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Abstract.
Background: Diffusion tensor imaging (DTI) estimates the microstructural alterations of the brain, as a magnetic resonance
imaging (MRI)-based neuroimaging technique. Prior DTI studies reported decreased structural integrity of the superficial
white matter (SWM) in the brain diseases.
Objective: This study aimed to determine the diffusion characteristics of SWM in Alzheimer’s disease (AD) and mild
cognitive impairment (MCI) using tractography and region of interest (ROI) approaches.
Methods: The diffusion MRI data were downloaded from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
on 24 patients with AD, 24 with MCI, and 24 normal control (NC) subjects. DTI processing was performed using DSI Studio
software. First, for ROI-based analysis, The superficial white matter was divided into right and left frontal, parietal, temporal,
insula, limbic and occipital regions by the Talairach Atlas, Then, for tractography-based analysis, the tractography of each
of these regions was performed with 100000 seeds. Finally, the average diffusion values were extracted from voxels within
the ROIs and tracts.
Results: Both tractography and ROI analyses showed a significant difference in radial, axial and mean diffusivity values
between the three groups (p < 0.05) across most of the SWM. Furthermore, The Mini-Mental State Examination was sig-
nificantly correlated with radial, axial, and mean diffusivity values in parietal and temporal lobes SWM in the AD group
(p < 0.05).
Conclusion: DTI provided information indicating microstructural changes in the SWM of patients with AD and MCI.
Therefore, assessment of the SWM using DTI may be helpful for the clinical diagnosis of patients with AD and MCI.
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INTRODUCTION

Diffusion tensor imaging (DTI) has been used in
recent years as a strong and non-invasive neuroimag-
ing technique, which can provide useful information
for detecting damage to white matter in neurodegen-
erative diseases by measuring the diffusion properties
of water molecules [1, 2]. Four important quanti-
tative measures of DTI are axial diffusivity (AxD),
radial diffusivity (RD), mean diffusivity (MD), and
fractional anisotropy (FA). FA describes the degree
of anisotropy of water diffusion. MD is the average
rate of diffusion along all directions and is typically
increased with damage to myelin sheaths. AD is dif-
fusion parallel to axons, while radial diffusivity (RD)
reflects the two vectors of diffusion perpendicular to
the axon [3].

DTI tractography is a potential 3D tool for
detecting white matter pathology and evaluating the
microstructural integrity of white matter fiber bun-
dles using information collected by DTI [4] that was
developed by Mori et al. [5]. DTI and fiber tractog-
raphy may be used in the diagnosis of Alzheimer’s
disease (AD) and mild cognitive impairment (MCI).

AD is the most prevalent form of dementia in
the elderly population that caused by the presence
of amyloid-� (A�) plaque and hyperphosphorylated
tau protein as neurofibrillary tangles in the brain and
finally cause neuronal death and damage to the brain
tissue [6].

MCI is a type of cognitive decline characterized by
significant memory loss without functional impair-
ments. Individuals with MCI do not fulfill the clinical
criteria for dementia but they have a high risk for
progression to dementia. This fact shows that the
detection of MCI is important [7, 8]. It is believed
that differential diagnosis of between normal subject
and MCI and between MCI and AD are difficult and
very important, and clinical neuroimaging techniques
can be used to make these distinctions [9].

AD and MCI affect certain regions of the brain.
Therefore, the atlas-based method for the study of
white matter integrity invariant regions of interest
(ROI) has been widely used [10]. Superficial white
matter (SWM) is one of the regions that may play an
important role in the diagnosis of AD [11, 12] and
MCI.

SWM is located between gray matter and deep
white matter and mainly consists of short-range
association fibers (such as U-shaped fibers which
connect neighboring gyri). The cellular and structural
arrangement of the SWM differs from the deep white

matter. For example, according to the retrogenesis
model, fibers that myelinate later in development are
the first to be affected by damage [13, 14]. The SWM,
unlike the deep white matter, is comprised of late-
myelinating fibers. Therefore, they are vulnerable
to neurodegenerative processes. Furthermore, oligo-
dendrocytes that produce the myelin sheath insulating
neuronal axons tend to myelinate with fewer wraps
in the SWM than the deep white matter. Accordingly,
SWM axons are more sensitive to impairments [11].

Recent studies showed decreased structural
integrity and high sensitivity of SWM in multiple
sclerosis [15], autism [16], schizophrenia [17, 18],
Huntington’s disease [19], AD [11, 12], and cognitive
decline in aging [20, 21]. According to our knowl-
edge, no studies have assessed DTI values in this
region in MCI.

There are many different methods for analyzing
DTI data with their own advantages and restrictions.
As different information and results are provided by
different methods, performing more than one type
of analysis is often valuable to earn insight into
the results of each method [22]. Methods used in
recent studies include Tract-Based-Spatial-Statistics
(TBSS) [23], connectivity analysis [24–27], voxel-
based and ROI analyses [28], tractography analysis
[18, 21], and other methods. In the present study, we
performed ROI and tractography approaches of the
SWM region.

The purpose of the present study was the detec-
tion of SWM microstructural changes in AD and
MCI using DTI through the region of interest and
tractography techniques.

MATERIALS AND METHODS

Clinical data and demographics

Data used in the preparation of this arti-
cle were obtained from the ADNI database
(http://adni.loni.usc.edu). The ADNI was launched
in 2003 as a public-private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial
MRI, positron emission tomography, other biological
markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of
MCI and early AD. For up-to-date information, see
http://www.adni-info.org.

The diffusion MRI, clinical, and neuropsycho-
logical data of subjects were downloaded from the
ADNI database. Subjects including AD (n = 24), MCI

http://adni.loni.usc.edu
http://www.adni-info.org
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Table 1
Demographics and clinical scores for the participants

NC (n = 24) MCI (n = 24) AD (n = 24) p
Mean (SD) Mean (SD) Mean (SD)

Age 75.3 (8.3) 76 (8.6) 76.4 (8.2) 0.89
Sex 11 M/13 F 12 M/12 F 16 M/8 F 0.3
Global CDR 0.021 (0.1) 0.58 (0.19) 1.1 (0.116) <0.001
FAQ Total Score 0.08 (0.4) 4.9 (6.9) 19.7 (6.2) <0.001
MMSE 29 (1.2) 26.7 2) 20.1 (4.9) <0.001

CDR, Clinical Dementia Rating; FAQ, Functional Activities Questionnaire; MMSE, Mini-Mental State Examina-
tion; NC, normal controls; MCI, mild cognitive impairment; AD, Alzheimer’s disease; M, male; F, female. p < 0.05
was considered statistically significant and bold font indicates statistical significance.

(n = 24), and control (n = 24) groups were obtained
from ADNI2 project (Table 1).

Statement of ethics

The study was reviewed and approved by
the Ethical Committee of Mashhad Univer-
sity of Medical Sciences (Ethical number:
IR.MUMS.MEDICAL.REC.1397.320).

MRI and DTI scanning

The diffusion MRI data originated from ADNI2
project with the following parameters: Axial
diffusion-weighted image data were acquired with
an echo-planar imaging sequence. Scan parameters
were: Manufacturer = GE MEDICAL SYSTEMS;
field strength = 3.0T; Pulse Sequence = EP/SE
flip angle = 90◦; b = 1000 s/mm²; gradient direc-
tions = 41; pixel size = 1.36 × 1.36 mm²; repetition
time (TR) = 9050 ms; echo time (TE) = 62.8 ms; slice
thickness = 2.7 mm; Matrix X = 256.0 pixels; Matrix
Y = 256.0 pixels; Matrix Z = 2714.0.

DTI processing

Preprocessing and reconstruction steps
The diffusion MRI data were preprocessed using

DSI-Studio software (developed by Fang-Cheng
Yeh from the Advanced Biomedical MRI Lab,
National Taiwan University Hospital, Taiwan, Sup-
ported by Fiber Tractography Lab, University
of Pittsburgh, and made available at http://dsi-
studio.labsolver.org/Download/). For skull stripping
and filtering the background region, we used
the masks provided by DSI-Studio. Prior to DTI
parameter measurement, head motion and eddy cur-
rent effects were corrected using the DSI-Studio
toolbox. DSI Studio (http://dsi-studio.labsolver.org)
supports several reconstruction methods and catego-
rizes them into model-based and model-free methods.

Fig. 1. Three-plane view of whole brain Superficial White Mat-
ter Mask which was obtained from the similar study [18, 21] in
Montreal Neurological Institute space.

Model-based methods suppose a specific diffusion
distribution pattern [29]. In the present study, the
DTI reconstruction approach performed as a model-
based method and tensor calculation carried out by
the linear equation system using least square fitting
which can be a very effective and very fast tool in
data analysis [30].

Next, the average DTI values were extracted from
voxels within the ROIs and tracts.

ROI approach
We used Superficial White Matter Mask which

was obtained from a similar study [18, 21] in Mon-
treal Neurological Institute (MNI) space (Fig. 1).
Based on the Terminologia Anatomica 1998 [31]
and Terminologia Neuroanatomical 2017 (FIPAT,
Terminologia Neuroanatomica, FIPAT.library.dal.ca.
Federative International Programme for Anatomical
Terminology, February 2017) that divided cerebrum
into 6 lobes, including frontal, parietal, temporal,
occipital, limbic, and insular lobes. We divided these
areas into right and left hemispheres for a more
detailed review by the Talairach Atlas [32] (Fig. 2). In
total, 12 SWM regions and average DTI values were
calculated for each region.

Tractography approach
FA index was used to determine the fiber track-

ing threshold and Otsu’s method was used to set the
anisotropy (FA) threshold to stop the fiber tracking. In

http://dsi-studio.labsolver.org/Download/
http://dsi-studio.labsolver.org
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Fig. 2. Overview of the division of the SWM of the brain into
the frontal (pink), insula (green), limbic (yellow), parietal (blue),
temporal (orange), occipital (Purple) lobes. a) 3D sagittal view b)
3D Axial View.

other words, tracking was terminated if the anisotropy
of the next step fell below the defined threshold. Then
the tractography of each SWM region was performed
with 100000 seeds was randomly generated at sub-
voxel positions and the seeds were placed across all
SWM regions, step size of 0 (0.5 voxel to 1.5 voxel
distance) and smoothing of 1. The tracking from the
primary fiber of a seeding point was set to stream-
line (Euler), and the direction interpolation was set to
trilinear. Fibers length range was set between 30 to
300 mm.

Fig. 3. Example of SWM fibers pathways which generated by
tractography of total SWM regions in standard MNI-ICBM152
template. Fibers pathways were recognized automatically accord-
ing to an atlas-based tractography segmentation. (After performing
the tractography of SWM regions, regions have been removed to
better fibers pathways appear.)

In order to obtain the exact fiber pathway of the
region, The SWM mask was selected as ROI and
the other areas of the brain defined as ROA (region
of avoidance). Finally, with this method, fiber track-
ing restricted in the SWM mask (i.e., U-fibers and
intraregional fibers) and all passing fibers through the
exclusion region (ROA) mask were deleted. Exam-
ples of total SWM tracts are shown in Figure 3. The
average of the DTI measure, e.g., FA, is calculated
from all voxels that are part of the delineated tract

Statistical analysis

We conducted between-group comparisons of
demographic variables and neuropsychological
scores using One-way analysis of variance (ANOVA)
statistics for continuous variables (age and cogni-
tive scores) and chi-squared tests for the qualitative
variable (gender). After calculating the DTI values
(FA, MD, RD, and AxD) per ROIs and along the
extracted tracts as the response variables (depen-
dent variables) in all three groups (independent
variables), the normality of this data was assessed
using the Kolmogorov-Smirnov test. Then for those
variables in which normality assumption was satis-
fied, ANOVA with the post hoc multiple comparison
(Bonferroni) test was used. In other words, ANOVA
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was first used to compare the means of the nor-
mal variables in the three groups. Subsequently, the
pairwise post-hoc multiple comparison (Bonferroni)
test was used to determine which of the two groups
were significantly different in each value. The non-
parametric method (Kruskal Wallis test) was used
for non-normality values. Finally, spearman’s cor-
relation coefficients were performed between the
Mini-Mental State Examination (MMSE) scores and
DTI indices of SWM ROIs. p-value <0.05 was
considered statistically significant and all statistical
analyses were performed using SPSS 24.0 software
(SPSS Inc., Chicago, IL).

RESULTS

Subject demographics and clinical data

Demographics and clinical scores of participants
are shown in Table 1. Age and sex as the confounding
variables (nuisance variables) were not significantly
different between the normal controls (NC), MCI,
and AD groups. MMSE, Functional Activities Ques-
tionnaire (FAQ) Total, and Global Clinical Dementia
Rating (CDR) scores were significantly different
between the three groups (MMSE scores: CN group
versus MCI Group, p = 0.036; MCI group versus
AD group, p < 0.001; NC group versus AD group,
p < 0.001; FAQ Total scores: CN group versus MCI
Group, p = 0.007; MCI group versus AD group,
p < 0.001; NC group versus AD group, p < 0.001;
Global CDR scores: CN group versus MCI Group,
p < 0.001; MCI group versus AD group, p < 0.001;
NC group versus AD group, p < 0.001).

ROI analysis

ANOVA demonstrated a significant difference in
AxD, MD, and RD values in many regions between
the three groups (p < 0.05). In contrast, the FA was not
significantly different between the groups in none of
the regions (Table 2).

Group comparison between MCI and Control
None of the DTI measures of SWM regions

was significantly different between MCI and control
groups.

Group comparison between MCI and AD
We found a significant increase in AxD values of

the left limbic (p = 0.023), left and right temporal
(p < 0.001, p = 0.001) in the AD group compared to

MCI. MD and RD values had a significant increase in
the left and right temporal (MD: p < 0.001, p = 0.001
and RD: p = 0.001, p = 0.001) in the AD group. In
addition to the temporal lobe, MD value showed a
significant difference in the left limbic (p = 0.043).

Group comparison between control and AD
Compared with control, AD subjects showed sig-

nificant increases in AxD value of the left and right
limbic (p < 0.001), insula (p = 0.028, p = 0.008), and
temporal (p < 0.001) regions and MD value of the
left and right limbic (p < 0.001, p = 0.001), tempo-
ral (p < 0.001), insula (p = 0.032, p = 0.001), right
frontal (p = 0.02), and parietal (p = 0.047) regions and
RD value of the left limbic (p = 0.003), temporal
(p < 0.001), right insula (p = 0.029), and right limbic
(p = 0.003) regions.

Tractography analysis

AxD, RD, MD, and FA values extracted from
SWM tracts and these parameters were significantly
different between the three groups (Table 3).

Group comparison between MCI and Control
MD values had a significant increase in the right

parietal SWM tracts only (p = 0.03) in the MCI group
compared to the CN group and no significant differ-
ence was found in other regions and DTI measures.

Group comparison between MCI and AD
MD values had a significant increase in the left

limbic (p = 0.048) and left temporal (p = 0.024) SWM
tracts in the AD group.

Group comparison between control and AD
We found a significant increase in AxD value for

the entire SWM region fibers except for the right
frontal lobe fibers (p = 0.11) in the AD group.

MD value tracts in most regions of the brain
included left and right limbic (p = 0.001, p = 0.005),
left and right temporal (p < 0.001), left and right
occipital (p = 0.008, p = 0.013), left and right pari-
etal (p = 0.04, p = 0.032), and left insula (p = 0.002)
showed significant increases in the AD group com-
pared to the CN group.

Also, RD value had significant increase in tracts
of the left and right limbic (p = 0.004, p = 0.012),
left and right temporal (p < 0.001, p = 0.01), left and
right occipital (p = 0.004, p = 0.033), and left insula
(p = 0.01) in the AD group.
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Table 2
Multiple comparisons of DTI measures of ROI (dependent variables) in MCI, AD, and control groups

CN MCI AD p
Mean (SD) Mean (SD) Mean (SD)

AxD
Left frontal 1.21 (0.12) 1.24 (0.08) 1.29 (0.12) 0.074
Left insula 1.21 (0.17)* 1.23 (0.11) 1.31 (0.11) 0.026
Left limbic 1.37 (0.21)* 1.52 (0.33)* 1.75 (0.32) <0.001
Left occipital 1.21 (0.16) 1.26 (0.16) 1.33 (0.19) 0.057
Left parietal 1.25 (0.18) 1.26 (0.11) 1.26 (0.11) 0.054
Left temporal 1.27 (0.14)* 1.35 (0.17)* 1.35 (0.17) <0.001
Right frontal 1.22 (0.12) 1.26 (0.09) 1.26 (0.09) 0.051
Right insula 1.26 (0.21)* 1.31 (0.15) 1.31 (0.15) 0.007
Right limbic 1.33 (0.19)* 1.48 (0.35) 1.48 (0.35) 0.001
Right occipital 1.19 (0.14) 1.19 (0.11) 1.19 (0.11) 0.19
Right parietal 1.27 (0.19) 1.28 (0.13) 1.28 (0.13) 0.072
Right temporal 1.24 (0.16)* 1.31 (0.18)* 1.31 (0.18) <0.001

MD
Left frontal 0.96 (0.11) 0.98 (0.07) 1.03 (0.11) 0.085
Left insula 0.92 (0.11)* 0.94 (0.08) 0.97 (0.08) 0.038
Left limbic 1.04 (0.16)* 1.19 (0.31)* 1.36 (0.29) <0.001
Left occipital 0.96 (0.13)* 1.01 (0.14) 1.09 (0.17) 0.013
Left parietal 0.99 (0.16) 1.01 (0.09) 1.08 (0.14) 0.061
Left temporal 0.98 (0.11)* 1.06 (0.14)* 1.29 (0.18) <0.001
Right frontal 0.95 (0.11)* 1.01 (0.07) 1.03 (0.11) 0.024
Right insula 0.97 (0.14)* 1.02 (0.12) 1.12 (0.16) 0.002
Right limbic 1.01 (0.15)* 1.15 (0.33) 1.31 (0.29) 0.001
Right occipital 0.95 (0.12) 0.96 (0.09) 1.02 (0.12) 0.018
Right parietal 0.99 (0.18)* 1.02 (0.11) 1.11 (0.14) 0.043
Right temporal 0.96 (0.14)* 1.03 (0.15)* 1.23 (0.22) <0.001

RD
Left frontal 0.84 (0.11) 0.86 (0.11) 0.89 (0.11) 0.11
Left insula 0.81 (0.11) 0.79 (0.11) 0.81 (0.08) 0.97
Left limbic 0.91 (0.16)* 1.02 (0.16) 1.17 (0.08) 0.003
Left occipital 0.87 (0.14) 0.86 (0.13) 0.97 (0.16) 0.051
Left parietal 0.88 (0.15) 0.87 (0.16) 0.94 (0.13) 0.13
Left temporal 0.86 (0.11)* 0.92 (0.11)* 1.13 (0.17) <0.001
Right frontal 0.84 (0.11) 0.87 (0.11) 0.91 (0.09) 0.074
Right insula 0.85 (0.14)* 0.88 (0.14) 0.96 (0.16) 0.026
Right limbic 0.86 (0.14)* 0.97 (0.15) 1.12 (0.29) 0.005
Right occipital 0.85 (0.12) 0.85 (0.12) 0.91 (0.11) 0.21
Right parietal 0.89 (0.16) 0.89 (0.18) 0.97 (0.14) 0.14
Right temporal 0.84 (0.13)* 0.89 (0.14)* 1.08 (0.21) <0.001

FA
Left frontal 0.27 (0.02) 0.27 (0.01) 0.27 (0.02) 0.76
Left insula 0.30 (0.05) 0.29 (0.04) 0.30 (0.05) 0.08
Left limbic 0.28 (0.05) 0.27 (0.05) 0.28 (0.05) 0.32
Left occipital 0.24 (0.02) 0.24 (0.02) 0.24 (0.02) 0.41
Left parietal 0.26 (0.02) 0.27 (0.01) 0.26 (0.02) 0.57
Left temporal 0.27 (0.02) 0.26 (0.01) 0.27 (0.02) 0.21
Right frontal 0.28 (0.02) 0.27 (0.01) 0.28 (0.02) 0.31
Right insula 0.28 (0.03) 0.26 (0.03) 0.28 (0.03) 0.26
Right limbic 0.30 (0.04) 0.29 (0.03) 0.30 (0.04) 0.69
Right occipital 0.24 (0.02) 0.24 (0.02) 0.24 (0.02) 0.78
Right parietal 0.26 (0.02) 0.26 (0.01) 0.26 (0.02) 0.64
Right temporal 0.27 (0.02) 0.26 (0.01) 0.27 (0.02) 0.09

Multiple comparisons of DTI measures of ROI in MCI, AD, and control groups. NC, normal controls; MCI, mild
cognitive impairment; AD, Alzheimer’s disease; AxD, axial diffusion; MD, mean diffusion; RD, radial diffusion;
FA, fractional anisotropy. p < 0.05 was considered statistically significant and bold font indicates statistical signifi-
cance. Post-hoc multiple comparison analysis: *statistically significant versus AD; #statistically significant versus
MCI.



B. Bigham et al. / Superficial White Matter in AD and MCI 55

Table 3
Multiple comparisons of DTI measures of tractography (dependent variables) in MCI, AD, and control groups

CN MCI AD p
Mean (SD) Mean (SD) Mean (SD)

AxD
Left frontal 1.14 (0.12) 1.17 (0.08) 1.21 (0.16) 0.11
Left insula 1.17 (0.17)* 1.17 (0.11) 1.28 (0.16) 0.009
Left limbic 1.18 (0.21)* 1.24 (0.33) 1.34 (0.14) <0.001
Left occipital 1.18 (0.16)* 1.22 (0.16) 1.29 (0.18) 0.041
Left parietal 1.13 (0.18)* 1.21 (0.11) 1.23 (0.14) 0.013
Left temporal 1.17 (0.14)* 1.23 (0.17) 1.37 (0.17) <0.001
Right frontal 1.16 (0.12)* 1.19 (0.09) 1.24 (0.12) 0.026
Right insula 1.15 (0.21)* 1.27 (0.15) 1.26 (0.11) 0.007
Right limbic 1.18 (0.19)* 1.27 (0.35) 1.32 (0.12) 0.001
Right occipital 1.16 (0.14)* 1.22 (0.11) 1.27 (0.11) 0.003
Right parietal 1.12 (0.19)* 1.21 (0.13) 1.23 (0.11) 0.006
Right temporal 1.15 (0.16)* 1.22 (0.18) 1.29 (0.11) <0.001

MD
Left frontal 0.84 (0.07) 0.86 (0.06) 0.89 (0.09) 0.11
Left insula 0.85 (0.12)* 0.86 (0.06) 0.94 (0.13) 0.003
Left limbic 0.89 (0.09)* 0.94 (0.11)* 1.02 (0.13) 0.001
Left occipital 0.86 (0.08)* 0.92 (0.11) 0.97 (0.14) 0.009
Left parietal 0.81 (0.07)* 0.88 (0.11) 0.88 (0.11) 0.019
Left temporal 0.86 (0.06)* 0.91 (0.08)* 1.01 (0.15) <0.001
Right frontal 0.86 (0.09) 0.88 (0.08) 0.92 (0.11) 0.11
Right insula 0.86 (0.11) 0.95 (0.21) 0.93 (0.11) 0.082
Right limbic 0.89 (0.08)* 0.95 (0.12) 0.99 (0.11) 0.007
Right occipital 0.86 (0.11)* 0.91 (0.11) 0.94 (0.09) 0.016
Right parietal 0.82 (0.09)# 0.88 (0.14) 0.88 (0.08) 0.027
Right temporal 0.85 (0.07)* 0.92 (0.11) 0.96 (0.09) <0.001

RD
Left frontal 0.69 (0.07) 0.71 (0.06) 0.73 (0.09) 0.021
Left insula 0.69 (0.12)* 0.71 (0.06) 0.76 (0.12) 0.012
Left limbic 0.75 (0.09)* 0.78 (0.11) 0.85 (0.13) 0.005
Left occipital 0.71 (0.09) 0.76 (0.11) 0.81 (0.13) 0.073
Left parietal 0.66 (0.08) 0.72 (0.09) 0.71 (0.09) 0.067
Left temporal 0.71 (0.07)* 0.74 (0.08) 0.83 (0.14) <0.001
Right frontal 0.71 (0.09) 0.73 (0.08) 0.76 (0.11) 0.19
Right insula 0.71 (0.11) 0.81 (0.18) 0.77 (0.11) 0.051
Right limbic 0.74 (0.09)* 0.79 (0.11) 0.83 (0.11) 0.015
Right occipital 0.71 (0.11)* 0.76 (0.11) 0.78 (0.09) .034
Right parietal 0.67 (0.09) 0.74 (0.12) 0.71 (0.09) 0.002
Right temporal 0.71 (0.07)* 0.75 (0.08) 0.81 (0.09)

FA 0.76
Left frontal 0.27 (0.02) 0.27 (0.01) 0.27 (0.02) 0.08
Left insula 0.30 (0.05) 0.29 (0.04) 0.30 (0.05) 0.32
Left limbic 0.28 (0.05) 0.27 (0.05) 0.28 (0.05) 0.41
Left occipital 0.24 (0.02) 0.24 (0.02) 0.24 (0.02) 0.57
Left parietal 0.26 (0.02) 0.27 (0.01) 0.26 (0.02) 0.21
Left temporal 0.27 (0.02) 0.26 (0.01) 0.27 (0.02) 0.31
Right frontal 0.28 (0.02) 0.27 (0.01) 0.28 (0.02) 0.26
Right insula 0.28 (0.03) 0.26 (0.03) 0.28 (0.03) 0.69
Right limbic 0.30 (0.04) 0.29 (0.03) 0.30 (0.04) 0.78
Right occipital 0.24 (0.02) 0.24 (0.02) 0.24 (0.02) 0.64
Right parietal 0.26 (0.02) 0.26 (0.01) 0.26 (0.02) 0.09
Right temporal 0.27 (0.02) 0.26 (0.01) 0.27 (0.02)

NC, normal controls; MCI, mild cognitive impairment; AD, Alzheimer’s disease; AxD, axial diffusion; MD, mean
diffusion; RD, radial diffusion; FA, fractional anisotropy. p < 0.05 was considered statistically significant and bold
font indicates statistical significance. Post-hoc multiple comparison analysis: *statistically significant versus AD;
#statistically significant versus MCI.
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Table 4
The correlation coefficient between superficial white matter AxD, MD, RD, FA, and MMSE scores

NC MCI AD
r p r p r p

AxD frontal 0.07 0.74 .130 0.51 –0.24 0.24
insula 0.05 0.80 –0.14 0.51 –0.37 0.07
limbic –0.05 0.81 –0.004 0.98 –0.45 0.05

occipital 0.09 0.67 –0.18 0.37 –0.39 0.05
parietal 0.05 0.78 0.02 0.92 –0.42 0.04

temporal –0.1 0.61 0.21 0.30 –0.53 0.007
MD frontal 0.12 0.55 0.19 0.36 –0.29 0.16

insula 0.02 0.90 –0.25 0.23 –0.14 0.50
limbic 0.12 0.56 –0.03 0.86 –0.39 0.05

occipital 0.04 0.83 –0.12 0.54 –0.40 0.05
parietal 0.11 0.59 –0.02 0.91 –0.49 0.01

temporal 0.01 0.96 0.17 0.41 –0.49 0.01
RD frontal 0.07 0.72 0.14 0.50 –0.30 0.14

insula –0.004 0.98 –0.22 0.28 –0.02 0.91
limbic 0.06 0.76 –0.003 0.98 –0.37 0.07

occipital 0.09 0.65 –0.07 0.74 –0.39 0.05
parietal 0.11 0.60 –0.02 0.90 –0.51 0.01

temporal –0.08 0.69 0.17 0.41 –0.48 0.01
FA frontal –0.07 0.72 –0.28 0.17 0.12 0.57

insula –0.08 0.69 0.21 0.31 0.46 0.06
limbic –0.1 0.57 –0.1 0.63 0.19 0.35

occipital 0.08 0.68 –0.11 0.58 0.29 0.16
parietal –0.2 0.32 0.002 0.99 0.37 0.07

temporal 0.006 0.97 0.1 0.62 0.17 0.41

MMSE, Mini-Mental State Examination; AxD, axial diffusion; MD, mean diffusion; RD, radial diffusion; FA, fractional anisotropy; NC,
normal controls; MCI, mild cognitive impairment; AD, Alzheimer’s disease. p < 0.05 was considered statistically significant and bold font
indicates statistical significance.

Correlations with MMSE

MMSE was significantly correlated with MD, RD,
and AxD of parietal and temporal SWM in the AD
group. There was no significant correlation between
MMSE score and DTI indices in the control and MCI
subjects (Table 4).

DISCUSSION

Earlier studies in AD assessed whole-brain white
matter that likely consisted of both SWM and deep
white matter, but a few studies assessed only SWM.

SWM fibers included late myelinating fibers and
are vulnerable to the neurodegenerative disease pro-
cesses, based on the retrogenesis hypothesis [12].
Therefore, we evaluated the SWM in MCI and AD
groups in this study.

Our findings showed that AxD, MD, and RD
values were higher in patients with AD in compar-
ison with control subjects and these values were
much more different than in FA. The results are
consistent with two previous studies [11, 12]. They
believed that increased axial diffusivity is associ-
ated with axonal damage and Wallerian degeneration

in patients and increased RD is related to myelin
sheath disruption and increased MD reflects the brain
tissue atrophy. Accordingly, our findings also demon-
strate brain tissue atrophy, Wallerian degeneration,
and myelin sheath disruption in SWM in AD. The
highest increase in MD values was seen in the left
temporal and limbic regions (both increased by 32%),
and in the left limbic region for AxD and RD val-
ues (28% and 44%, respectively) between ADr and
control groups average an ROI approach.

On the other hand, SWM fiber tractography results
also showed that the highest increase in AxD and
RD values was in the left temporal (by 17%) and
MD value increased in the left limbic (15%) in
patients compared to the healthy controls. FA value
was reduced in patients with AD in comparison with
healthy controls and MCI subjects, but it was not
statistically significant.

Tractography is a powerful tool for studying white
matter pathways can be used for SWM fibers. These
fibers often included short association U-fibers and
intraregional fibers. In some studies [33, 34], short
association fiber pathways (U-fibers) identified sepa-
rately, but we evaluated all the fibers of SWM in any
region in the present study.
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To our knowledge, this is the first study evaluating
the SWM changes in MCI using DTI. AxD, MD, and
RD values were higher in MCI in comparison with
control subjects. Nevertheless, we found a significant
difference in MD value only in the right parietal SWM
tracts.

These results are in agreement with a perfusion
study that showed significant regional hypoperfusion
in patients suffering from MCI compared to the CN
group in the parietal lobe [35]. Also in another study,
the scores on the working memory domain corre-
lated inversely with the parietal lobe atrophy score in
MCI patients [36], which confirms the damage to the
parietal lobe in MCI patients, similar to our results.

Most studies reported DTI values changes in AD
and MCI groups compared to the healthy controls
and emphasized the earliest pathological changes in
specific regions notably temporal lobe [37, 38]. Fol-
lowing these studies, we evaluated the SWM as a
specific region that can help in the diagnosis of AD.
Finally, compared to MCI, patients with AD had the
highest increase in diffusivity values in the bilateral
temporal lobe. In other words, the SWM of the tem-
poral lobe in AD subjects can be a valuable biomarker
for the detection of AD and MCI.

Previous studies have suggested the MMSE score
as a useful tool for the identification of cognitive
impairment in individuals with memory or other cog-
nitive impairment [10]. However, according to the
results of the study by Phillips et al., the SWM
microstructure may be vulnerable to age-related
processes of demyelination [20]. So, we detected
associations between anatomic regions of SWM and
MMSE score and we showed a significant associa-
tion between changes in the axial, radial, and mean
diffusivity of parietal and temporal SWM and the
MMSE score in AD subjects. That is, in AD sub-
jects, a decrease of the MMSE score was negatively
associated with increased RD, MD, and AxD in
temporal and parietal SWM (negative correlation).
Phillips et al. believed that the correlation between
SWM and MMSE suggested that the microstructural
abnormalities could be seen as a manifestation of
the disease evolution [11]. Our findings showed a
negative correlation between MMSE and diffusivity,
which supports this conclusion.

Caution is needed when interpreting the results,
since fiber architecture of superficial white matter
containing multiple fiber populations (termed “cross-
ing fibers”), reveals the more complex arrangement
than in the deep white matter. The complex fiber
arrangement can affect the estimation of the diffusion

properties [19]. For example, the FA value is strongly
affected and is lower in such areas [39] and similar
results were reported by Wheeler-Kingshott et al. that
demonstrated the challenges of interpreting changes
in axial and radial diffusivity in crossing fiber regions
[40]. These created effects depend on the microstruc-
ture features of white matter pathways such as the
degree of orientational coherence of fibers and pose
severe challenges for tractography [41]. Thus the
interpretation of the diffusion data is complex and
requires a prior knowledge about the architecture of
the white matter pathways. Further research oriented
on the anatomical specificity of superficial white mat-
ter architecture will help to complement DTI findings.

CONCLUSION

DTI offers a wide set of biomarkers for identifying
and monitoring of the disease. Given that the DTI
values changes in some regions of SWM, it can play
an important role in the diagnosis of AD and MCI.
To support this conclusion, we showed that there is
major abnormality across the brain in patients and it
is associated with MMSE score in AD subjects. So,
the SWM microstructural changes are related to the
clinical symptoms in AD.

Limitation

In the present study, DTI images were recon-
structed with DTI as a model-based method. The
results of model-based methods are limited by the
model, while the diffusion pattern does not fol-
low the assumption. A recent comparison study has
shown that generalized q-sampling imaging is more
accurate in voxels containing multiple fiber popula-
tions, compared to DTI reconstruction methods (e.g.,
crossing-fibers regions) [42].
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