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a b s t r a c t 

Despite the crucial role of the hypothalamus in the regulation of the human body, neuroimaging studies of 
this structure and its nuclei are scarce. Such scarcity partially stems from the lack of automated segmentation 
tools, since manual delineation suffers from scalability and reproducibility issues. Due to the small size of the 
hypothalamus and the lack of image contrast in its vicinity, automated segmentation is difficult and has been long 
neglected by widespread neuroimaging packages like FreeSurfer or FSL. Nonetheless, recent advances in deep 
machine learning are enabling us to tackle difficult segmentation problems with high accuracy. In this paper 
we present a fully automated tool based on a deep convolutional neural network, for the segmentation of the 
whole hypothalamus and its subregions from T1-weighted MRI scans. We use aggressive data augmentation in 
order to make the model robust to T1-weighted MR scans from a wide array of different sources, without any 
need for preprocessing. We rigorously assess the performance of the presented tool through extensive analyses, 
including: inter- and intra-rater variability experiments between human observers; comparison of our tool with 
manual segmentation; comparison with an automated method based on multi-atlas segmentation; assessment of 
robustness by quality control analysis of a larger, heterogeneous dataset (ADNI); and indirect evaluation with a 
volumetric study performed on ADNI. The presented model outperforms multi-atlas segmentation scores as well as 
inter-rater accuracy level, and approaches intra-rater precision. Our method does not require any preprocessing 
and runs in less than a second on a GPU, and approximately 10 seconds on a CPU. The source code as well 
as the trained model are publicly available at https://github.com/BBillot/hypothalamus _ seg , and will also be 
distributed with FreeSurfer. 
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. Introduction 

.1. Motivation 

The hypothalamus is a cerebral structure, that is part of the dien-
ephalon, and located below the thalamus. The hypothalamus plays a
entral role in controlling many vital functions, including food intake
nd perception of satiety ( Minokoshi et al., 2004; Saper et al., 2002 ), cir-
adian rhythms (i.e., sleep-wake pattern) ( Saper et al., 2005 ), immune
nd endocrine response ( Clarke, 2015; Cross et al., 1980; Luiten et al.,
987 ), thermoregulation ( Boulant, 1981 ), and cardiovascular activity
☆ For the Alzheimer’s Disease Neuroimaging Initiative Data used in preparation of
ive (ADNI) database ( http://adni.loni.usc.edu ). As such, the investigators within t
ided data but did not participate in analysis or writing of this report. A complet
ontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf . 
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 Rahmouni, 2016 ). The hypothalamus is subdivided into approximately
 dozen nuclei (depending on subdivision criteria), each with different
unctions and specialised cell groups ( Saper, 1990 ). Because of its many
unctions, the hypothalamus is affected by a large number of disorders,
uch as eating and sleep disorders ( Mignot et al., 2002; Warren et al.,
999 ), Alzheimer’s Disease (AD) ( Ishii and Iadecola, 2015 ), Parkinson’s
isease ( Langston and Forno, 1978; Politis et al., 2008 ), and frontotem-
oral dementia ( Ahmed et al., 2015; Piguet et al., 2011 ). These disor-
ers affect the hypothalamic subnuclei differently, and often alter only
 subset of them ( Bocchetta et al., 2015; Goudsmit et al., 1990 ). There-
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g  
ore, the ability to study hypothalamic nuclei individually in vivo is of
aramount importance for a better understanding of these disorders. 

Due to its superior soft tissue contrast, magnetic resonance imaging
MRI) is the technique of choice for studying the human brain in vivo ,
ncluding the hypothalamus ( Baroncini et al., 2012 ). A prerequisite for
ost quantitative analyses of hypothalamic substructures in MRI scans

s the delineation of their contours, a task known as image segmenta-
ion. The resulting labelled images can then be used for an array of sub-
equent tasks such as in vivo volumetry, morphology, and connectivity
nalyses ( Bocchetta et al., 2015; Makris et al., 2013 ). Different protocols
ave been proposed to manually segment the hypothalamic subunits in
rain MRI scans ( Baroncini et al., 2012; Bocchetta et al., 2015; Makris
t al., 2013 ). Although manual segmentation is still considered the gold
tandard in terms of accuracy, it remains a time-consuming and tedious
rocedure (e.g. delineation of the hypothalamic subunits typically re-
uires 2 to –3 hours per scan at 1 mm resolution for an expert tracer),
nd thus is not scalable to large datasets. Moreover, hypothalamic sub-
tructures are difficult to delineate on MR scans, making the segmen-
ations hardly reproducible and severely prone to inter- and intra-rater
ariability. 

Automated algorithms have been introduced to tackle these prob-
ems, as they do not require human intervention and enable repro-
ucible segmentations of large datasets. However, very few automated
trategies have been proposed to segment the whole hypothalamus in
tructural MRI scans ( D’Haese et al., 2003; Orbes-Arteaga et al., 2015;
odrigues et al., 2020; Thomas et al., 2019 ), and no automated method
xists – to the best of our knowledge – for hypothalamic nuclei segmen-
ation. 

.2. Related work 

Brain MRI segmentation has traditionally been dominated by atlas
ased techniques. The simplest way to automatically segment an MRI
can is to use a single atlas. In this technique, a labelled training 3D im-
ge (i.e., an atlas) is registered to a test scan, whose final segmentation is
btained by applying the resulting transformation to the labels ( Collins
t al., 1995; Iosifescu et al., 1997 ). This strategy is straightforward but
ts accuracy highly depends on the quality of the registration, which in
urns depends on the similarity between the two scans. Moreover, its
ccuracy is especially limited in small structures such as the hypothala-
us ( D’Haese et al., 2003 ), and the choice of atlas introduces a bias in

he results. 
An alternative strategy is to use multiple labelled scans in order to

ncrease the anatomical variability covered by the model, while limiting
he bias introduced by the use of a single atlas. Two techniques emerged
rom this principle. The first one, called multi-atlas segmentation (MAS),
onsists in individually registering all the available atlases onto the test
can, and applying the warps to their corresponding label maps. All the
arped labels are then merged into one final segmentation with a label-

usion algorithm ( Artaechevarria et al., 2009; Heckemann et al., 2006;
glesias and Sabuncu, 2015; Isgum et al., 2009; Sabuncu et al., 2010 ).
ecent studies have shown that MAS yields relatively accurate results

or the whole hypothalamus ( Orbes-Arteaga et al., 2015; Thomas et al.,
019 ). However, this strategy is computationally expensive due to the
igh number of required registrations, although the running time can
ow be considerably decreased with deep learning based registration
ethods ( Dalca et al., 2019; de Vos et al., 2019 ). 

The second technique is Bayesian segmentation, in which all train-
ng atlases are summarised into a single probabilistic atlas, that is com-
ined with deformation (prior) and image intensity (likelihood) models
o form a generative model. Segmentation is obtained by “inverting ”
his generative model using Bayesian inference. This second strategy is
daptive to MRI contrasts when unsupervised likelihood models are used
 Ashburner and Friston, 2005; Puonti et al., 2016 ), and faster than tra-
itional MAS. For these reasons, Bayesian segmentation remains used
y all major neuroimaging packages (FreeSurfer ( Fischl, 2012 ), SPM
 Ashburner and Friston, 2005 ), FSL ( Patenaude et al., 2011 )). Never-
heless, none of these packages segment the hypothalamus nor its sub-
egions. For example, in FreeSurfer they are directly encompassed in
 broader region called “ventral DC ”, including numerous other small
tructures. 

Modern automated image segmentation techniques rely on deep neu-
al networks ( Kamnitsas et al., 2017 ), which have been recently applied
o segment the whole hypothalamus (as opposed to hypothalamic sub-
nits) with relatively high accuracy ( Rodrigues et al., 2020 ). By learn-
ng a set of convolutional kernels, convolutional neural networks (CNN)
an effectively capture highly non-linear distributions between inputs
nd outputs. U-net architectures, which extract discriminative features
t progressive levels of resolution, now represent the state-of-the-art
lass of methods in terms of segmentation accuracy ( Ronneberger et al.,
015 ). The success of deep learning networks has also been reinforced
y the extremely short processing times, enabling to retrieve segmenta-
ions in seconds ( Akkus et al., 2017; Dou et al., 2016 ). 

However, deep learning methods traditionally require numerous
raining pairs of images and associated ground truth to prevent over-
tting. In the case of brain MRI segmentation, insufficient training data

eads to models that are sensitive to changes in image resolution and MR
ontrast ( Akkus et al., 2017 ); this is one of the reasons why Bayesian
ethods are still preferred by the neuroimaging packages mentioned

bove. This problem is now being ameliorated with data augmentation
echniques, which enable to artificially increase the size of the training
ataset by modifying its intensity distributions or spatially deforming
ts shape in a random manner. This strategy greatly reduces overfitting
ven when a small number of training examples is used ( Jog and Fis-
hl, 2018 ; Zhao et al., 2019 ). Moreover, there is converging evidence
hat performing data augmentation beyond realistic shape and appear-
nce helps networks to better generalise on previously unseen data at
est time ( Billot et al., 2020; Chaitanya et al., 2019; Eaton-Rosen et al.,
018; Zhao et al., 2019 ). 

.3. Contribution 

The central contribution of this work is to present the first fully au-
omated tool to segment the hypothalamus and its internal subunits on
RI scans. The presented framework requires no preprocessing and re-

ies on a state-of-the-art deep neural network, trained with a dataset
f 37 T1-weighted brain MRI scans with corresponding manual delin-
ations. Using Dice scores and surface distances, we first demonstrate
hat our method is able to accurately segment the hypothalamic sub-
nits, outperforming the well-established MAS framework as well as
uman inter-rater reliability scores, and approaching intra-rater levels.
sing the same metrics, we then show that our framework is able to

ustain this performance level on a separate, heterogeneous, labelled
ataset with four subjects. We further validate the robustness of the
resented network with two experiments on 675 MRI scans from the
eterogeneous ADNI dataset. ADNI includes scans that were acquired
ith different scanners, sequences, and parameters, and often display
D-related pathology. Despite these differences, visual quality control

QC) performed by an expert rater (blindly of the subjects age, gender or
ondition) reveals that reliable segmentations are obtained in more than
9% of the cases, demonstrating the robustness of our approach. More-
ver, our model successfully detects subtle, subunit-specific hypotha-
amic atrophy in AD on this dataset. The code and the weights of the
rained network are publicly available at: https://github.com/BBillot/
ypothalamus _ seg , and will be distributed with FreeSurfer. 

. Methods 

.1. Data augmentation 

We achieve segmentation of the whole hypothalamus and its subre-
ions by training a 3D convolutional neural network on manually la-

https://github.com/BBillot/hypothalamus_seg
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Fig. 1. Axial slices of intermediate image volumes obtained at different steps of the proposed augmentation model. First, the input image (a) is spatially deformed 
(b). We then apply a random bias field (c), and further global intensity augmentation (d). Finally the image is flipped along the right/left axis with a probability of 
0.5. Each row corresponds to a different subject. The displayed slices correspond to the same coordinate in the inferior-superior axis. Augmentation is performed on 
the fly, and all random parameters are resampled at every step in training, such that the network is never exposed to the same image twice. 

b  

t  

a  

A  

i  

v  

s  

r  

t  

s  

F
 

l  

r  

w  

o  

(  

s  

s
 

b  

c  

e  

t  

p  

a  

l  

d  

t  

m  

s
 

m  

1  

g  

m  

l  

s  

t  

t  

(
 

w  

a  

T  

a  

w  

a  

t  

m
 

m  

t  

a  

o  

l  

T  

f

2

 

i  

t  

(  

c  

s  

t  

i  

f  

c  

c  

o
 

E  

t  
elled T1-weighted scans. Training pairs of 3D MRI scans (also referred
o as images in this manuscript) and segmentations are first consider-
bly augmented in order to completely avoid preprocessing at test time.
ugmentation makes our network resilient against expected variations

n subject positioning, imaging artefacts (noise, bias field), and contrast
ariations in T1-weighted brain MRI scans due to differences in magnet
trength, pulse sequence, and acquisition hardware. Training pairs are
andomly augmented on the fly (i.e. directly during training), such that
he network is never exposed twice to the same image. The different
teps of the augmentation model are detailed below, and illustrated in
ig. 1 . 

Our augmentation model starts by defining a diffeomorphic non-
inear transformation for elastic image deformation. This is achieved by
andomly sampling a small-size 3D vector field (e.g., 10 × 10 × 10 × 3)
ith Gaussian noise, linearly interpolating it to full image size to
btain a smooth stationary velocity field, and integrating the result
 Arsigny et al., 2006 ). Using diffeomorphic transforms parametrised by
tationary velocity fields ensures that the deformations are invertible,
o that they produce neither holes nor foldings. 

The image subsequently undergoes an affine transformation encoded
y a 4 × 4 matrix in homogeneous coordinates. This matrix can be de-
omposed into the product of six matrices: three rotations (one around
ach axis), along with scaling, shearing and translation matrices. All
hese transformations are parametrised by coefficients randomly sam-
led from uniform distributions of predefined ranges. In practice, im-
ges are resampled with linear rather than nearest neighbour interpo-
ation, which would introduce high frequency noise and strongly hin-
er anatomical coherence. However, because linear interpolation tends
o smooth intensities, the elastic and linear transforms are applied si-
ultaneously to avoid unnecessary resampling steps, and thus excessive

moothing ( Fig. 1 (b)). 
The augmentation model also accounts for non-uniformities in the

agnetic field commonly observed in MR scanners ( Simmons et al.,
994 ). Because this phenomenon translates into intensity inhomo-
eneities smoothly varying across MRI scans ( Sled and Pike, 1998 ), we
odel it with a multiplicative smooth field. As before, we sample a small

ow resolution field (e.g., of size 4 × 4 × 4), and upscale it to image
ize with linear interpolation. Then, we take the voxel-wise exponential
o ensure the non-negativity of this field. Finally, we multiply the spa-
ially deformed scan by the obtained bias field to corrupt its intensities
 Fig. 1 (c)). 

In order to make the network robust against acquisition procedures,
e add further global intensity augmentation by shifting the brightness
nd contrast of the image with randomly sampled values ( Fig. 1 (d)).
he obtained scan is subsequently flipped along the right-left axis with
 probability of 0.5 ( Fig. 1 (e)), and randomly cropped to a size of 160 3 ,
hich is more than large enough to ensure that the hypothalamus is
lways present in the resulting scan. Finally, intensities are rescaled be-
ween [0,1] with min-max normalisation. Additional examples of aug-
ented images are shown in the Supplementary materials (Fig. S1). 

Finally, as we aim to produce paired images and segmentations, the
anual delineations of hypothalamic subunits undergo the same spatial

ransformations as their corresponding image, and left and right labels
re swapped when lateral flipping occurs. The spatial transformation
ccurs in one-hot encoding space, i.e., we deform a binary map for each
abel with linear interpolation, yielding deformed soft segmentations.
his strategy avoids the high-frequency noise introduced by direct de-
ormation of discrete labels with nearest neighbour interpolation. 

.2. Network architecture and learning 

Segmentation of the hypothalamic subunits is achieved by train-
ng a CNN on the outputs of the augmentation model. The architec-
ure of the network, based on the state-of-the-art 3D U-net model
 Ronneberger et al., 2015 ), is represented in Fig. 2 . It begins with a
ontracting path, which extracts discriminative information from con-
ecutively downsampled feature maps. The prediction of the network is
hen progressively build at increasing resolution levels along an expand-
ng path. The specificity of the U-net architecture relies on concatenating
eature maps of corresponding resolution between the two paths. By in-
orporating information of lower abstraction level, these links provide
ontext to the expanding path, thus enabling a more accurate prediction
f the output ( Ronneberger et al., 2015 ). 

The architecture hyperparameters are chosen as explained in the
xperiments and results section. The network consists of three resolu-
ion levels, where a level refers to all feature maps between two max-
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Fig. 2. Architecture of the 3D deep learning network. The first layer comprises 
24 kernels, this number being doubled after each max-pooling, and halved after 
each up-convolution. 
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Fig. 3. Example of manually segmented hypothalamus in (a) sagittal, (b) axial 
and (c) coronal views. (d) 3D rendering of the right hypothalamus. Subunits are 
depicted in different colours: a-sHyp in blue, a-iHyp in yellow, supTub in green, 
infTub in pink, and posHyp in orange. 
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d  
ooling (downsampling) or upsampling operations. Each convolution
s performed with kernels of size 3 × 3 × 3. The first convolution in-
ludes 24 kernels, this number being doubled after each max-pooling,
nd halved after each up-convolution. All layers, except the last, use
he Exponential Linear Unit (ELU) activation function, as they yield
mproved learning characteristics compared to previously used ReLU,
ReLU or PReLU operations ( Clevert et al., 2015 ). The last layer has a
oftmax activation function, which enables to obtain an output under
he form of a differentiable probabilistic map for each label. The loss
unction is computed by calculating the average of the soft Dice coeffi-
ients between the predicted probability maps and the ground truth soft
abel maps ( Milletari et al., 2016 ). Dice coefficients measure the spatial
verlap of two segmentations and ranges from 0 (no overlap) to 1 (per-
ect overlap). As opposed to other metrics such as the cross-entropy,
sing the average Dice score uniformly integrates information from all
abels, regardless of their volume. If 𝑋 = { 𝑥 𝑖 } and 𝑌 = { 𝑦 𝑖 } respectively
epresent the predicted and ground truth probability maps for a given
abel, their soft Dice coefficient (SDC) is given by: 

𝐷𝐶( 𝑋, 𝑌 ) = 2 ×
∑

𝑖 𝑥 𝑖 𝑦 𝑖 ∑
𝑖 𝑥 

2 
𝑖 
+ 

∑
𝑖 𝑦 

2 
𝑖 

. (1)

Optimising the Dice score from randomly initialised weights is prob-
ematic due to the low gradient of the Dice loss function far away from
ny maximum. We mitigate this problem by pre-training the model with
 sum of squared differences loss function (SSD) on the output of the
enultimate layer, i.e., the activations that are used as input to the soft-
ax. Specifically, we teach this truncated version of the original net-
ork to output at each voxel an arbitrary value of T target for the correct

abel ( 𝑦 𝑖 = 1 ), and − 𝑇 𝑡𝑎𝑟𝑔𝑒𝑡 for the incorrect ones ( 𝑦 𝑖 = 0 ): 

 𝑆 𝐷( 𝑋, 𝑌 ) = 

∑
𝑖 

[ 𝑥 𝑖 − 𝑇 𝑡𝑎𝑟𝑔𝑒𝑡 (2 𝑦 𝑖 − 1)] 2 . (2)

This loss has a much stronger gradient than the Dice score away
rom its maxima, and by running it for a predefined number of itera-
ions, we bring the network weights to a more favourable region of the
ptimisation landscape. We can then resume the training with the Dice
oss, which enables to obtain precise and robust segmentations for small
tructures during inference, as explained above. In addition to this pre-
raining, we use batch normalisation, which has been shown to acceler-
te the training of deep learning networks by normalising the outputs
f each layer and thus reducing the internal covariance shift ( Ioffe and
zegedy, 2015 ). 
Table 1 

Grouping of the hypothalamic nuclei into subunits, according to Bocchetta et al. 

Subunit Nuclei included 

Anterior-superior (a-sHyp) preoptic area; paraventricular nucleus (PVN)

Anterior-inferior (a-iHyp) suprachiasmatic nucleus; supraoptic nucleus

Superior tubular (supTub) dorsomedial nucleus; PVN; lateral hypothala

Inferior tubular (infTub) infundibular (or arcuate) nucleus; ventrome

Posterior (posHyp) mamillary body (including medial and latera
.3. Manual segmentation 

The subdivision of the whole hypothalamus into subunits follows the
rotocol introduced by Makris et al. (2013) . Considering the small size of
he hypothalamic nuclei, this method uses visible anatomical landmarks
o regroup them into five subunits, which can be reliably segmented
t standard 1 mm resolution: ( i ) the anterior-superior hypothalamus
a-sHyp); ( ii ) the anterior-inferior hypothalamus (a-iHyp); ( iii ) the supe-
ior tuberal hypothalamus (supTub); ( iv ) the inferior tuberal hypothala-
us (infTub); and ( v ) the posterior hypothalamus (posHyp). The compo-

ition of each subunit is detailed in Table 1 , and an example of manual
elineation is illustrated in Fig. 3 . 

. Experiments and results 

In this section, we present four sets of experiments aiming to validate
he proposed method. We first assess the reliability of manual subunit
egmentation with an inter- and intra-rater reproducibility study. In the
econd experiment, we train the network and compare the accuracy of
ts automated segmentations against the reliability scores of the first ex-
eriment and MAS. In the third experiment, we test the robustness of
he automated method against differences in acquisition by evaluating
t on a small heterogeneous labelled dataset, and by performing a QC
nalysis on the segmentations of a large sample of subjects from the
eterogeneous, publicly available ADNI dataset. In the fourth and final
xperiment, we assess the ability of our method to detect atrophy pat-
erns related to AD, also using ADNI. This fourth setup is representative
f the type of application our method is designed for. 

.1. MRI data 

The first two experiments employ whole head scans from a
ataset of 37 subjects (referred to as “internal dataset ”) described in
(2015) ; Makris et al. (2013) . 

 

 (SON) 

mus 

dial nucleus; SON; lateral tubular nucleus; tuberomamillary nucleus (TMN) 

l mamillary nuclei); lateral hypothalamus; TMN 
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e  
occhetta et al. (2015) . We randomly divide this dataset between train-
ng, validation and testing subsets comprising 13, 6, and 18 subjects, re-
pectively. All scans are unprocessed T1-weighted MP-RAGE 3D images
t isotropic 1.1 mm resolution with size 256 × 256 × 208. They were all
cquired on a 3T Siemens scanner, with parameters: TR = 2200 ms, TI
 900 ms, TE = 2.9 ms, 𝛼 = 10 ◦. Subjects are equally divided between
ealthy controls and subjects fulfilling the criteria for the diagnosis of
ehavioural variant frontotemporal dementia (FTD). The control sub-
ects are 56.4 ± 14.3 years old, whereas the FTD group is 63.3 ± 9.1
ears old. 

These 37 images were manually segmented following the protocol
escribed in the Methods section. The produced segmentations consist
f eleven labels: one for the background and five for the subunits of
ach hypothalamus (right and left). Delineation of this dataset is per-
ormed with the help of corresponding T2-weighted scans. These are
cquired using a fast spin echo/SPACE sequence with following param-
ters: TR = 3200 ms, apparent TE = 105 ms and variable refocusing pulse
ip angle to achieve T2-weighting. Both T1-weighted and T2-weighted
cans are acquired during the same session, and are of same size and
esolution. Neither the T1 nor the T2 scans were preprocessed in any
ay. 

We use two other datasets to evaluate the robustness of our method.
he first one (referred to as “external dataset ”) contains four subjects:
wo from the HCP dataset ( Sotiropoulos et al., 2013 ), and two from
he lower-quality, 1.5T, IXI dataset ( IXI, 2015 ). T1 and T2-weighted
hole head scans are available for all four subjects, which enables us

o apply the previously described protocol to manually segment the hy-
othalamic subunits. The HCP data is resampled from isotropic 0.7 mm
ative resolution to 1 mm, whereas the IXI scans are directly available
t isotropic 1 mm resolution. Additional information on the acquisition
an be found in IXI (2015) ; Sotiropoulos et al. (2013) . Other than down-
ampling the HCP scans, no preprocessing steps are performed. 

The second evaluation dataset is a subset of 675 subjects from the
DNI dataset. All scans are T1 weighted and acquired at approximately
 mm isotropic resolution. The scans are acquired on a wide array of
ifferent scanners with varying parameters and sequences; further de-
ails on the acquisition can be found on the ADNI website ( http://adni-
nfo.org ). All subjects are tested for cognitive impairment and AD with
he Alzheimer’s disease Assessment Scale test (ADAS). The population
ncludes 183 elderly control subjects (94 males, 89 females), 358 sub-
ects with different stages of mild cognitive impairment (MCI; 182
ales, 176 females), and 134 subjects with AD (73 males and 61 fe-
ales). Subjects are within the same range of ages: 75.3 ± 8.2 years

or males against 72.6 ± 7.8 for females; 72.9 ± 9.4 years for controls
gainst 75.4 ± 9.1. for MCI, and 76.0 ± 7.2. for AD. No preprocessing
as performed on these images. Ground truth segmentations are not
vailable for this dataset. 

The ADNI was launched in 2003 by the National Institute on Ageing,
he National Institute of Biomedical Imaging and Bioengineering, the
ood and Drug Administration, private pharmaceutical companies and
on-profit organisations, as a $60 million, 5-year public-private partner-
hip. The main goal of ADNI is to test whether MRI, positron emission
omography (PET), other biological markers, and clinical and neuropsy-
hological assessment can be combined to analyse the progression of
ild cognitive impairment (MCI) and early AD. Markers of early AD
rogression can aid to develop new treatments and monitor their ef-
ectiveness, as well as decrease the time and cost of clinical trials. The
rincipal Investigator of this initiative is Michael W. Weiner, MD, VA
edical Center and University of California – San Francisco. ADNI has

een followed by ADNI-GO and ADNI-2. These three protocols have re-
ruited over 1,500 adults (ages 55–90) from over 50 sites across the U.S.
nd Canada to participate in the study, consisting of cognitively normal
lder individuals, people with early or late MCI, and people with early
D. Subjects originally recruited for ADNI-1 and ADNI-GO had the op-

ion to be followed in ADNI-2. 
.2. Evaluation metrics 

Similarity between predicted and ground truth segmentations is first
ssessed by computing Dice coefficients for the whole hypothalamus
nd each hypothalamic subunit. Prior to evaluation, the soft predicted
abel maps are converted to categorical encoding by keeping the most
robable label at each voxel. Therefore, instead of computing soft Dice
cores defined in (1) , we now use hard Dice coefficients to evaluate
he accuracy of categorical segmentations, as in common practice in
euroimaging. We emphasise that hard Dice cannot be used in training,
ince it is not a differentiable function. If X and Y are corresponding
tructures in two different segmentations, their (hard) Dice score is given
y: 

𝑖𝑐𝑒 ( 𝑋, 𝑌 ) = 2 × ‖𝑋 ∩ 𝑌 ‖‖𝑋‖ + ‖𝑌 ‖ . (3)

However, Dice scores are very sensitive to small spatial shifts when
omparing small and thin structures, such as the hypothalamic subunits.
herefore, we also report here the average boundary distance ( d A ) and
he Hausdorff distance ( d H ), which respectively measure the average
nd the maximum distance between the surfaces of two segmentations.
f X and Y are corresponding structures in two different segmentations,
ith surfaces S X and S Y , these two metrics are given by: 

 𝐴 ( 𝑋, 𝑌 ) = mean 
{ 

mean 
𝑥 ∈𝑆 𝑋 

inf 
𝑦 ∈𝑆 𝑌 

𝑑( 𝑥, 𝑦 ) , mean 
𝑦 ∈𝑆 𝑌 

inf 
𝑥 ∈𝑆 𝑋 

𝑑( 𝑥, 𝑦 ) 
} 

, (4)

 𝐻 

( 𝑋, 𝑌 ) = max 

{ 

sup 
𝑥 ∈𝑆 𝑋 

inf 
𝑦 ∈𝑆 𝑌 

𝑑( 𝑥, 𝑦 ) , sup 
𝑦 ∈𝑆 𝑌 

inf 
𝑥 ∈𝑆 𝑋 

𝑑( 𝑥, 𝑦 ) 

} 

, (5)

here ‖ · ‖ represents cardinality and d is the euclidean distance. As
istances, d A and d H are both sought to be minimised (they are equal to
ero in case of a perfect segmentation). Because they depend on the sur-
ace rather than the size, d A and d H are less biased for small structures
han Dice coefficients. These two metrics are complementary: the aver-
ge boundary distance gives a good representation of spatial alignment,
hereas the Hausdorff distance evaluates the robustness of a segmenta-

ion, as it is determined by the furthest misclassified voxel. 

.3. Experiments 

.3.1. Intra and inter-rater reproducibility study 

Because of the general lack of contrast in hypothalamic region for
oth T1-weighted and T2-weighted scans, drawing the contours of the
ypothalamus and its subunits is a challenging task. As manual delin-
ation is considered the gold standard in segmentation, we first assess its
eliability in order to put the results of our automated framework into
ontext. With this purpose, we conduct an extensive inter- intra-rater
ariability experiment using the protocol described in the Section 2 . 

This experiment starts by randomly drawing ten subjects from the
7 test scans of our internal dataset. These selected subjects were rela-
elled by two raters: once by an expert rater, who already segmented
he whole internal dataset for a previous publication ( Bocchetta et al.,
015 ); and once by a trainee rater, who was trained for this task by
he expert rater. All segmentations are considered to be independent,
s four years elapsed between the two sets of delineations made by the
xpert rater, and because the second rater was trained on a different set
f scans not included in this analysis. The intra-rater variability study is
erformed by measuring the similarity between the two sets of segmen-
ations made by the expert rater, whereas the inter-rater study compares
oth delineations from the expert rater with the ones of the trainee rater.

Table 2 reports the average similarity scores obtained for the whole
ypothalamus and subunits on the ten subjects considered in this ex-
eriment. The inter-rater scores are all worse than the intra-rater ones
Dice score difference = 0 . 15 ± 0 . 02 , average boundary distance differ-
nce = 0 . 24 mm ± 0.03, Hausdorff distance difference = 0 . 51 mm

http://adni-info.org


B. Billot, M. Bocchetta and E. Todd et al. NeuroImage 223 (2020) 117287 

Table 2 

Inter/intra-rater reproducibility scores for manual segmentation of the whole hypothalamus 
and all subunits. Stars indicate the level of statistical significance (one-sided Wilcoxon, non- 
parametric signed-rank test) between intra-rater and inter-rater results ( ∗ p < 0.05, ∗ ∗ p < 0.01). 

Type whole a-sHyp a-iHyp supTub infTub posHyp 

Volume (mm 

3 ) 649.5 23.1 16.3 94.9 103.7 86.8 

Dice coefficient intra 0.89 ∗ ∗ 0.70 ∗ 0.54 ∗ 0.82 ∗ ∗ 0.87 ∗ ∗ 0.87 ∗ ∗ 

inter 0.75 0.55 0.42 0.67 0.72 0.67 

Average distance (mm) intra 0.23 ∗ ∗ 0.33 ∗ 0.58 ∗ 0.24 ∗ ∗ 0.20 ∗ ∗ 0.22 ∗ ∗ 

inter 0.49 0.53 0.83 0.46 0.41 0.51 

Hausdorff distance (mm) intra 1.91 ∗ ∗ 1.64 ∗ 2.28 ∗ 1.70 ∗ ∗ 1.54 ∗ ∗ 1.51 ∗ 

inter 2.92 2.03 2.97 2.35 1.91 1.96 
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 0.13). The intra-rater variability is significantly lower ( p < 0.05)
or all structures and metrics, according to paired, non-parametric tests
Wilcoxon signed-rank). 

The whole hypothalamus yields very good intra-rater scores for the
ice coefficient and average boundary distance (respectively 0.89 and
.23 mm). The results are more moderate in the inter-rater case (Dice
 0 . 75 , 𝑑 𝐴 = 0 . 49 mm), but remain at a good level considering the small
ize of the hypothalamus. In both cases, these results are similar to the
est scores achieved by individual nuclei. The inverse trend is observed
or the Hausdorff distance, where the whole hypothalamus yields scores
omparable to the worst subunit. 

By comparing the overall results of all subregions, we observe that
he best reliability scores are achieved for the posterior and tubular sub-
nits. The intra-rater study yields its best results for the posHyp and inf-
ub regions, while the inter-rater achieves its best scores for the infTub
ubunit. On the contrary, the anterior nuclei yield noticeably inferior
cores, with the a-iHyp unit achieving the lowest scores for both intra-
ater and intra-rater experiments. A similar pattern is observed through
tatistical tests, where the difference between intra and inter-rater scores
s slightly less significant for the anterior subunits: 0.01 < p < 0.05 for
nterior nuclei, and p < 0.01 for posterior and tubular nuclei (except for
he Hausdorff distance for the posHyp region, where 𝑝 = 0 . 013 ). 

.3.2. Automated segmentation 

In this section we explain how we train the proposed automated
ramework and evaluate its accuracy. The network is trained on the
3 training subjects of out internal dataset, and we use the validation
ubset to tune the architecture and hyperparameters without bias, by se-
ecting the model with the lowest validation loss at the end of training
i.e., highest average soft Dice). The validation curve for the winning
rchitecture described in the Methods section (which was not inspected
uring training) clearly shows that there was no overfitting (see Figures
2 and S3). Such architecture yields the best loss among several combi-
ations of the following parameters: number of resolution levels (2, 3,
, 5, 6), number of layers per level (2, 3), size of the convolution kernels
3 × 3 × 3, 5 × 5 × 5), number of features for each convolution (con-
tant throughout the network, or doubled after each max-pooling and
alved after each up-sampling), and activation function (ELU, RELU,
eaky RELU). We also consider using dropout layers with different prob-
bilities (from 0.1 to 0.5 by increments of 0.1), but these are abandoned
ue to substantial decrease in performance (Dice scores lower by at least
5%). Finally, after investigating the effect of different values for the
earning rate ( 10 −3 , 10 −4 , 10 −5 ), and the learning rate decay (0, 10 −1 ,
0 −2 ), these are set to 10 −4 and 10 −2 , respectively. 

Networks are trained with an ADAM optimiser ( Kingma and
a, 2017 ) for 100,000 steps, which is enough for the loss function to
onverge in all cases (e.g., as in Fig. S2), and which takes around 80
ours on an Nvidia Titan Xp GPU. The weighted sum of squares loss
s used for the first 5,000 steps as a pre-training phase, and is then re-
laced by the average Dice coefficients loss ( Eq. (1 )) for the remaining
teps. The batch size is set to 1 due to limitations in GPU memory, but
his is balanced by the fact that the loss function and gradient are es-
 S
imated on a high number of voxels (i.e. 160 3 ). In order to measure
he effectiveness of the data augmentation, an additional model was
rained without performing any of the augmentation steps (except for
he random cropping). However, we do not report these results here
s this model produces segmentations of extremely poor quality (aver-
ge Dice score below 0.1 for the whole hypothalamus). Our model is
mplemented in Keras ( Chollet, 2016 ) with a Tensorflow ( Abadi et al.,
016 ) backend, and relies on the Neuron ( Dalca et al., 2018 ) ans Lab2Im
 Billot et al., 2020 ) python packages. 

The quality of the results is assessed by computing the same similar-
ty metrics as before (i.e. Dice coefficient, average boundary distance,
nd Hausdorff distance), between predictions and corresponding man-
al delineations. The network is trained five times to reduce the fluc-
uations caused by the stochastic processes occurring during training
example selection, data augmentation, weights initialisation). The sim-
larity scores for a given test subject are obtained by: running the corre-
ponding T1-weighted scan with the five networks, computing the scores
or each of the five predictions, and averaging the results of each model.

We compare the segmentations of the proposed network to results
btained with a MAS approach. MAS is a natural competing method
or our framework, since it is a well established strategy for automated
egmentation in neuroimaging ( Artaechevarria et al., 2009; Heckemann
t al., 2006; Sabuncu et al., 2010 ), and has recently been applied to
egment the whole hypothalamus with relatively high accuracy ( Orbes-
rteaga et al., 2015; Thomas et al., 2019 ). In order for the results to
e comparable, the division between training, validation and testing
ubsets is kept the same as for the network. Segmentations are com-
uted by: ( i ) registering all training scans to the test scan with NiftyReg
 Modat et al., 2010 ), using default parameters; ( ii ) applying the ob-
ained deformations to the training delineations; and ( iii ) fusing all the
arped atlases into a single segmentation with a locally weighted ap-
roach ( Sabuncu et al., 2010 ). We adjust the standard deviation of the
ikelihood model in the label fusion by testing several values for it (5 to
0 by increments of 5), and by keeping the one (30) yielding the best
cores on the validation subset. The runtime for MAS was approximately
ne hour per case. 

Visual inspection of the automated segmentations ( Fig. 4 ) shows that
he overall anatomy of the hypothalamic subunits is correctly learned
y the network. The results obtained by the network for the three met-
ics, reported in Fig. 5 , confirm this observation and exhibit the same
endency as for the intra and inter-rater variability experiments. Specif-
cally, the whole hypothalamus yields a relatively high Dice coefficient
f 0.83 as well as low values for average boundary distance (0.37 mm)
nd Hausdorff distance (2.04 mm). For the internal subunits, we ob-
erve that our method segments the posterior and tubular regions at the
ame level of accuracy as the whole hypothalamus. The much smaller
nterior subregions obtain lower scores in terms of Dice, but are still
ompetitive in terms of surface distance, e.g., the a-iHyp yields an av-
rage Hausdorff distance comparable to the whole hypothalamus. We
mphasise that the assignment of a subject to either one of the training,
esting, or validation subset has very little impact on these results (see
upplement 3). 
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Fig. 4. Comparison between coronal slices of manual and automated segmentations for two subjects randomly selected from the internal dataset. Slices are shown 
from anterior (left) to posterior (right). The four rows associated to each subject respectively illustrate the original image, the manual ground truth (GT), the 
segmentation produced by MAS, and the segmentation of the proposed network. Subunits colours follow the same scheme as in Fig. 3 . 

Fig. 5. Comparison between MAS and our network on the test scans of the internal dataset: (a) Dice coefficients, (b) average boundary distance, and (c) Hausdorff
distance. The improvement of the network is statistically significant for all metrics at the 10 −3 level (two-sided non-parametric Wilcoxon signed-rank tests) for the 
whole hypothalamus and all subunits. For each box, the central mark is the median; edges are the first and third quartiles; whiskers extend to 1.5 interquartile ranges 
around the median; and outliers are marked with ✦ . 
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In comparison, MAS yields a significantly less accurate segmentation
f the hypothalamic subunits ( Fig. 4 ), as it does not grasp the anatomy
f the anterior nuclei, and exhibits smaller tuberal regions (both in ax-
al and sagittal directions). Fig. 5 corroborates this visual assessment
y showing that MAS is outperformed by the network for the whole
ypothalamus and all subunits, according to all metrics. While these
ifferences are all statistically significant at the 10 −3 level (two-sided
on-parametric Wilcoxon signed-rank test), the biggest gap is observed
or the a-iHyp, for which MAS obtains an average Dice scores below 0.2.
imilarly, our model significantly outperforms MAS for the whole hy-
othalamus (0.07 difference in Dice scores, and 0.50 mm in Hausdorff
istance). The performance difference between the two methods is more
ubtle in the tuberal and posterior units, for which the maximum gap in
verage boundary distance is 0.10 mm. 

In order to put these results in context, particularly the structures
ith lower Dice, we compare the similarity scores of the automated

egmentations with the scores obtained in the reproducibility exper-
ments. This comparison is exclusively performed on the ten subjects
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Fig. 6. Comparison between the intra-rater, inter-rater, and automated segmen- 
tations scores on the ten subjects from the variability experiment: (a) Dice coef- 
ficients, (b) average boundary distance (mm), and (c) Hausdorff distance (mm). 
Statistical significance (two-sided non-parametric Wilcoxon signed-rank test) is 
represented by black circles ( •p < 0.05, ••p < 0.01). 
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f the first experiment, which are all part of the testing subset. Fig. 6
hows box plots for the three accuracy metrics as well as the statisti-
al significance levels (two-sided non-parametric Wilcoxon rank-signed
ests). Our model achieves better results than inter-rater reliabilities for
he whole hypothalamus, and for almost all subregions (a-iHyp, sup-
ub, infTub and posHyp), with p-values all lower than 0.01 (except for
hree cases where p < 0.05). The automated framework presents scores
lightly better than the inter-rater accuracies for the a-sHyp unit, even if
o significant difference can be inferred from the statistical tests, except
or the Hausdorff distance of the a-iHyp subfield ( 𝑝 = 0 . 013 ). 

Since we use the segmentations of the expert rater as ground truth,
he intra-rater similarity scores constitute the theoretical upper bound
or the accuracy of the automated segmentation. Thus, it is not surpris-
ng that the intra-rater Dice coefficients and average distances are better
han our method for the whole hypothalamus, as well as the tubular and
osterior regions ( Fig. 6 (a,b)), with p-values all lower than 0.01. Never-
heless, the gap for these units is moderate considering their small size,
ince the difference between Table 4 reports Cohen’s d between con-
rol and AD populations the average Dice coefficients of the two never
xceeds 0.10, which translates into a maximum average distance differ-
nce of only 0.17 mm. Moreover the difference between intra-rater and
utomated scores disappears for the Hausdorff distance ( Fig. 6 (c)), for
hich no significant difference can be inferred. The results obtained for

he anterior region are even closer to the intra-variability level, espe-
ially for the a-iHyp unit, which yields the same average Dice score and
resents similar distributions for the average and Hausdorff distances
 Fig. 6 ). 

.3.3. Robustness to differences in acquisition 

A crucial aspect of the evaluation is testing the robustness of our
pproach using scans acquired on different hardware platforms and dif-
erent T1-weighted sequences than the ones used in training. With this
urpose, we use 675 scans from the highly heterogeneous ADNI dataset,
hich includes subjects spanning wide age range, some with severe AD-

elated atrophy, scanned with a variety of MR scanners using different
equences. Since manual delineations are not available for this dataset,
e perform a visual QC analysis on the automated segmentations of

hese 675 scans. While visual assessment is not as informative as Dice
cores computed against manual segmentations, it enables evaluation on
 much larger sample, covering a much wider spectrum of variability in
erms of anatomy and MR acquisition. 

In this analysis, we first retrain the network with all the 37 manu-
lly labelled subjects. This new model, which we have made publicly
vailable along with the code, is used to automatically segment the 675
cans. Then, the expert rater of the first experiment visually evaluates
he quality of the segmentations produced by the network based on a
ass/fail assessment. A segmentation is judged as a “pass ”, when the ex-
ert believes it could robustly be used in an neuroimaging study involv-
ng the hypothalamic subunits. We emphasise that the QC is performed
lindly of the age, gender, and medical condition (control, MCI, or AD)
f the subjects. Despite the high variability in image acquisition (includ-
ng head positioning) and anatomy (including atrophy patterns linked to
ormal ageing and AD), the network produces satisfying segmentations
or 669 scans (see examples Fig. 7 ). QC only fails in six cases, there-
ore yielding a very low rejection rate of 0.89%. We identify two main
easons as probable causes for failure (Fig. S5): extreme set-up for head-
ositioning (four cases with rotation superior to 60 ∘ around right-left
xis), and scans of poor quality (two cases). 

In order to precisely quantify the robustness of this model, we test
t on the external dataset of four scans, which were delineated by the
xpert rater. We evaluate the accuracy of the automated segmentations
y computing the same three metrics as before. Even if the results are
ot directly comparable (due to differences in training and testing data),
he scores (shown in Table 3 ) yielded by this model are very similar to
he results obtained on the internal dataset, therefore demonstrating
hat the proposed model can robustly generalise to unseen datasets (see
xamples in Fig. 8 ). 

.3.4. Alzheimer’s disease volumetric study 

In the fourth and final experiment, we assess the ability of the trained
eural network to reliably segment MRI scans different from the train-
ng data, in the case of a neuroimaging group study, which represents
he main application that we envision for this method. More specifi-
ally, we employ subjects from the ADNI dataset to indirectly evaluate
he ability of the presented algorithm to detect atrophy patterns in AD
 Callen et al., 2001 ; Ishii and Iadecola, 2015 ; Loskutova et al., 2010 ;
ercruysse et al., 2018 ). 

In this experiment, we reuse the network from the previous experi-
ent, i.e. the model trained on all 37 manually labelled scans, to run a

olumetric study on the controls and AD subjects (317 subjects in total).
olumes are computed from the soft segmentations, i.e., the output of

he softmax layer. This enables to account for segmentation uncertain-
ies and, to some extent, for partial volume effect. All measured volumes
re corrected for age and Intercranial Volume (ICV) using a general lin-
ar model. The ICVs are estimated with FreeSurfer ( Fischl, 2012 ). 
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Fig. 7. Coronal slices of segmentations produced by the network for four subjects randomly selected from the ADNI dataset. The first two cases are drawn among 
the control group, and the other two among AD subjects. Slices are shown from anterior (left) to posterior (right). 

Table 3 

Average scores and associated standard deviations obtained by the proposed network on the external dataset. 

whole a-sHyp a-iHyp supTub infTub posHyp 

Dice coefficient 0.84 ± 0.01 0.57 ± 0.09 0.51 ± 0.12 0.67 ± 0.03 0.79 ± 0.06 0.79 ± 0.04 

Average distance (mm) 0.42 ± 0.12 0.46 ± 0.11 0.54 ± 0.13 0.51 ± 0.14 0.31 ± 0.04 0.32 ± 0.08 

Hausdorff distance (mm) 2.23 ± 0.70 1.70 ± 0.23 1.76 ± 0.28 2.28 ± 0.60 1.54 ± 0.23 1.38 ± 0.17 
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We analyse differences in the volumes of hypothalamic subunits be-
ween controls and diseased subjects using Cohen’s d and statistical sig-
ificance tests. If 𝜇C , 𝑠 

2 
𝐶 

and 𝜇A , 𝑠 
2 
𝐴 

designate the means and variances of
wo volume populations of size n C and n A , where C stands for Controls
nd A for AD subjects, Cohen’s d is given by: 

 = 

𝜇𝐶 − 𝜇𝐴 

𝑠 
, 𝑠 = 

√ 

( 𝑛 𝐶 − 1) 𝑠 2 
𝐶 
+ ( 𝑛 𝐴 − 1) 𝑠 2 

𝐴 

𝑛 𝐶 + 𝑛 𝐴 − 2 
. (6)

An effect size is considered small if its Cohen’s d is inferior to 0.2, and
arge if it is above 0.8 ( Cohen, 1988 ). We also perform unpaired, one-
ailed t-tests in order to test whether the observed volume differences
re statistically significant. 

Table 4 reports Cohen’s d between control and AD populations. Our
utomated algorithm detects large effect sizes of respectively 0.87 and
.04 for the whole left and right hypothalamus, respectively. The net-
ork is able to detect similar, subunit-specific atrophies in anterior and
osterior subunits ( d ≥ 0.91). The disparity between both populations
s largest for the a-sHyp and a-iHyp subregions, where the Cohen’s d
xceeds 1 for all regions except the right a-iHyp. These large volume
ifferences are statistically significant with very small p-values for the
 -tests ( 𝑝 < 10 −13 ). 

Differences are lower in the tubular region, where the Cohen’s d val-
es for the supTub and infTub range from 0.23 to 0.63. These results are
till statistically significant with very small p-values ( 10 −3 < 𝑝 < 10 −8 ),
ven if the differences are slightly smaller than for the anterior and pos-
erior subunits. 

. Discussion 

In this work, we have presented the first automated tool to segment
he whole hypothalamus and its subnuclei. This task is challenging be-
ause of the lack of contrast in the hypothalamic region, which is mainly
urrounded and composed by grey matter structures ( Saper, 1990 ). This
artly explains the less accurate results for the anterior subunits, where
he boundary between a-iHyp and a-sHyp is faint as it is only defined
y grey matter contrast. Moreover, cerebrospinal fluid and few white
atter cell groups such as the fornix, the diagonal band of Broca, or
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Fig. 8. Coronal slices of segmentations produced by the network for two subjects of the external dataset (one from each subdataset). 

Table 4 

Cohen’s d measure between Control and AD populations for right and left whole hypothalami and subunits. P -values 
for one-tailed t-tests are shown in parentheses. 

Side whole a-sHyp a-iHyp supTub infTub posHyp 

Left 0.87 ( 1 × 10 −13 ) 1.28 ( 3 × 10 −25 ) 1.05 ( 1 × 10 −18 ) 0.57 ( 4 × 10 −7 ) 0.23 ( 2 × 10 −3 ) 0.91 ( 1 × 10 −14 ) 
Right 1.04 ( 4 × 10 −18 ) 1.04 ( 2 × 10 −18 ) 0.92 ( 6 × 10 −14 ) 0.63 ( 3 × 10 −8 ) 0.44 ( 7 × 10 −5 ) 0.97 ( 4 × 10 −16 ) 
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he mamillo-thalamic tracts are also present in the hypothalamic region
 Baroncini et al., 2012 ). In addition to being barely visible at 1 mm res-
lution, these white matter structures induce partial voluming effects,
hich hinder segmentation accuracy. 

Despite the lack of contrast, the intra-rater setup exhibits a high level
f reproducibility in terms of average boundary distance, especially for
he posterior and tubular regions, which also yield low Hausdorff dis-
ances – comparable to those of the whole hypothalamus. However, the
ntra-rater Dice coefficients are lower than those usually reported for
ther whole brain structures ( Fischl, 2012 ). This is explained by the
mall volumes of the hypothalamic subunits, especially for the anterior
ubregions, which also present overall flat and narrow shapes that neg-
tively impact the Dice coefficients. The challenging nature of hypotha-
amic subunits segmentation is more apparent in the inter-rater variabil-
ty, where the obtained scores are noticeably below the intra-rater level.
t should be noted that our experiments involve two raters in total, in-
luding an expert and a junior rater. While having the former train the
atter eliminates biases due to differences in labelling protocols, the ju-
ior rater may not be representative of a fully trained neuroanatomist.
his may have affected the accuracy of the segmentations in the inter-
ater study, especially for structures where boundary tracings rely on
natomical landmarks that may be hard to identify. 

The second experiment suggests that, despite these challenges, our
utomated method is able to precisely learn the anatomy of the hy-
othalamus and its subunits. Indeed, this experiment demonstrates that
he presented method: ( i ) segments the posterior and tubular subre-
ions with the same level of precision as the whole hypothalamus, and
 ii ) significantly outperforms MAS (thoroughly validated and widely
sed in neuroimaging) for the whole hypothalamus and all subunits,
hile running orders of magnitude faster at test time. In comparison
ith a recent deep learning approach for whole hypothalamus segmen-

ation ( Rodrigues et al., 2020 ), our model shows an improvement of 0.07
n Dice coefficient. Although these results are not directly comparable
ue to differences in datasets, the improvement may be because of our
ore aggressive data augmentation scheme, including: linear and elas-

ic transformations, bias field corruption, and intensity augmentation.
o comparison with other automated methods is possible for the hy-
othalamic subunits, as this work is the first to automatically achieve
uch segmentation. 

The proposed network is also demonstrated to significantly surpass
nter-rater precision level for tubular and posterior subunits, as well as
or the a-iHyp unit. By accurately learning the labelling patterns of the
xpert rater, the network makes better decisions for peripheral voxels
han the second rater. The fact that no difference can be inferred from
he statistical tests for the a-sHyp subregion suggests that, despite lower
ccuracy scores (due to the small size and lack of contrast), it can still
e segmented at inter-rater precision level. 

Because the intra-rater study constitutes the upper bound in terms of
egmentation accuracy, it was also expected that its scores would be sig-
ificantly superior to the ones of the proposed framework. Nevertheless,
he gap between the two for Dice scores and average boundary distance
s mild, especially for the particularly difficult anterior regions, whereas
o distinction can be detected for the Hausdorff distance. This very en-
ouraging result indicates that the network has correctly learned the
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verall structure shapes and does not commit bigger mistakes than the
uman expert. We emphasise that manual segmentations rely on T1 and
2-weighted scans previously registered to a standard template, whereas
ur method only uses T1-weighted brain scans that are not preprocessed
n any way. This choice was motivated by the fact that we designed this
ool to be publicly available and widely applicable, and thus to require
he least possible number of MR contrasts. 

In the third experiment, we retrain our framework on all the avail-
ble scans, and we evaluate the obtained model by testing it on a val-
dation dataset comprising four scans with ground truth delineations.

e complement this robustness study with direct visual assessment of
he segmentations produced by the network for the heterogeneous ADNI
ataset. The high scores obtained by the retrained model combined with
he low rejection rate (below 1%) of the quality control analysis, demon-
trate that our method is robust to high variability in T1-weighted scans.

Finally, we validate our approach indirectly by quantifying the effect
izes between subunit volumes of control and diseased subjects in a pop-
lation study. This experiment represents a typical scenario in which our
ool will be used. The most significant volume differences are detected in
oth anterior and posterior regions. Anterior nuclei have already been
eported to undergo severe atrophy in AD ( Baron et al., 2001 ) espe-
ially in the suprachiasmatic nucleus (responsible for regulation of the
ircadian cycle) ( Baloyannis et al., 2015; Harper et al., 2008; Swaab
t al., 1985 ), parts of the supraoptic nucleus (involved in ageing mech-
nisms) ( Baloyannis et al., 2015; Goudsmit et al., 1990 ), and the par-
ventricular nucleus (implicated in satiety perception). Even if the ante-
ior subunits are the less accurately segmented, this experiment shows
hat our method is precise enough to detect subtle volume changes in
hese regions. The results for the posterior region atrophy are also in
greement with previous studies ( Callen et al., 2004; Copenhaver et al.,
006; Fronczek et al., 2012; Nestor et al., 2003 ). This can be explained
y the fact that this region is mainly constituted by the mamillary bod-
es, which are connected via the fornix to the hippocampus (known to
e severely affected by AD ( Fox et al., 1996 ), and by the lateral hy-
othalamus, which holds roles in ageing, appetite and sleeping cycles
 McDuff and Sumi, 1985 ). 

The atrophy of the tubular subunits in AD has been less frequently
escribed in the literature and has been found to be smaller than for the
ther subregions ( Saper and German, 1987 ). This finding is in agreement
ith the lower effect sizes obtained for both infTub and supTub units.
 significant difference is still found in the supTub region ( 𝑝 < 10 −6 ),
hich contains parts of the paraventricular, lateral and dorsomedial (as-

ociated with ageing functions) nuclei. Nevertheless this distinction is
ess clear for the infTub region, which is responsible for functions less as-
ociated with AD (metabolic and hormonal signalling, sexual behaviour
 Bao and Swaab, 2011; Goudsmit et al., 1990 )). Even if the tubular sub-
nits accounts for two thirds of the total hypothalamic volume, our algo-
ithm still detects strong effect sizes for the whole hypothalamus, which
re comparable to that of the most affected anterior subunits (Cohen’s
 values of 0.87 and 1.04 for respectively left and right hypothalami,
 < 10 −12 ). Overall, the coherence of these volumetric measurements
urther indicates that our method is robust to high variability in T1-
eighted scans, including pathologies deeply affecting the structure of

he hypothalamus. 
More generally, our aggressive data augmentation strategy is found

o greatly increase the robustness of the proposed model, as highlighted
y the poor scores obtained when ablating augmentation. This observa-
ion is in agreement with recent publications, which show that aggres-
ive data augmentation (even beyond realistic limits) increases general-
sation at testing ( Billot et al., 2020; Chaitanya et al., 2019; Zhao et al.,
019 ). We believe this partly explains the ability of the network to suc-
essfully generalise to the heterogeneous ADNI dataset, which includes
cans with intensity profiles that are very different from those of the
raining data. Moreover, the adaptability of the proposed method is fur-
her demonstrated in the cross-validation studies, where our framework
s shown to generalise well to populations with different characteristics
rom the training subjects (Supplement 3). However, the accuracy of
he produced segmentations could be limited by some forms of variabil-
ty, such as extreme head-positioning, scans of bad quality, or lesions,
hich are not currently modelled. Moreover, our model is trained on
 mm resolution scans and is thus unable to capitalise on higher res-
lutions. While the vast majority of data in neuroimaging has 1 mm
oxel size, new labelled datasets will be required to train networks that
xploit the higher resolutions that are becoming increasingly available
particularly at 7T), as well as contrasts other than T1. 

. Conclusion 

In this paper, we have presented a tool to automatically segment the
ypothalamus and its associated subregions in MR T1-weighted brain
cans. The proposed framework does not require any preprocessing and
s based on the use of a convolutional network, permitting extremely fast
tructure segmentation at inference (less than a second on a GPU, around
en seconds on a standard modern CPU). The algorithm is completed by
n aggressive data augmentation model, which enables accurate and ro-
ust hypothalamic segmentation of scans from widely different sources.
n a first set of experiments, we employed a dataset of 37 subjects to
ompare our approach against a MAS baseline, and manual delineations.
e demonstrated that our automated tool consistently exceeds MAS as
ell as human inter-rater accuracy level, and nearly reaches intra-rater
recision. We further validated the accuracy and robustness of the pro-
osed method by first showing that it maintained its high accuracy per-
ormances on an external dataset of four scans, and then with a quality
ontrol analysis performed on a broader subset of 675 heterogeneous
cans from the multi-site ADNI dataset, which yielded a rejection rate
elow 1%. Finally, we evaluated our approach by applying it to a volu-
etric analysis on 317 ADNI scans, which closely represents the type of

pplication the method is designed for. Using the automated measure-
ents, we managed to accurately replicate neuropathological atrophy
ndings associated with AD, by detecting significant volume differences
etween controls and AD subjects in specific subunits. 

Future work will focus on extending this framework to other MRI
odalities. Moreover, we believe that the quality of the automated seg-
entations could be increased by exploiting additional MRI contrasts

uch as T2-weighted scans, which are already used in the manual de-
ineation protocol. Another possible line of work could aim at building
odels operating on MRI scans of higher resolution, in order to segment

he hypothalamic subunits with even higher precision. 
This publicly available automated tool will enable researchers

round the world to conduct studies of the hypothalamus and its sub-
nits in vivo , in a reproducible manner, and at a large scale. Therefore,
ur open-source tool has the potential to help unravel the involvement
f the hypothalamus in a number of vital functions as well as neurode-
enerative diseases like AD, Parkinson’s Disease or frontotemporal de-
entia, which represent a huge burden on society. 
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