the ran-
dom BPNN cluster’s classification accuracy was ascend in first and
descend at last. The variation trend of the random PNN cluster’s
classification accuracy was gradually ascend and leveled off, and the
accuracy was 84%. The variation trend of the random ENN clus-
ter’s classification accuracy was relatively smooth, while the accur-
acy was �72%. The variation trend of the random CNN cluster’s

classification accuracy floated up or down and the accuracy was
�70%. The variation trend of the random LVQNN cluster’s classifi-
cation accuracy had large trend fluctuation. In all clusters, the accur-
acy of the random PNN cluster achieved the highest, when the
accuracy rate tends to a stable value. Consequently, the PNN was
affirmed as the base classifier to construct the genetically evolved
random PNN cluster (GERPNNC) model in the subsequent
experiments.

In this study, we further carried out plentiful training and debug-
ging of the GERPNNC to optimize the classification performance.
Specifically, through adjusting the number of neural networks in the
cluster, we found out the genetically evolved times when the cluster
classification performance tended to be stable. Figure 3 summarized
the relationships between the different numbers of base classifiers
and the corresponding genetically evolved times. At the coordinate
of (160, 70), the number of neural networks and the genetically
evolved times were both less and the cluster was regarded as the
final cluster for further analysis, which also helped to reduce the
consumption of system resources in practical application.

3.3 Selection of the most discerning characteristics
The final cluster composed of 160 PNNs was obtained through 76
genetically evolved times. In the genetically evolved process, the ac-
curacy rate gradually increased from 60% to 84% and eventually
remained stable. It is indicated that the genetically evolved process
realized the filtering of irrelevant or redundant characteristics,
which achieved the purpose of preserving characteristics with strong
recognition capabilities. Since these characteristics were randomly

Fig. 2. Integrated performance comparison of five neural networks. The LMCI-

related dataset is applied to five random neural network ensembles to assess the clas-

sification performances. The genetically evolved times are set to a range of (0, 200)

and the different variation tendencies are observed, which is convenient for finding

out the optimal neural networks. (a) random BPNN cluster (RBPNNC), (b) random

PNN cluster (RPNNC), (c) random ENN cluster (RENNC), (d) random CNN clus-

ter (RCNNC), (e) random LVQNN cluster (RLVQNNC)

Table 1. Demographic information of LMCI and NC

Variables LMCI (n¼ 26) NC (n¼ 36) P-value

Gender (male/female) 14/12 14/22 0:243a

Age (mean 6 SD) 72.4567.47 75.8466.27 0:057b

aThe P-value was acquired via the chi-square test.
bThe P-value was acquired via the two-sample t-test.
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selected by base classifiers, we counted the frequencies of different
characteristics selected by each base classifier in the final cluster,
and took the first 400 characteristics with higher frequencies as im-
portant characteristics. The first t (t¼70, 75, . . ., 400) characteris-
tics of important characteristic set were extracted and their
recognition abilities were assessed via a random PNN cluster, as
shown in Figure 4a. The identification ability of the first 205 charac-
teristics was the best and retained as the most discerning characteris-
tic set, which further filtered out unrelated or redundant
characteristics. The 20 most significant fusion characteristics were
exhibited in Figure 4b. We observe that some ROIs or genes have
multiple connections, which illuminates those are likely to make im-
portant contributions on the classification of brain diseases.

3.4 Performance evaluation and comparison
As a benchmark to compare with our proposed characteristic fusion
method and the GERNNC model, we trained the random support
vector machine cluster (RSVMC), random forest (RF) and two-
sample t-test using the same sample set and fusion characteristics
constructed based on the Pearson correlation analysis. We further
computed the overlaps of the optimal characteristics extracted be-
tween the GERNNC model and other methods. We also applied the
classical CCA and correlation distance (CD) methods to establishing
the fusion characteristics and used the traditional two-sample t-test
to extract the optimal characteristics. The comparison attempted to
combine some classical fusion characteristic construction
approaches and characteristic extraction methods to form the over-
all frameworks. The overlaps and the performance difference are
summarized, as shown in Table 2. The numbers of optimal ROI-G
pairs extracted by different methods were analyzed statistically, and
the SVM was used to test the identification abilities of the optimal
characteristic sets.

From Table 2, it is learned that the number of optimal character-
istics extracted by our method is the least among all frameworks,
while the identification ability is the best. In addition, the overlaps
of optimal characteristics between the GERPNNC and other meth-
ods are observed, the non-contingency of which are proved by the
hypergeometric test. More interestingly, the larger the overlaps are,
the better the classification performance is. Therefore, it is believed
that the GERPNNC method can be used as a novel sample classifi-
cation and pathogenic factors detection method.

To better assess the effectivities of the genetically evolved idea
and multimodal data fusion scheme, we further calculated the accu-
racies of random PNN clusters with different genetic evolution
times, and carried out comparative experiments with the two-
sample t-test underlying the multimodal data (fMRI and SNP) and
unimodal data (fMRI or SNP), which are summarized in Figure 5.
With the increasing of evolved times, the accuracy rates of
GERPNNC are first raised and then stabilized at around 84%,
showing that genetically evolved idea can effectively improve the
performance of cluster. The comparison methods are accomplished

on the multimodal data of combining fMRI with gene and the uni-
modal data of fMRI or gene. The accuracy rates are below 80% and
lower those of GERPNNC model. It is noted that there is a higher
classification result on fMRI data in the t-test experiment, which
may be due to the randomness of sample and characteristic selection
during model construction. These results not only reflect that the
GERPNNC model has better adaptability to fusing multimodal
data, but also confirm the capacity for multimodal data information
complementarity. The advantages of machine learning could be
more obvious than that of the conventional methods.

From the results of comparison with other methods, it can be
found that the classification performance of the GERPNNC is better
than that of other models, and the high-dimensional characteristics
can be selected to achieve the purpose of dimensional reduction. The
performance advantages of this model are mainly reflected in the fol-
lowing three levels. First, the genetic evolution is used as an optimiza-
tion strategy to improve the learning ability of the cluster. In the
genetically evolved process, the redundant or invalid characteristics
are removed, which makes the performance of clusters gradually in-
crease and remain stable. At the same time, by setting the genetically
evolved terminal condition, learning efficiency is guaranteed and the
overfitting is avoided. Second, via searching for the optimal number
of neural networks in the model, the genetically evolved times of the
cluster are as small as possible to ensure the efficiency of the cluster.
The above two levels make the GERPNNC have a good global opti-
mization ability. Finally, the multimodal data fusion method and the
GERPNNC approach are effectively integrated into the overall frame-
work, which can make better use of the complementarity between
genetic data and fMRI data to improve the performance.

3.5 Analysis of abnormal ROIs and pathogenic genes
Figure 4b visually displays the fusion characteristics constituted by
the correlations between the ROIs and the genes. The ROI-G pairs

Fig. 4. The most discerning characteristics. Different quantities of characteristics

constitute multiple characteristic sets to construct the random PNN clusters, the

classification accuracies of which are computed. (a) The peak value represents that

the characteristic set has the best distinguishing ability to make the performance of

the cluster optimized. (b) The first 20 most discerning characteristics are extracted

to embody the links between ROIs and genes

Fig. 3. Construction of the GERPNNC model. We choose the different quantities of

base classifiers to construct the multiple random PNN clusters. When the accuracies

of clusters tended to be stable, the different clusters correspond to diverse genetically

evolved times. In order to reduce the time complexity and space complexity, the 160

base classifiers and corresponding 76 genetically evolved times are considered the

optimal combination for establishing the GERPNNC model
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in the most discerning characteristics mean that they have signifi-
cantly strong identification abilities in terms of classification be-
tween normal people and patients with brain disease. These ROI-G
pairs are regarded as the abnormal characteristics which can provide
evidences for us to explore abnormal ROIs and pathogenic genes.

Therefore, we isolated the ROIs and genes from the optimal
characteristic set, and counted the frequencies of different ROIs or
genes. The greater the frequency of ROI or gene is, the more likely it
is to be associated with the brain disease. Figures 6 and 7 depicted
the abnormal ROIs and disease-causing genes connected with LMCI
found in this study, and these pathogenic factors have been verified
by existing studies. For example, Liang et al. (2014) found that the
four groups of CN (control normal)/early MCI (EMCI)/LMCI/AD
had significant differences in gray matter in bilateral hippocampus,
bilateral insula, bilateral postcentral gyrus and right angular gyrus.
Zhu et al. (2019) found that during the development of EMCI to
LMCI, the APOEE4 gene carriers showed increased functional con-
nectivities in the precuneus and hippocampus, and decreased func-
tional connectivities in the insula, while the APOEE4 gene non-
carriers showed an entirely opposite pattern. Li et al. (2015)
revealed that the MAGI2 gene was possibly associated with LMCI
in 2015, and Li et al. (2017) found out abnormalities in the CDH13
gene in genome-wide association analysis of LMCI patients in 2017.

4 Results and discussion

Although we demonstrated the efficiency of the GERNNC algo-
rithm that distinguished people with LMCI from NC and provided a
reliable basis for predicting brain diseases, there are some limitations
that need to be further discussed. First, this model is mainly based
on the characteristics of ROI-G pairs to study brain diseases, there-
fore we can study brain diseases based on the characteristics of
voxel-gene pairs in the follow-up work. Second, the AAL template is

used to match the brain. We can also use other templates to match

the brain.

5 Conclusions

In this article, we efficaciously fused the fMRI and gene using the
complementary information, and proposed a framework for the ex-

ploration of potential pathogenic factors and the early diagnosis of
LMCI based on the machine learning method. In the framework, the

GERNNC model was presented for the first time to effectively deal

Table 2. Comparison with classical characteristic extraction methods

Methods Discoveries Accuracy (%) Overlaps

Pearson versus GERPNNC 205 87.5 —

Pearson versus RF 620 75.0 131 (P¼ 1.670202e�24)

Pearson versus RSVMC 705 70.8 104 (P¼ 1.288661e�53)

Pearson versus t-test 335 66.7 91 (P¼ 2.435895e�06)

CCA versus t-test 294 58.3 56 (P¼ 2.918568e�14)

CD versus t-test 323 66.7 73 (P¼ 8.994176e�11)

Note: The P-value was acquired by the hypergeometric test.

t-test, two-sample t-test.

Fig. 5. Comparison with two-sample t-test. Based on the training results of

GERPNNC model, we set the genetically evolved times to 50, 60, 70, 80 and 90 for

observing the performance variation during genetically evolved progression.

Moreover, the t-test is compared to our model underlying unimodal and multimodal

data

Fig. 6. Locations, frequencies and sizes of segmental ROIs. The ROIs with higher

frequencies are extracted as morbigenous ROIs. (a) The highest frequency is 8 and a

small percentage of the 90 ROIs possesses higher frequencies. It is noted that there

are not ROIs with frequencies of 7 and 6. (b) The locations and sizes of morbige-

nous ROIs are shown in coronal, sagittal and axial maps of the brain

Fig. 7. Frequencies of all genes. By the ROI-G pairs with strong identification abil-

ities, the frequency of each gene occurred in optimal characteristic set is calculated

to find out the morbigenous genes, such as CNTN5, MAGI2 and ALDH1A2
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with the classification challenge under the condition of small sam-
ples. Compared with the frameworks consisting of general correl-
ational analysis methods and classical machine learning or statistical
approaches, we took advantage of the neural networks to achieve a
high classification accuracy and the effects of characteristic extrac-
tion achieved the most outstanding, demonstrating that the
GERNNC was a powerful tool for identifying brain diseases. The
rapid and scalable approach was easy to deploy and could have a
significant impact on clinical decision-making and understanding
disease mechanisms. Furthermore, the proposed framework can be
extended to other brain diseases, such as AD.
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